1
|
Jang M, Yeom K, Han J, Fagan E, Park JH. Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infiltration. ACS NANO 2024; 18:24204-24218. [PMID: 39174871 DOI: 10.1021/acsnano.4c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The delivery of mRNA into the lungs is the key to solving infectious and intractable diseases that frequently occur in the lungs. Since inhalation using a nebulizer is the most promising method for mRNA delivery into the lungs, there have been many attempts toward adapting lipid nanoparticles for mRNA inhalation. However, conventional lipid nanoparticles, which have shown great effectiveness for systemic delivery of mRNA and intramuscular vaccination, are not effective for pulmonary delivery due to their structural instability during nebulization and their inability to adapt to the pulmonary microenvironment. To address these issues, we developed an ionizable liposome-mRNA lipocomplex (iLPX). iLPX has a highly ordered lipid bilayer structure, which increases stability during nebulization, and its poly(ethylene glycol)-free composition allows it to infiltrate the low serum environment and the pulmonary surfactant layer in the lungs. We selected an inhalation-optimized iLPX (IH-iLPX) using a multistep screening procedure that mimics the pulmonary delivery process of inhaled nanoparticles. The IH-iLPX showed a higher transfection efficiency in the lungs compared to conventional lipid nanoparticles after inhalation with no observed toxicity in vivo. Furthermore, analysis of lung distribution revealed even protein expression in the deep lungs, with effective delivery to epithelial cells. This study provides insights into the challenges and solutions related to the development of inhaled mRNA pulmonary therapeutics.
Collapse
Affiliation(s)
- Mincheol Jang
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyunghwan Yeom
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhee Han
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Erinn Fagan
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Kim HK, Jeong H, Jeong MG, Won HY, Lee G, Bae SH, Nam M, Lee SH, Hwang GS, Hwang ES. TAZ deficiency impairs the autophagy-lysosomal pathway through NRF2 dysregulation and lysosomal dysfunction. Int J Biol Sci 2024; 20:2592-2606. [PMID: 38725855 PMCID: PMC11077375 DOI: 10.7150/ijbs.88897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hana Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Soo Han Bae
- College of Medicine, Severance Biomedical Science Institute, Yonsei University, Seoul 03722, Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
3
|
Li J, Tan M, Yang T, Huang Q, Shan F. The paracrine isthmin1 transcriptionally regulated by C/EBPβ exacerbates pulmonary vascular leakage in murine sepsis. Am J Physiol Cell Physiol 2024; 326:C304-C316. [PMID: 38047305 DOI: 10.1152/ajpcell.00431.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
It is known that pulmonary vascular leakage, a key pathological feature of sepsis-induced lung injury, is largely regulated by perivascular cells. However, the underlying mechanisms have not been fully uncovered. In the present study, we aimed to evaluate the role of isthmin1, a secretory protein originating from alveolar epithelium, in the pulmonary vascular leakage during sepsis and to investigate the regulatory mechanisms of isthmin1 gene transcription. We observed an elevated isthmin1 gene expression in the pulmonary tissue of septic mice induced by cecal ligation and puncture (CLP), as well as in primary murine alveolar type II epithelial cells (ATII) exposed to lipopolysaccharide (LPS). Furthermore, we confirmed that isthmin1 derived from ATII contributes to pulmonary vascular leakage during sepsis. Specifically, adenovirus-mediated isthmin1 disruption in ATII led to a significant attenuation of the increased pulmonary microvascular endothelial cell (PMVEC) hyperpermeability in a PMVEC/ATII coculture system when exposed to LPS. In addition, adeno-associated virus 9 (AAV9)-mediated knockdown of isthmin1 in the alveolar epithelium of septic mice significantly attenuated pulmonary vascular leakage. Finally, mechanistic studies unveiled that nuclear transcription factor CCAAT/enhancer binding protein (C/EBP)β participates in isthmin1 gene activation by binding directly to the cis-regulatory element of isthmin1 locus and may contribute to isthmin1 upregulation during sepsis. Collectively, the present study highlighted the impact of the paracrine protein isthmin1, derived from ATII, on the exacerbation of pulmonary vascular permeability in sepsis and revealed a new regulatory mechanism for isthmin1 gene transcription.NEW & NOTEWORTHY This article addresses the role of the alveolar epithelial-secreted protein isthmin1 on the exacerbation of pulmonary vascular permeability in sepsis and identified nuclear factor CCAAT/enhancer binding protein (C/EBP)β as a new regulator of isthmin1 gene transcription. Targeting the C/EBPβ-isthmin1 regulatory axis on the alveolar side would be of great value in the treatment of pulmonary vascular leakage and lung injury induced by sepsis.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Miaomiao Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Dylag AM, Misra RS, Bandyopadhyay G, Poole C, Huyck HL, Jehrio MG, Haak J, Deutsch GH, Dvorak C, Olson HM, Paurus V, Katzman PJ, Woo J, Purkerson JM, Adkins JN, Mariani TJ, Clair GC, Pryhuber GS. New insights into the natural history of bronchopulmonary dysplasia from proteomics and multiplexed immunohistochemistry. Am J Physiol Lung Cell Mol Physiol 2023; 325:L419-L433. [PMID: 37489262 PMCID: PMC10642360 DOI: 10.1152/ajplung.00130.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.
Collapse
Affiliation(s)
- Andrew M Dylag
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Cory Poole
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heidie L Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew G Jehrio
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Jeannie Haak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gail H Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington, University of Washington, Seattle, Washington, United States
| | - Carly Dvorak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heather M Olson
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Vanessa Paurus
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Philip J Katzman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
| | - Jongmin Woo
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Jeffrey M Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Joshua N Adkins
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Geremy C Clair
- Pacific Northwest National Laboratories, Richland, Washington, United States
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
5
|
Zhao T, Zhou Z, Zhao S, Wan H, Li H, Hou J, Wang J, Qian M, Shen X. Vincamine as an agonist of G protein-coupled receptor 40 effectively ameliorates pulmonary fibrosis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154919. [PMID: 37392673 DOI: 10.1016/j.phymed.2023.154919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an irreversible and fatal lung disease with limited therapeutic options. G protein-coupled receptor 40 (GPR40) has been developed as a promising therapeutic target for metabolic disorders and functions potently in varied pathological and physiological processes. Vincamine (Vin) is a monoterpenoid indole alkaloid originated from Madagascar periwinkle and was reported as a GPR40 agonist in our previous work. PURPOSE Here, we aimed to clarify the role of GPR40 in PF pathogenesis by using the determined GPR40 agonist Vin as a probe and explore the potential of Vin in ameliorating PF in mice. METHODS Pulmonary GPR40 expression alterations were assessed in both PF patients and bleomycin-induced PF mice (PF mice). Vin was used to evaluate the therapeutic potential of GPR40 activation for PF and the underlying mechanism was intensively investigated by assays against GPR40 knockout (Ffar1-/-) mice and the cells transfected with si-GPR40 in vitro. RESULTS Pulmonary GPR40 expression level was highly downregulated in PF patients and PF mice. Pulmonary GPR40 deletion (Ffar1-/-) exacerbated pulmonary fibrosis as evidenced by the increases in mortality, dysfunctional lung index, activated myofibroblasts and extracellular matrix (ECM) deposition in PF mice. Vin-mediated pulmonary GPR40 activation ameliorated PF-like pathology in mice. Mechanistically, Vin suppressed ECM deposition by GPR40/β-arrestin2/SMAD3 pathway, repressed inflammatory response by GPR40/NF-κB/NLRP3 pathway and inhibited angiogenesis by decreasing GPR40-mediated vascular endothelial growth factor (VEGF) expression in the region of interface to normal parenchyma in pulmonary fibrotic tissues of mice. CONCLUSION Pulmonary GPR40 activation shows promise as a therapeutic strategy for PF and Vin exhibits high potential in treating this disease.
Collapse
Affiliation(s)
- Tong Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiruo Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shimei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiqi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Honglin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiwei Hou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiaying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China
| | - Minyi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China.
| |
Collapse
|
6
|
Ahangari F, Price NL, Malik S, Chioccioli M, Bärnthaler T, Adams TS, Kim J, Pradeep SP, Ding S, Cosmos C, Rose KAS, McDonough JE, Aurelien NR, Ibarra G, Omote N, Schupp JC, DeIuliis G, Villalba Nunez JA, Sharma L, Ryu C, Dela Cruz CS, Liu X, Prasse A, Rosas I, Bahal R, Fernández-Hernando C, Kaminski N. microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis. JCI Insight 2023; 8:e158100. [PMID: 36626225 PMCID: PMC9977502 DOI: 10.1172/jci.insight.158100] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.
Collapse
Affiliation(s)
- Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program, Yale Center for Molecular and System Metabolism, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Bärnthaler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Taylor S. Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jooyoung Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sai Pallavi Pradeep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Shuizi Ding
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Cosmos
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kadi-Ann S. Rose
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E. McDonough
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nachelle R. Aurelien
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine, Weill Cornell Hospital Medicine, New York, New York, USA
| | - Gabriel Ibarra
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Life Span Medical Group, Department of Internal Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Norihito Omote
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julian A. Villalba Nunez
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinran Liu
- Center for Cellular and Molecular Imaging (CCMI), Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Antje Prasse
- Department of Pneumology, University of Hannover, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Ivan Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale Center for Molecular and System Metabolism, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Locally organised and activated Fth1 hi neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner. Nat Commun 2022; 13:7703. [PMID: 36513690 PMCID: PMC9745290 DOI: 10.1038/s41467-022-35492-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome with no effective therapeutic intervention. Neutrophils function in the overwhelming inflammatory process of acute lung injury (ALI) caused by ARDS; however, the phenotypic heterogeneity of pulmonary neutrophils in ALI/ARDS remains largely unknown. Here, using single-cell RNA sequencing, we identify two transcriptionally and functionally heterogeneous neutrophil populations (Fth1hi Neu and Prok2hi Neu) with distinct locations in LPS-induced ALI mouse lungs. Exposure to LPS promotes the Fth1hi Neu subtype, with more inflammatory factors, stronger antioxidant, and decreased apoptosis under the regulation of interleukin-10. Furthermore, prolonged retention of Fth1hi Neu within lung tissue aggravates inflammatory injury throughout the development of ALI/ARDS. Notably, ARDS patients have high ratios of Fth1 to Prok2 expression in pulmonary neutrophils, suggesting that the Fth1hi Neu population may promote the pathological development and provide a marker of poor outcome.
Collapse
|
8
|
PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis. Nat Commun 2022; 13:7114. [PMID: 36402779 PMCID: PMC9675736 DOI: 10.1038/s41467-022-34870-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis is a chronic interstitial lung disease that causes irreversible and progressive lung scarring and respiratory failure. Activation of fibroblasts plays a central role in the progression of pulmonary fibrosis. Here we show that platelet endothelial aggregation receptor 1 (PEAR1) in fibroblasts may serve as a target for pulmonary fibrosis therapy. Pear1 deficiency in aged mice spontaneously causes alveolar collagens accumulation. Mesenchyme-specific Pear1 deficiency aggravates bleomycin-induced pulmonary fibrosis, confirming that PEAR1 potentially modulates pulmonary fibrosis progression via regulation of mesenchymal cell function. Moreover, single cell and bulk tissue RNA-seq analysis of pulmonary fibroblast reveals the expansion of Activated-fibroblast cluster and enrichment of marker genes in extracellular matrix development in Pear1-/- fibrotic lungs. We further show that PEAR1 associates with Protein Phosphatase 1 to suppress fibrotic factors-induced intracellular signalling and fibroblast activation. Intratracheal aerosolization of monoclonal antibodies activating PEAR1 greatly ameliorates pulmonary fibrosis in both WT and Pear1-humanized mice, significantly improving their survival rate.
Collapse
|
9
|
Petrosyan A, Montali F, Peloso A, Citro A, Byers LN, La Pointe C, Suleiman M, Marchetti A, Mcneill EP, Speer AL, Ng WH, Ren X, Bussolati B, Perin L, Di Nardo P, Cardinale V, Duisit J, Monetti AR, Savino JR, Asthana A, Orlando G. Regenerative medicine technologies applied to transplant medicine. An update. Front Bioeng Biotechnol 2022; 10:1015628. [PMID: 36263358 PMCID: PMC9576214 DOI: 10.3389/fbioe.2022.1015628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza, Italy
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lori N. Byers
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | | - Mara Suleiman
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Marchetti
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eoin P. Mcneill
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Allison L Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Paolo Di Nardo
- Centro Interdipartimentale per la Medicina Rigenerativa (CIMER), Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | | | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
10
|
Shin M, Chan IL, Cao Y, Gruntman AM, Lee J, Sousa J, Rodríguez TC, Echeverria D, Devi G, Debacker AJ, Moazami MP, Krishnamurthy PM, Rembetsy-Brown JM, Kelly K, Yukselen O, Donnard E, Parsons TJ, Khvorova A, Sontheimer EJ, Maehr R, Garber M, Watts JK. Intratracheally administered LNA gapmer antisense oligonucleotides induce robust gene silencing in mouse lung fibroblasts. Nucleic Acids Res 2022; 50:8418-8430. [PMID: 35920332 PMCID: PMC9410908 DOI: 10.1093/nar/gkac630] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.
Collapse
Affiliation(s)
- Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Io Long Chan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yuming Cao
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alisha M Gruntman
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, N. Grafton, MA 01536, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tomás C Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gitali Devi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexandre J Debacker
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Moazami
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Julia M Rembetsy-Brown
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Onur Yukselen
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Teagan J Parsons
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.,Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Tigges J, Eggerbauer F, Worek F, Thiermann H, Rauen U, Wille T. Optimization of long-term cold storage of rat precision-cut lung slices with a tissue preservation solution. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1023-L1035. [PMID: 34643087 DOI: 10.1152/ajplung.00076.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precision-cut lung slices (PCLS) are used as ex vivo model of the lung to fill the gap between in vitro and in vivo experiments. To allow optimal utilization of PCLS, possibilities to prolong slice viability via cold storage using optimized storage solutions were evaluated. Rat PCLS were cold stored in DMEM/F-12 or two different preservation solutions for up to 28 days at 4°C. After rewarming in DMEM/F-12, metabolic activity, live/dead staining, and mitochondrial membrane potential was assessed to analyze overall tissue viability. Single-cell suspensions were prepared and proportions of CD45+, EpCAM+, CD31+, and CD90+ cells were analyzed. As functional parameters, TNF-α expression was analyzed to detect inflammatory activity and bronchoconstriction was evaluated after acetylcholine stimulus. After 14 days of cold storage, viability and mitochondrial membrane potential were significantly better preserved after storage in solution 1 (potassium chloride rich) and solution 2 (potassium- and lactobionate-rich analog) compared with DMEM/F-12. Analysis of cell populations revealed efficient preservation of EpCAM+, CD31+, and CD90+ cells. Proportion of CD45+ cells decreased during cold storage but was better preserved by both modified solutions than by DMEM/F-12. PCLS stored in solution 1 responded substantially longer to inflammatory stimulation than those stored in DMEM/F-12 or solution 2. Analysis of bronchoconstriction revealed total loss of function after 14 days of storage in DMEM/F-12 but, in contrast, a good response in PCLS stored in the optimized solutions. An improved base solution with a high potassium chloride concentration optimizes cold storage of PCLS and allows shipment between laboratories and stockpiling of tissue samples.
Collapse
Affiliation(s)
- Jonas Tigges
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Florian Eggerbauer
- Walther Straub Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital, Essen, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
12
|
Nagano F, Mizuno T, Imai M, Takahashi K, Tsuboi N, Maruyama S, Mizuno M. Expression of a Crry/p65 is reduced in acute lung injury induced by extracellular histones. FEBS Open Bio 2021; 12:192-202. [PMID: 34709768 PMCID: PMC8727949 DOI: 10.1002/2211-5463.13322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lung injury (ALI) occurs in patients with severe sepsis and has a mortality rate of 40%–60%. Severe sepsis promotes the release of histones from dying cells, which can induce platelet aggregation, activate coagulation and cause endothelial cell (EC) death. We previously reported that the expression of membrane complement receptor type 1‐related gene Y (Crry)/p65, which plays a principal role in defence against abnormal activation of complement in the blood, is reduced in response to peritoneal mesothelial cell injury, and we hence hypothesized that a similar mechanism occurs in pulmonary ECs. In this study, we examined the role of Crry/p65 in histone‐mediated ALI using an experimental animal model. In ALI model mice, exposure to extracellular histones induces lung injury and results in a decrease in Crry/p65 expression. The levels of lactic acid dehydrogenase (LDH), a marker of cell damage, were significantly increased in the serum of ALI model compared with vehicle mice. The significant inverse correlation between the expression of Crry/p65 and LDH levels in plasma revealed an association between Crry/p65 expression and cell damage. The levels of complement component 3a (C3a) were also significantly increased in the serum of the ALI model compared with vehicle mice. Notably, a C3a receptor antagonist ameliorated lung injury induced by histones. We hypothesize that extracellular histones induce complement activation via down‐regulation of Crry/p65 and that C3a might serve as a therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Fumihiko Nagano
- Department of Nephrology, Nagoya University, Nagoya, Japan.,Department of Analytical Pharmacology, Meijo University, Nagoya, Japan
| | - Tomohiro Mizuno
- Department of Clinical Pharmacy, Fujita Health University, Toyoake, Japan
| | - Masaki Imai
- Department of Immunology, Nagoya City University, Nagoya, Japan
| | - Kazuo Takahashi
- Department of Cell Biology and Anatomy, Fujita Health University, Toyoake, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University, Toyoake, Japan
| | | | - Masashi Mizuno
- Department of Renal Replacement Therapy, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
El-Ashmawy NE, Salem ML, Abd El-Fattah EE, Khedr EG. Targeting CD166 + lung cancer stem cells: Molecular study using murine dendritic cell vaccine. Toxicol Appl Pharmacol 2021; 429:115699. [PMID: 34437932 DOI: 10.1016/j.taap.2021.115699] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Cancer stem cells (CSC) are the most common causes of lung cancer relapse and mouse resistance to chemotherapy. CD166 was identified as CSC marker for lung cancer. Our study aimed to detect the effect of dendritic cell vaccine loaded with tumor cell lysate (TCL-DCV) on percentage of CD166+ CSC in lung of mice exposed to Benzo(a)Pyrene (BP). METHODS Female albino mice were divided into 5 groups (22 mice per group): normal control (NC), lung cancer control (LCC) (50 mg/kg BP orally, twice weekly for four weeks), dendritic cell (DC), TCL-DCV and cisplatin. Cisplatin (6 mg/kg, intraperitoneal) was given in two doses (18th and 20th week). 1 × 106 cells of each of DC and TCL-DCV was given subcutaneously as cisplatin. At the end of experiment (22 weeks), lung tissue was used for evaluation of cytotoxic T lymphocyte antigen-4 (Ctla-4), transforming growth factor-β (Tgf-β), forkhead box protein P3 (Foxp3), programmed death ligand 1 (Pd-l1) and interleukin 12 (Il-12) gene expression using quantitative RT-PCR. The percentage of CD83+, CD8+ and CD166+ cells in lung tissue were measured using flow cytometry. RESULTS The results revealed that TCL-DCV reversed the tumorigenic effect of BP in the lung as evidenced by histopathological examination. Compared to cisplatin, dendritic cell vaccination (TCL-DCV) significantly decreased percentage of CD166+ CSC. This anticancer stemness effect was attributed to the immune-stimulatory effect as indicated by increased percentage of CD83+ and CD8+ cells, upregulation of Il-12, and downregulation of Tgf-β, Ctla-4, Pd-l1 and Foxp3 gene expression compared to LCC group. CONCLUSIONS TCL-DCV ameliorated cancer stemness through modulating tumor immune archetypes which make it a potent therapeutic alternative to chemotherapy resistant cases.
Collapse
Affiliation(s)
- N E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - M L Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - E E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt..
| | - E G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
El-Ashmawy N, Salem M, Abd El-Fattah E, Khedr E. Targeting CD166+ lung cancer stem cells: Molecular study using murine dendritic cell vaccine. Toxicol Appl Pharmacol 2021. [DOI: https://doi.org/10.1016/j.taap.2021.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Li J, Xia Y, Huang Z, Zhao Y, Xiong R, Li X, Huang Q, Shan F. Novel HIF-1-target gene isthmin1 contributes to hypoxia-induced hyperpermeability of pulmonary microvascular endothelial cells monolayers. Am J Physiol Cell Physiol 2021; 321:C671-C680. [PMID: 34469202 DOI: 10.1152/ajpcell.00124.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high-altitude pulmonary edema (HAPE). We previously observed that PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1 (ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC coculture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O2) and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers, as small interference RNA (siRNA)-mediated knockdown of ISM1 in AECII markedly attenuated the increase in PMVEC permeability in coculture system under hypoxia. In addition, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the ism1 locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yiming Xia
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhizhong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Renping Xiong
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoxu Li
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Kingston BR, Lin ZP, Ouyang B, MacMillan P, Ngai J, Syed AM, Sindhwani S, Chan WCW. Specific Endothelial Cells Govern Nanoparticle Entry into Solid Tumors. ACS NANO 2021; 15:14080-14094. [PMID: 34382779 DOI: 10.1021/acsnano.1c04510] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The successful delivery of nanoparticles to solid tumors depends on their ability to pass through blood vessels and into the tumor microenvironment. Here, we discovered a subset of tumor endothelial cells that facilitate nanoparticle transport into solid tumors. We named these cells nanoparticle transport endothelial cells (N-TECs). We show that only 21% of tumor endothelial cells located on a small number of vessels are involved in transporting nanoparticles into the tumor microenvironment. N-TECs have an increased expression of genes related to nanoparticle transport and vessel permeability compared to other tumor endothelial cells. The N-TECs act as gatekeepers that determine the entry point, distribution, cell accessibility, and number of nanoparticles that enter the tumor microenvironment.
Collapse
Affiliation(s)
- Benjamin R Kingston
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Zachary P Lin
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ben Ouyang
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- MD/PhD Program, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Presley MacMillan
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jessica Ngai
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Abdullah Muhammad Syed
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- J. David Gladstone Institutes, San Francisco, California 94158, United States
| | - Shrey Sindhwani
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- MD/PhD Program, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
17
|
Liu Y, Liu J, Quimbo A, Xia F, Yao J, Clamme JP, Zabludoff S, Zhang J, Ying W. Anti-HSP47 siRNA lipid nanoparticle ND-L02-s0201 reverses interstitial pulmonary fibrosis in preclinical rat models. ERJ Open Res 2021; 7:00733-2020. [PMID: 34109242 PMCID: PMC8181707 DOI: 10.1183/23120541.00733-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/19/2021] [Indexed: 11/05/2022] Open
Abstract
ND-L02-s0201 is a lipid nanoparticle encapsulating an siRNA which inhibits expression of heat shock protein 47 (HSP47), a collagen-specific chaperone. Accumulated evidence demonstrates a close association between increased level of HSP47 and excessive accumulation of collagen in fibrotic diseases. Our objective was to test ND-L02-s0201 efficacy in preclinical lung fibrosis models and characterise the downstream histological and functional consequences of inhibiting the expression of HSP47. Comprehensive optimisation and characterisation of bleomycin (BLM) and silica-induced rat lung fibrosis models were conducted, which ensured progressive pathological changes were sustained throughout the study during evaluation of the anti-fibrotic potential of ND-L02-s0201. In the BLM model, we demonstrated dose-dependent and statistically significant reduction in the relative lung weight, collagen deposition and histology, and fibrosis scores following ND-L02-s0201 treatment. Lung tissue mRNA profiling demonstrated that 11 out of 84 fibrosis-relevant genes were upregulated following BLM induction and were downregulated by approximately 4.5-fold following ND-L02-s0201 treatment. Epithelial-mesenchymal transition was characterised in the BLM model following ND-L02-s0201 treatment. Cell enrichment demonstrated that myofibroblasts contained the highest HSP47 mRNA expression. BLM led to more than a five-fold increase in myofibroblasts and ND-L02-s0201 treatment reduced the myofibroblasts to sham levels. Statistically significant improvement in lung function was noted in the BLM model which was determined by running endurance capacity using a 7-minute treadmill test. Comparable anti-fibrotic efficacy was also observed in the silica model. Results from two robust chronic rodent models of pulmonary fibrosis demonstrated significant anti-fibrotic effects and improved lung function which support the evaluation of ND-L02-s0201 in subjects with idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yun Liu
- Nitto Biopharma Inc., San Diego, CA, USA.,These authors contributed equally
| | - Jian Liu
- Nitto Biopharma Inc., San Diego, CA, USA.,These authors contributed equally
| | | | | | - Jiping Yao
- Nitto Biopharma Inc., San Diego, CA, USA
| | | | | | - Jun Zhang
- Cellagen Technology, San Diego, CA, USA
| | | |
Collapse
|
18
|
Stecker IR, Freeman MS, Sitaraman S, Hall CS, Niedbalski PJ, Hendricks AJ, Martin EP, Weaver TE, Cleveland ZI. Preclinical MRI to Quantify Pulmonary Disease Severity and Trajectories in Poorly Characterized Mouse Models: A Pedagogical Example Using Data from Novel Transgenic Models of Lung Fibrosis. JOURNAL OF MAGNETIC RESONANCE OPEN 2021; 6-7. [PMID: 34414381 PMCID: PMC8372031 DOI: 10.1016/j.jmro.2021.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Structural remodeling in lung disease is progressive and heterogeneous, making temporally and spatially explicit information necessary to understand disease initiation and progression. While mouse models are essential to elucidate mechanistic pathways underlying disease, the experimental tools commonly available to quantify lung disease burden are typically invasive (e.g., histology). This necessitates large cross-sectional studies with terminal endpoints, which increases experimental complexity and expense. Alternatively, magnetic resonance imaging (MRI) provides information noninvasively, thus permitting robust, repeated-measures statistics. Although lung MRI is challenging due to low tissue density and rapid apparent transverse relaxation (T2* <1 ms), various imaging methods have been proposed to quantify disease burden. However, there are no widely accepted strategies for preclinical lung MRI. As such, it can be difficult for researchers who lack lung imaging expertise to design experimental protocols-particularly for novel mouse models. Here, we build upon prior work from several research groups to describe a widely applicable acquisition and analysis pipeline that can be implemented without prior preclinical pulmonary MRI experience. Our approach utilizes 3D radial ultrashort echo time (UTE) MRI with retrospective gating and lung segmentation is facilitated with a deep-learning algorithm. This pipeline was deployed to assess disease dynamics over 255 days in novel, transgenic mouse models of lung fibrosis based on disease-associated, loss-of-function mutations in Surfactant Protein-C. Previously identified imaging biomarkers (tidal volume, signal coefficient of variation, etc.) were calculated semi-automatically from these data, with an objectively-defined high signal volume identified as the most robust metric. Beyond quantifying disease dynamics, we discuss common pitfalls encountered in preclinical lung MRI and present systematic approaches to identify and mitigate these challenges. While the experimental results and specific pedagogical examples are confined to lung fibrosis, the tools and approaches presented should be broadly useful to quantify structural lung disease in a wide range of mouse models.
Collapse
Affiliation(s)
- Ian R Stecker
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Matthew S Freeman
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sneha Sitaraman
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Chase S Hall
- Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, KS 66160
| | - Peter J Niedbalski
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, KS 66160
| | - Alexandra J Hendricks
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Emily P Martin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Timothy E Weaver
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Zackary I Cleveland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221
| |
Collapse
|
19
|
Ullrich SJ, Freedman-Weiss M, Ahle S, Mandl HK, Piotrowski-Daspit AS, Roberts K, Yung N, Maassel N, Bauer-Pisani T, Ricciardi AS, Egan ME, Glazer PM, Saltzman WM, Stitelman DH. Nanoparticles for delivery of agents to fetal lungs. Acta Biomater 2021; 123:346-353. [PMID: 33484911 DOI: 10.1016/j.actbio.2021.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/01/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Fetal treatment of congenital lung disease, such as cystic fibrosis, surfactant protein syndromes, and congenital diaphragmatic hernia, has been made possible by improvements in prenatal diagnostic and interventional technology. Delivery of therapeutic agents to fetal lungs in nanoparticles improves cellular uptake. The efficacy and safety of nanoparticle-based fetal lung therapy depends on targeting of necessary cell populations. This study aimed to determine the relative distribution of nanoparticles of a variety of compositions and sizes in the lungs of fetal mice delivered through intravenous and intra-amniotic routes. Intravenous delivery of particles was more effective than intra-amniotic delivery for epithelial, endothelial and hematopoietic cells in the fetal lung. The most effective targeting of lung tissue was with 250nm Poly-Amine-co-Ester (PACE) particles accumulating in 50% and 44% of epithelial and endothelial cells. This study demonstrated that route of delivery and particle composition impacts relative cellular uptake in fetal lung, which will inform future studies in particle-based fetal therapy.
Collapse
Affiliation(s)
- Sarah J Ullrich
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA.
| | - Mollie Freedman-Weiss
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA
| | - Samantha Ahle
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA
| | - Hanna K Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | | | - Katherine Roberts
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA
| | - Nicholas Yung
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA
| | - Nathan Maassel
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA
| | - Tory Bauer-Pisani
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA
| | - Adele S Ricciardi
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA; Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA; Department of Physiology, Yale University, New Haven, CT, 06511, USA
| | - David H Stitelman
- Department of Surgery, Yale University, 330 Cedar Street, FMB 107, New Haven, CT, 06510, USA
| |
Collapse
|
20
|
Kurosawa M, Shikama Y, Furukawa M, Arakaki R, Ishimaru N, Matsushita K. Chemokines Up-Regulated in Epithelial Cells Control Senescence-Associated T Cell Accumulation in Salivary Glands of Aged and Sjögren's Syndrome Model Mice. Int J Mol Sci 2021; 22:ijms22052302. [PMID: 33669065 PMCID: PMC7956724 DOI: 10.3390/ijms22052302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Immunosenescence is characterized by age-associated changes in immunological functions. Although age- and autoimmune-related sialadenitis cause dry mouth (xerostomia), the roles of immunosenescence and cellular senescence in the pathogenesis of sialadenitis remain unknown. We demonstrated that acquired immune cells rather than innate immune cells infiltrated the salivary glands (SG) of aged mice. An analysis of isolated epithelial cells from SG revealed that the expression levels of the chemokine CXCL13 were elevated in aged mice. Senescence-associated T cells (SA-Ts), which secrete large amounts of atypical pro-inflammatory cytokines, are involved in the pathogenesis of metabolic disorders and autoimmune diseases. The present results showed that SA-Ts and B cells, which express the CXCL13 receptor CXCR5, accumulated in the SG of aged mice, particularly females. CD4+ T cells derived from aged mice exhibited stronger in vitro migratory activity toward CXCL13 than those from young mice. In a mouse model of Sjögren’s syndrome (SS), SA-Ts also accumulated in SG, presumably via CXCL12-CXCR4 signaling. Collectively, the present results indicate that SA-Ts accumulate in SG, contribute to the pathogenesis of age- and SS-related sialadenitis by up-regulating chemokines in epithelial cells, and have potential as therapeutic targets for the treatment of xerostomia caused by these types of sialadenitis.
Collapse
Affiliation(s)
- Mie Kurosawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| | - Yosuke Shikama
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
- Correspondence: ; Tel.: +81-562-46-2311
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (R.A.); (N.I.)
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (R.A.); (N.I.)
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| |
Collapse
|
21
|
Salem ML, El-Ashmawy NE, Abd El-Fattah EE, Khedr EG. Immunosuppressive role of Benzo[a]pyrene in induction of lung cancer in mice. Chem Biol Interact 2021; 333:109330. [PMID: 33245929 DOI: 10.1016/j.cbi.2020.109330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
AIM Benzo[a]pyrene [BP] is one of the major carcinogenic precursors of cigarette smoke that primary affects the lung at its first proximity. The goal of the current research was to elucidate new mechanisms underlying the tumorigenic impact of oral BP in the lung of mice, with focus on immunosuppressive effects and cancer stemming properties. METHODS Female albino mice (n = 44) were divided into 2 groups: normal control and BP group. BP was administered orally to mice (50 mg/kg body weight), twice a week for four weeks in succession. At the end of experiment (22 weeks), gene expression were measured for transforming growth factor-β (TGF-β), cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death ligand 1(PD-L1), forkhead box protein P3 (FOXP3) and interleukin 12 (IL-12) and CD83+, CD8+ and CD166+ cell percentage were measured in lung tissue. RESULTS The results indicated the tumorigenic role of BP in the lung which was evidenced by histopathological examination. BP group also showed immunosuppressive role which evidenced by increased expression of lung TGF-β, CTLA-4, PD-L1, FOXP3 genes and decreased expression of lung IL-12 gene compared with normal control group. BP group also showed decreased CD83+ cells, CD8+ cells and increased number of CD166+ cells. CONCLUSION Our findings indicated that BP has immunosuppressive role in lung cancer besides increasing the percentage of cancer stem like cells.
Collapse
Affiliation(s)
- Mohamed L Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Manasoura, Dakahleya, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 1: Murine. Cytometry A 2020; 99:251-256. [PMID: 33345421 DOI: 10.1002/cyto.a.24292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The endothelium forms a selective barrier between circulating blood or lymph and surrounding tissue. Endothelial cells play an essential role in vessel homeostasis, and identification of these cells is critical in vascular biology research. However, characteristics of endothelial cells differ depending on the location and type of blood or lymph vessel. Endothelial cell subsets are numerous and often identified using different flow cytometric markers, making immunophenotyping these cells complex. In part 1 of this two part review series, we present a comprehensive overview of markers for the flow cytometric identification and phenotyping of murine endothelial subsets. These subsets can be distinguished using a panel of cell surface and intracellular markers shared by all endothelial cells in combination with additional markers of specialized endothelial cell types. This review can be used to determine the best markers for identifying and phenotyping desired murine endothelial cell subsets.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Spred2-deficiency enhances the proliferation of lung epithelial cells and alleviates pulmonary fibrosis induced by bleomycin. Sci Rep 2020; 10:16490. [PMID: 33020583 PMCID: PMC7536438 DOI: 10.1038/s41598-020-73752-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathways are involved in many cellular processes, including the development of fibrosis. Here, we examined the role of Sprouty-related EVH-1-domain-containing protein (Spred) 2, a negative regulator of the MAPK-ERK pathway, in the development of bleomycin (BLM)-induced pulmonary fibrosis (PF). Compared to WT mice, Spred2−/− mice developed milder PF with increased proliferation of bronchial epithelial cells. Spred2−/− lung epithelial cells or MLE-12 cells treated with spred2 siRNA proliferated faster than control cells in vitro. Spred2−/− and WT macrophages produced similar levels of TNFα and MCP-1 in response to BLM or lipopolysaccharide and myeloid cell-specific deletion of Spred2 in mice had no effect. Spred2−/− fibroblasts proliferated faster and produced similar levels of MCP-1 compared to WT fibroblasts. Spred2 mRNA was almost exclusively detected in bronchial epithelial cells of naïve WT mice and it accumulated in approximately 50% of cells with a characteristic of Clara cells, 14 days after BLM treatment. These results suggest that Spred2 is involved in the regulation of tissue repair after BLM-induced lung injury and increased proliferation of lung bronchial cells in Spred2−/− mice may contribute to faster tissue repair. Thus, Spred2 may present a new therapeutic target for the treatment of PF.
Collapse
|
24
|
Fatty acid nitroalkenes inhibit the inflammatory response to bleomycin-mediated lung injury. Toxicol Appl Pharmacol 2020; 407:115236. [PMID: 32931793 DOI: 10.1016/j.taap.2020.115236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles, endogenously detectable at nM concentrations, displaying anti-inflammatory actions. Nitroalkenes like 9- or 10-nitro-octadec-9-enoic acid (e.g. nitro-oleic acid, OA-NO2) pleiotropically suppress cardiovascular inflammatory responses, with pulmonary responses less well defined. C57BL/6 J male mice were intratracheally administered bleomycin (3 U/kg, ITB), to induce pulmonary inflammation and acute injury, or saline and were treated with 50 μL OA-NO2 (50 μg) or vehicle in the same instillation and 72 h post-exposure to assess anti-inflammatory properties. Bronchoalveolar lavage (BAL) and lung tissue were collected 7d later. ITB mice lost body weight, with OA-NO2 mitigating this loss (-2.3 ± 0.94 vs -0.4 ± 0.83 g). Histology revealed ITB induced cellular infiltration, proteinaceous debris deposition, and tissue injury, all significantly reduced by OA-NO2. Flow cytometry analysis of BAL demonstrated loss of Siglec F+/F4/80+/CD45+ alveolar macrophages with ITB (89 ± 3.5 vs 30 ± 3.7%). Analysis of CD11b/CD11c expressing cells showed ITB-induced non-resident macrophage infiltration (4 ± 2.3 vs 43 ± 2.4%) was decreased by OA-NO2 (24 ± 2.4%). Additionally, OA-NO2 attenuated increases in mature, activated interstitial macrophages (23 ± 4.8 vs. 43 ± 5.4%) in lung tissue digests. Flow analysis of CD31-/CD45-/Sca-1+ mesenchymal cells revealed ITB increased CD44+ populations (1 ± 0.4 vs 4 ± 0.4MFI), significantly reduced by OA-NO2 (3 ± 0.4MFI). Single cell analysis of mesenchymal cells by western blotting showed profibrotic ZEB1 protein expression induced by ITB. Lung digest CD45+ cells revealed ITB increased HMGB1+ cells, with OA-NO2 suppressing this response. Inhibition of HMGB1 expression correlated with increased basal phospholipid production and SP-B expression in the lung lining. These findings indicate OA-NO2 inhibits ITB-induced pro-inflammatory responses by modulating resident cell function.
Collapse
|
25
|
Krämer M, Plum PS, Velazquez Camacho O, Folz-Donahue K, Thelen M, Garcia-Marquez I, Wölwer C, Büsker S, Wittig J, Franitza M, Altmüller J, Löser H, Schlößer H, Büttner R, Schröder W, Bruns CJ, Alakus H, Quaas A, Chon SH, Hillmer AM. Cell type-specific transcriptomics of esophageal adenocarcinoma as a scalable alternative for single cell transcriptomics. Mol Oncol 2020; 14:1170-1184. [PMID: 32255255 PMCID: PMC7266280 DOI: 10.1002/1878-0261.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Single‐cell transcriptomics have revolutionized our understanding of the cell composition of tumors and allowed us to identify new subtypes of cells. Despite rapid technological advancements, single‐cell analysis remains resource‐intense hampering the scalability that is required to profile a sufficient number of samples for clinical associations. Therefore, more scalable approaches are needed to understand the contribution of individual cell types to the development and treatment response of solid tumors such as esophageal adenocarcinoma where comprehensive genomic studies have only led to a small number of targeted therapies. Due to the limited treatment options and late diagnosis, esophageal adenocarcinoma has a poor prognosis. Understanding the interaction between and dysfunction of individual cell populations provides an opportunity for the development of new interventions. In an attempt to address the technological and clinical needs, we developed a protocol for the separation of esophageal carcinoma tissue into leukocytes (CD45+), epithelial cells (EpCAM+), and fibroblasts (two out of PDGFRα, CD90, anti‐fibroblast) by fluorescence‐activated cell sorting and subsequent RNA sequencing. We confirm successful separation of the three cell populations by mapping their transcriptomic profiles to reference cell lineage expression data. Gene‐level analysis further supports the isolation of individual cell populations with high expression of CD3, CD4, CD8, CD19, and CD20 for leukocytes, CDH1 and MUC1 for epithelial cells, and FAP, SMA, COL1A1, and COL3A1 for fibroblasts. As a proof of concept, we profiled tumor samples of nine patients and explored expression differences in the three cell populations between tumor and normal tissue. Interestingly, we found that angiogenesis‐related genes were upregulated in fibroblasts isolated from tumors compared with normal tissue. Overall, we suggest our protocol as a complementary and more scalable approach compared with single‐cell RNA sequencing to investigate associations between clinical parameters and transcriptomic alterations of specific cell populations in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Max Krämer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Patrick S Plum
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Oscar Velazquez Camacho
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin Thelen
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | | | - Christina Wölwer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Sören Büsker
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Jana Wittig
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Marek Franitza
- Cologne Center for Genomics, University of Cologne, Germany
| | | | - Heike Löser
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hans Schlößer
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| |
Collapse
|
26
|
Donati Y, Blaskovic S, Ruchonnet-Métrailler I, Lascano Maillard J, Barazzone-Argiroffo C. Simultaneous isolation of endothelial and alveolar epithelial type I and type II cells during mouse lung development in the absence of a transgenic reporter. Am J Physiol Lung Cell Mol Physiol 2020; 318:L619-L630. [PMID: 32022591 DOI: 10.1152/ajplung.00227.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mouse lung developmental maturation and final alveolarization phase begin at birth. During this dynamic process, alveolar cells modify their morphology and anchorage to the extracellular matrix. In particular, alveolar epithelial cell (AEC) type I undergo cytoplasmic flattening and folding to ensure alveoli lining. We developed FACS conditions for simultaneous isolation of alveolar epithelial and endothelial cells in the absence of specific reporters during the early and middle alveolar phase. We evidenced for the first time a pool of extractable epithelial cell populations expressing high levels of podoplanin at postnatal day (pnd)2, and we confirmed by RT-qPCR that these cells are already differentiated but still immature AEC type I. Maturation causes a decrease in isolation yields, reflecting the morphological changes that these cell populations are undergoing. Moreover, we find that major histocompatibility complex II (MHCII), reported as a good marker of AEC type II, is poorly expressed at pnd2 but highly present at pnd8. Combined experiments using LysoTracker and MHCII demonstrate the de novo acquisition of MCHII in AEC type II during lung alveolarization. The lung endothelial populations exhibit FACS signatures from vascular and lymphatic compartments. They can be concomitantly followed throughout alveolar development and were obtained with a noticeable increased yield at the last studied time point (pnd16). Our results provide new insights into early lung alveolar cell isolation feasibility and represent a valuable tool for pure AEC type I preparation as well as further in vitro two- and three-dimensional studies.
Collapse
Affiliation(s)
- Yves Donati
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanja Blaskovic
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Ruchonnet-Métrailler
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Bykov Y, Kim SH, Zamarin D. Preparation of single cells from tumors for single-cell RNA sequencing. Methods Enzymol 2020; 632:295-308. [DOI: 10.1016/bs.mie.2019.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Liang Y, Rong X, Luo Y, Li P, Han Q, Wei L, Wang E. A novel long non-coding RNA LINC00355 promotes proliferation of lung adenocarcinoma cells by down-regulating miR-195 and up-regulating the expression of CCNE1. Cell Signal 2019; 66:109462. [PMID: 31689506 DOI: 10.1016/j.cellsig.2019.109462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma is the most common subtype of non-small-cell lung cancer affecting people all over the globe. Recent studies have indicated that long non-coding RNAs (lncRNAs) possess the ability to regulate gene expression. Initially, we uncovered increased LINC00355 expressions in lung adenocarcinoma tissues and cells. Functionally, our findings demonstrated that LINC00355 silencing suppressed the proliferation in vitro and in vivo. In addition, we found that LINC00355 negatively regulated miR-195 in lung adenocarcinoma cells. Simultaneously, silencing LINC00355 by shRNA resulted in suppressed proliferation, colony formation and promoted cell cycle arrest and apoptosis via miR-195. Moreover, silencing LINC00355 by shRNA inhibited the cyclin E1 (CCNE1) gene expression via miR-195 in lung adenocarcinoma cells. Collectively, this study demonstrates the novel lncRNA LINC00355 in regulatory network of CCNE1 via miR-195 in lung adenocarcinoma, highlighting LINC00355 as a new target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, 110122, PR China; Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Xuezhu Rong
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, 110122, PR China
| | - Yuan Luo
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, 110122, PR China
| | - Pengcheng Li
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, 110122, PR China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, 110122, PR China
| | - Lai Wei
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, 110122, PR China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
29
|
Del Prete A, Sozio F, Schioppa T, Ponzetta A, Vermi W, Calza S, Bugatti M, Salvi V, Bernardini G, Benvenuti F, Vecchi A, Bottazzi B, Mantovani A, Sozzani S. The Atypical Receptor CCRL2 Is Essential for Lung Cancer Immune Surveillance. Cancer Immunol Res 2019; 7:1775-1788. [PMID: 31484658 DOI: 10.1158/2326-6066.cir-19-0168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
CCRL2 is a nonsignaling seven-transmembrane domain receptor. CCRL2 binds chemerin, a protein that promotes chemotaxis of leukocytes, including macrophages and natural killer (NK) cells. In addition, CCRL2 controls the inflammatory response in different pathologic settings, such as hypersensitivity, inflammatory arthritis, and experimental autoimmune encephalitis. Here, we investigated the role of CCRL2 in the regulation of lung cancer-related inflammation. The genetic deletion of Ccrl2 promoted tumor progression in urethane-induced and in Kras G12D/+/p53 LoxP lung tumor mouse models. Similarly, a Kras-mutant lung tumor displayed enhanced growth in Ccrl2-deficient mice. This phenotype was associated with a reduced inflammatory infiltrate characterized by the impaired recruitment of several leukocyte populations including NK cells. Bone marrow chimeras showed that CCRL2 expression by the nonhematopoietic cell compartment was responsible for the increased tumor formation observed in Kras-mutant Ccrl2-deficient mice. In human and mouse lungs, CCRL2 was expressed by a fraction of CD31+ endothelial cells, where it could control NK infiltration. Elevated CCRL2 expression in biopsies from human lung adenocarcinoma positively correlated with clinical outcome. These results provide evidence for a crucial role of CCRL2 in shaping an anti-lung tumor immune response.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Andrea Ponzetta
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Federica Benvenuti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano-Milano, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
30
|
Tighe RM, Redente EF, Yu YR, Herold S, Sperling AI, Curtis JL, Duggan R, Swaminathan S, Nakano H, Zacharias WJ, Janssen WJ, Freeman CM, Brinkman RR, Singer BD, Jakubzick CV, Misharin AV. Improving the Quality and Reproducibility of Flow Cytometry in the Lung. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2019; 61:150-161. [PMID: 31368812 PMCID: PMC6670040 DOI: 10.1165/rcmb.2019-0191st] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Defining responses of the structural and immune cells in biologic systems is critically important to understanding disease states and responses to injury. This requires accurate and sensitive methods to define cell types in organ systems. The principal method to delineate the cell populations involved in these processes is flow cytometry. Although researchers increasingly use flow cytometry, technical challenges can affect its accuracy and reproducibility, thus significantly limiting scientific advancements. This challenge is particularly critical to lung immunology, as the lung is readily accessible and therefore used in preclinical and clinical studies to define potential therapeutics. Given the importance of flow cytometry in pulmonary research, the American Thoracic Society convened a working group to highlight issues and technical challenges to the performance of high-quality pulmonary flow cytometry, with a goal of improving its quality and reproducibility.
Collapse
|
31
|
Ng B, Cash-Mason T, Wang Y, Seitzer J, Burchard J, Brown D, Dudkin V, Davide J, Jadhav V, Sepp-Lorenzino L, Cejas PJ. Intratracheal Administration of siRNA Triggers mRNA Silencing in the Lung to Modulate T Cell Immune Response and Lung Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:194-205. [PMID: 30901578 PMCID: PMC6426712 DOI: 10.1016/j.omtn.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Abstract
Clinical application of siRNA-based therapeutics outside of the liver has been hindered by the inefficient delivery of siRNA effector molecules into extra-hepatic organs and cells of interest. To understand the parameters that enable RNAi activity in vivo, it is necessary to develop a systematic approach to identify which cells within a tissue are permissive to oligonucleotide internalization and activity. In the present study, we evaluate the distribution and activity within the lung of chemically stabilized siRNA to characterize cell-type tropism and structure-activity relationship. We demonstrate intratracheal delivery of fully modified siRNA for RNAi-mediated target knockdown in lung CD11c+ cells (dendritic cells, alveolar macrophages) and alveolar epithelial cells. Finally, we use an allergen-induced model of lung inflammation to demonstrate the capacity of inhaled siRNA to induce target knockdown in dendritic cells and ameliorate lung pathology.
Collapse
Affiliation(s)
- Bruce Ng
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Tanesha Cash-Mason
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Yi Wang
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Jessica Seitzer
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Julja Burchard
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Duncan Brown
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Vadim Dudkin
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Joseph Davide
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Vasant Jadhav
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | | | - Pedro J Cejas
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA; Department of Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA 19486, USA.
| |
Collapse
|
32
|
Bowdish DM. The Aging Lung. Chest 2019; 155:391-400. [DOI: 10.1016/j.chest.2018.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
|
33
|
Kaczmarek JC, Kauffman KJ, Fenton OS, Sadtler K, Patel AK, Heartlein MW, DeRosa F, Anderson DG. Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells. NANO LETTERS 2018; 18:6449-6454. [PMID: 30211557 PMCID: PMC6415675 DOI: 10.1021/acs.nanolett.8b02917] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
mRNA therapeutics hold great potential for treating a variety of diseases through protein-replacement, immunomodulation, and gene editing. However, much like siRNA therapy the majority of progress in mRNA delivery has been confined to the liver. Previously, we demonstrated that poly(β-amino esters), a class of degradable polymers, are capable of systemic mRNA delivery to the lungs in mice when formulated into nanoparticles with poly(ethylene glycol)-lipid conjugates. Using experimental design, a statistical approach to optimization that reduces experimental burden, we demonstrate herein that these degradable polymer-lipid nanoparticles can be optimized in terms of polymer synthesis and nanoparticle formulation to achieve a multiple order-of-magnitude increase in potency. Furthermore, using genetically engineered Cre reporter mice, we demonstrate that mRNA is functionally delivered to both the lung endothelium and pulmonary immune cells, expanding the potential utility of these nanoparticles.
Collapse
Affiliation(s)
- James C. Kaczmarek
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Kevin J. Kauffman
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Owen S. Fenton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Kaitlyn Sadtler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Asha K. Patel
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD (UK)
| | | | | | - Daniel G. Anderson
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA (USA)
| |
Collapse
|
34
|
Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya MA, Wang X, Simons BW, Ballew M, Nugent K, Groves J, Williams RD, Shiraishi T, Verdone J, Yildirir G, Henry R, Zhang B, Wong J, Wang KKH, Nelkin BD, Pienta KJ, Felsher D, Zachara NE, Tran PT. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest 2018; 128:4924-4937. [PMID: 30130254 DOI: 10.1172/jci94844] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Mutant KRAS drives glycolytic flux in lung cancer, potentially impacting aberrant protein glycosylation. Recent evidence suggests aberrant KRAS drives flux of glucose into the hexosamine biosynthetic pathway (HBP). HBP is required for various glycosylation processes, such as protein N- or O-glycosylation and glycolipid synthesis. However, its function during tumorigenesis is poorly understood. One contributor and proposed target of KRAS-driven cancers is a developmentally conserved epithelial plasticity program called epithelial-mesenchymal transition (EMT). Here we showed in novel autochthonous mouse models that EMT accelerated KrasG12D lung tumorigenesis by upregulating expression of key enzymes of the HBP pathway. We demonstrated that HBP was required for suppressing KrasG12D-induced senescence, and targeting HBP significantly delayed KrasG12D lung tumorigenesis. To explore the mechanism, we investigated protein glycosylation downstream of HBP and found elevated levels of O-linked β-N-acetylglucosamine (O-GlcNAcylation) posttranslational modification on intracellular proteins. O-GlcNAcylation suppressed KrasG12D oncogene-induced senescence (OIS) and accelerated lung tumorigenesis. Conversely, loss of O-GlcNAcylation delayed lung tumorigenesis. O-GlcNAcylation of proteins SNAI1 and c-MYC correlated with the EMT-HBP axis and accelerated lung tumorigenesis. Our results demonstrated that O-GlcNAcylation was sufficient and required to accelerate KrasG12D lung tumorigenesis in vivo, which was reinforced by epithelial plasticity programs.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center.,Program in Cellular and Molecular Medicine
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Mustafa A Barbhuiya
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Xing Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Brian W Simons
- Department of Urology, James Buchanan Brady Urological Institute
| | - Matthew Ballew
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | | | - Russell D Williams
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Takumi Shiraishi
- Department of Urology, James Buchanan Brady Urological Institute
| | - James Verdone
- Department of Urology, James Buchanan Brady Urological Institute
| | | | | | - Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Barry D Nelkin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Department of Biological Chemistry, and.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dean Felsher
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, and.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center.,Program in Cellular and Molecular Medicine.,Department of Urology, James Buchanan Brady Urological Institute.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Li ZG, Scott MJ, Brzóska T, Sundd P, Li YH, Billiar TR, Wilson MA, Wang P, Fan J. Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages. Mil Med Res 2018; 5:24. [PMID: 30056803 PMCID: PMC6065058 DOI: 10.1186/s40779-018-0173-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/12/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome (MODS) following pulmonary and systemic infection. Alveolar macrophages (AMϕ) are at the center of ALI pathogenesis. Emerging evidence has shown that cell-cell interactions in the lungs play an important regulatory role in the development of acute lung inflammation. However, the underneath mechanisms remain poorly addressed. In this study, we explore a novel function of lung epithelial cells (LEPCs) in regulating the release of exosomes from AMϕ following LPS stimulation. METHODS For the in vivo experiments, C57BL/6 wildtype (WT) mice were treated with lipopolysaccharide (LPS) (2 mg/kg B.W.) in 0.2 ml of saline via intratracheal aerosol administration. Bronchoalveolar lavage fluid was collected at 0-24 h after LPS treatment, and exosomes derived from AMϕ were measured. For the in vitro studies, LEPCs and bone marrow-derived Mϕ (BMDM) were isolated from WT or TLR4-/- mice and were then cocultured in the Transwell™ system. After coculture for 0-24 h, the BMDM and supernatant were harvested for the measurement of exosomes and cytokines. RESULTS We demonstrate that LPS induces macrophages (Mϕ) to release exosomes, which are then internalized by neighboring Mϕ to promote TNF-α expression. The secreted interleukin (IL)-25 from LEPCs downregulates Rab27a and Rab27b expression in Mϕ, resulting in suppressed exosome release and thereby attenuating exosome-induced TNF-α expression and secretion. CONCLUSION These findings reveal a previously unidentified crosstalk pathway between LEPCs and Mϕ that negatively regulates the inflammatory responses of Mϕ to LPS. Modulating IL-25 signaling and targeting exosome release may present a new therapeutic strategy for the treatment of ALI.
Collapse
Affiliation(s)
- Zhi-Gang Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tomasz Brzóska
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Prithu Sundd
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yue-Hua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Mark A Wilson
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Ping Wang
- The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
36
|
Bandyopadhyay G, Huyck HL, Misra RS, Bhattacharya S, Wang Q, Mereness J, Lillis J, Myers JR, Ashton J, Bushnell T, Cochran M, Holden-Wiltse J, Katzman P, Deutsch G, Whitsett JA, Xu Y, Mariani TJ, Pryhuber GS. Dissociation, cellular isolation, and initial molecular characterization of neonatal and pediatric human lung tissues. Am J Physiol Lung Cell Mol Physiol 2018; 315:L576-L583. [PMID: 29975103 DOI: 10.1152/ajplung.00041.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human lung morphogenesis begins by embryonic life and continues after birth into early childhood to form a complex organ with numerous morphologically and functionally distinct cell types. Pulmonary organogenesis involves dynamic changes in cell proliferation, differentiation, and migration of specialized cells derived from diverse embryonic lineages. Studying the molecular and cellular processes underlying formation of the fully functional lung requires isolating distinct pulmonary cell populations during development. We now report novel methods to isolate four major pulmonary cell populations from pediatric human lung simultaneously. Cells were dissociated by protease digestion of neonatal and pediatric lung and isolated on the basis of unique cell membrane protein expression patterns. Epithelial, endothelial, nonendothelial mesenchymal, and immune cells were enriched by fluorescence-activated cell sorting. Dead cells and erythrocytes were excluded by 7-aminoactinomycin D uptake and glycophorin-A (CD235a) expression, respectively. Leukocytes were identified by membrane CD45 (protein tyrosine phosphatase, receptor type C), endothelial cells by platelet endothelial cell adhesion molecule-1 (CD31) and vascular endothelial cadherin (CD144), and both were isolated. Thereafter, epithelial cell adhesion molecule (CD326)-expressing cells were isolated from the endothelial- and immune cell-depleted population to enrich epithelial cells. Cells lacking these membrane markers were collected as "nonendothelial mesenchymal" cells. Quantitative RT-PCR and RNA sequencing analyses of population specific transcriptomes demonstrate the purity of the subpopulations of isolated cells. The method efficiently isolates major human lung cell populations that we announce are now available through the National Heart, Lung, and Blood Institute Lung Molecular Atlas Program (LungMAP) for their further study.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York
| | - Heidie L Huyck
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York
| | - Ravi S Misra
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York.,Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Qian Wang
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York.,Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Jared Mereness
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York.,Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Jacquelyn Lillis
- University of Rochester Genomics Research Center, University of Rochester Medical Center , Rochester, New York
| | - Jason R Myers
- University of Rochester Genomics Research Center, University of Rochester Medical Center , Rochester, New York
| | - John Ashton
- University of Rochester Genomics Research Center, University of Rochester Medical Center , Rochester, New York
| | - Timothy Bushnell
- University of Rochester Flow Cytometry Core Facility, University of Rochester Medical Center , Rochester, New York
| | - Matthew Cochran
- University of Rochester Flow Cytometry Core Facility, University of Rochester Medical Center , Rochester, New York
| | - Jeanne Holden-Wiltse
- University of Rochester Biocomputational Center, University of Rochester Medical Center , Rochester, New York
| | - Philip Katzman
- Department of Pathology, University of Rochester Medical Center , Rochester, New York
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, University of Washington , Seattle, Washington
| | - Jeffrey A Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Yan Xu
- Division of Neonatology, Perinatal and Pulmonary Biology Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York.,Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
37
|
EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget 2018; 7:54137-54156. [PMID: 27494838 PMCID: PMC5338915 DOI: 10.18632/oncotarget.11021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/22/2016] [Indexed: 01/21/2023] Open
Abstract
Lung adenocarcinoma patients harboring kinase domain mutations in Epidermal growth factor receptor (EGFR) have significant clinical benefit from EGFR-targeted tyrosine kinase inhibitors (TKIs). Although a majority of patients experience clinical symptomatic benefit immediately, an objective response can only be demonstrated after 6-8 weeks of treatment. Evaluation of patient response by imaging shows that 30-40% of patients do not respond due to intrinsic resistance to these TKIs. We investigated immediate-early effects of EGFR-TKI treatment in mutant EGFR-driven transgenic mouse models by FDG-PET and MRI and correlated the effects on the tumor and the tumor microenvironment. Within 24 hours of erlotinib treatment we saw approximately 65% tumor regression in mice with TKI-sensitive EGFRL858R lung adenocarcinoma. However, mice with EGFRL858R/T790M-driven tumors did not respond to either erlotinib or afatinib monotherapy, but did show a significant tumor response to afatinib-cetuximab combination treatment. The imaging responses correlated with the inhibition of downstream EGFR signaling, increased apoptosis, and decreased proliferation in the tumor tissues. In EGFRL858R-driven tumors, we saw a significant increase in CD45+ leukocytes, NK cells, dendritic cells, macrophages and lymphocytes, particularly CD8+ T cells. In response to erlotinib, these dendritic cells and macrophages had significantly higher MHC class II expression, indicating increased antigen-presenting capabilities. Together, results of our study provide novel insight into the immediate-early therapeutic response to EGFR TKIs in vivo.
Collapse
|
38
|
Plebanek MP, Bhaumik D, Bryce PJ, Thaxton CS. Scavenger Receptor Type B1 and Lipoprotein Nanoparticle Inhibit Myeloid-Derived Suppressor Cells. Mol Cancer Ther 2017; 17:686-697. [PMID: 29282300 DOI: 10.1158/1535-7163.mct-17-0981] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are innate immune cells that potently inhibit T cells. In cancer, novel therapies aimed to activate T cells can be rendered ineffective due to the activity of MDSCs. Thus, targeted inhibition of MDSCs may greatly enhance T-cell-mediated antitumor immunity, but mechanisms remain obscure. Here we show, for the first time, that scavenger receptor type B-1 (SCARB1), a high-affinity receptor for spherical high-density lipoprotein (HDL), is expressed by MDSCs. Furthermore, we demonstrate that SCARB1 is specifically targeted by synthetic high-density lipoprotein-like nanoparticles (HDL NP), which reduce MDSC activity. Using in vitro T-cell proliferation assays, data show that HDL NPs specifically bind SCARB1 to inhibit MDSC activity. In murine cancer models, HDL NP treatment significantly reduces tumor growth, metastatic tumor burden, and increases survival due to enhanced adaptive immunity. Flow cytometry and IHC demonstrate that HDL NP-mediated suppression of MDSCs increased CD8+ T cells and reduced Treg cells in the metastatic tumor microenvironment. Using transgenic mice lacking SCARB1, in vivo data clearly show that the HDL NPs specifically target this receptor for suppressing MDSCs. Ultimately, our data provide a new mechanism and targeted therapy, HDL NPs, to modulate a critical innate immune cell checkpoint to enhance the immune response to cancer. Mol Cancer Ther; 17(3); 686-97. ©2017 AACR.
Collapse
Affiliation(s)
- Michael P Plebanek
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Driskill Graduate Program in the Life Sciences, Northwestern University, Chicago, Illinois
| | - Debayan Bhaumik
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois.,International Institute for Nanotechnology, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
39
|
Manrique-Acevedo C, Ramirez-Perez FI, Padilla J, Vieira-Potter VJ, Aroor AR, Barron BJ, Chen D, Haertling D, Declue C, Sowers JR, Martinez-Lemus LA. Absence of Endothelial ERα Results in Arterial Remodeling and Decreased Stiffness in Western Diet-Fed Male Mice. Endocrinology 2017; 158:1875-1885. [PMID: 28430983 PMCID: PMC5460939 DOI: 10.1210/en.2016-1831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/13/2017] [Indexed: 01/16/2023]
Abstract
The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
- Department of Child Health, University of Missouri, Columbia, Missouri 65212
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Brady J Barron
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dongqing Chen
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dominic Haertling
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - Cory Declue
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - James R Sowers
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
40
|
Aldarmahi A. Establishment and characterization of female reproductive tract epithelial cell culture. J Microsc Ultrastruct 2017; 5:105-110. [PMID: 30023243 PMCID: PMC6025759 DOI: 10.1016/j.jmau.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
The oviductal and uterine epithelial cells have a crucial role, but are still poorly understood. Numerous studies have tried to isolate the epithelial cells from different organs in various models. The current study aimed to establish and characterize an in vitro monolayer culture of the oviduct and uterine horn epithelial cells by using two different techniques. Female reproductive epithelial cells from sows were cultured in follicular phase. Combined protocols to isolate the epithelial cells were performed. The viability and cell number were determined. Monolayers of epithelial cells from each group were cultured in four-well plates and were subjected to immunostaining using a Vector ABC Elite Kit. The immunohistochemical staining step was performed to evaluate the quality of the epithelial cells. Oviductal cells reached confluence faster than uterine horn cells. Cilia were seen in oviduct and uterine horn tissue culture. All the isolated cells reached confluence prior to harvesting. The number of cells was increased over the time of incubation. Monolayer culture using the trypsin/EDTA method took longer than culture with the collagenase method. Immunohistochemistry of epithelial cells showed strong staining for cytokeratin. Oviductal and uterus epithelial cells were cultured and established. Both techniques used in this experiment were useful and showed no significant differences. This cell culture model has the potential to study the secretory interactions of the female reproductive tract with spermatozoa, oocytesor embryos.
Collapse
Affiliation(s)
- Ahmed Aldarmahi
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Khan MM, Yang WL, Brenner M, Bolognese AC, Wang P. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress. Sci Rep 2017; 7:41363. [PMID: 28128330 PMCID: PMC5269663 DOI: 10.1038/srep41363] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP), released into the circulation during sepsis, causes lung injury via an as yet unknown mechanism. Since endoplasmic reticulum (ER) stress is associated with acute lung injury (ALI), we hypothesized that CIRP causes ALI via induction of ER stress. To test this hypothesis, we studied the lungs of wild-type (WT) and CIRP knockout (KO) mice at 20 h after induction of sepsis by cecal ligation and puncture (CLP). WT mice had significantly more severe ALI than CIRP KO mice. Lung ER stress markers (BiP, pIRE1α, sXBP1, CHOP, cleaved caspase-12) were increased in septic WT mice, but not in septic CIRP KO mice. Effector pathways downstream from ER stress – apoptosis, NF-κB (p65), proinflammatory cytokines (IL-6, IL-1β), neutrophil chemoattractants (MIP-2, KC), neutrophil infiltration (MPO activity), lipid peroxidation (4-HNE), and nitric oxide (iNOS) – were significantly increased in WT mice, but only mildly elevated in CIRP KO mice. ER stress markers were increased in the lungs of healthy WT mice treated with recombinant murine CIRP, but not in the lungs of TLR4 KO mice. This suggests CIRP directly induces ER stress via TLR4 activation. In summary, CIRP induces lung ER stress and downstream responses to cause sepsis-associated ALI.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Alexandra Cerutti Bolognese
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| |
Collapse
|
42
|
Maman S, Sagi-Assif O, Yuan W, Ginat R, Meshel T, Zubrilov I, Keisari Y, Lu W, Lu W, Witz IP. The Beta Subunit of Hemoglobin (HBB2/HBB) Suppresses Neuroblastoma Growth and Metastasis. Cancer Res 2016; 77:14-26. [PMID: 27793844 DOI: 10.1158/0008-5472.can-15-2929] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
Soluble pulmonary factors have been reported to be capable of inhibiting the viability of cancer cells that metastasize to the lung, but the molecular identity was obscure. Here we report the isolation and characterization of the beta subunit of hemoglobin as a lung-derived antimetastatic factor. Peptide mapping in the beta subunit of human hemoglobin (HBB) defined a short C-terminal region (termed Metox) as responsible for activity. In tissue culture, both HBB and murine HBB2 mediated growth arrest and apoptosis of lung-metastasizing neuroblastoma cells, along with a variety of other human cancer cell lines. Metox acted similarly and its administration in human tumor xenograft models limited the development of adrenal neuroblastoma tumors as well as spontaneous lung and bone marrow metastases. Expression studies in mice indicated that HBB2 is produced by alveolar epithelial and endothelial cells and is upregulated in mice bearing undetectable metastasis. Our work suggested a novel function for HBB as a theranostic molecule: an innate antimetastasis factor with potential utility as an anticancer drug and a biomarker signaling the presence of clinically undetectable metastasis. Cancer Res; 77(1); 14-26. ©2016 AACR.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ravit Ginat
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Zubrilov
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Wang X, Wang L, Zhang H, Li K, You J. Ultrastructural changes during lung carcinogenesis-modulation by curcumin and quercetin. Oncol Lett 2016; 12:4357-4360. [PMID: 28101199 PMCID: PMC5228324 DOI: 10.3892/ol.2016.5259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/28/2016] [Indexed: 01/27/2023] Open
Abstract
The aim of the present study was to examine the effectiveness of curcumin and quercetin in modulating ultrastructural changes during lung carcinogenesis. A total of 24 male laka mice were divided into the normal control, benzo[a]pyrene (BP)-treated, BP+curcumin-treated, BP+quercetin- treated, and BP+curcumin+quercetin-treated groups (n=6 per group). Lung carcinogenesis was induced by a single intraperitoneal injection of BP [100 mg/kg of body weight (b.wt.)]. Curcumin was supplemented to mice at a dose level of 60 mg/kg of b.wt. in drinking water and quercetin was given at a dose level of 40 mg/kg of b.wt. in drinking water. The ultrastructure of BP-treated mice revealed disruptions in cellular integrity together with nuclear deformation and premature mitochondrial aging. Notably, supplementation with phytochemicals individually resulted in improvement of the ultra-histoarchitecture of BP-treated mice although the improvement was much greater with combined supplementation of phytochemicals. Furthermore, BP treatment revealed alterations in lung histoarchitecture, which, however, were improved appreciably following combined supplementation with curcumin and quercetin. The results of the present study show that, combined supplementation with curcumin and quercetin effectively preserved the histoarchitecture as well as ultra-histoarchitecture during BP-induced lung carcinogenesis in mice.
Collapse
Affiliation(s)
- Xin Wang
- Department of Thoracic Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China; Department of Thoracic Surgery, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou, Jiangsu 221009, P.R. China; Department of Thoracic Surgery, Xuzhou Clinical Medical College of Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Lei Wang
- Department of Thoracic Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Hao Zhang
- Department of Thoracic Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ke Li
- Department of Thoracic Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jiqin You
- Department of Thoracic Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
44
|
Marks DL, Olson RL, Fernandez-Zapico ME. Epigenetic control of the tumor microenvironment. Epigenomics 2016; 8:1671-1687. [PMID: 27700179 DOI: 10.2217/epi-2016-0110] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stromal cells of the tumor microenvironment have been shown to play important roles in both supporting and limiting cancer growth. The altered phenotype of tumor-associated stromal cells (fibroblasts, immune cells, endothelial cells etc.) is proposed to be mainly due to epigenetic dysregulation of gene expression; however, only limited studies have probed the roles of epigenetic mechanisms in the regulation of stromal cell function. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation and histone post-translational modification-based gene expression regulation, and miRNA-mediated translational regulation) drive aspects of stromal cell phenotype, and discuss the implications of these findings for treatment of malignancies. We also summarize the effects of epigenetic mechanism-targeted drugs on stromal cells and discuss the consideration of the microenvironment response in attempts to use these drugs for cancer treatment.
Collapse
Affiliation(s)
- David L Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Lo Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,University of Minnesota Rochester, Rochester, MN 55904, USA
| | | |
Collapse
|
45
|
Singer BD, Mock JR, D'Alessio FR, Aggarwal NR, Mandke P, Johnston L, Damarla M. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L796-801. [PMID: 26944088 PMCID: PMC4867353 DOI: 10.1152/ajplung.00334.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/27/2016] [Indexed: 01/03/2023] Open
Abstract
Flow cytometry is a powerful tool capable of simultaneously analyzing multiple parameters on a cell-by-cell basis. Lung tissue preparation for flow cytometry requires creation of a single-cell suspension, which often employs enzymatic and mechanical dissociation techniques. These practices may damage cells and cause cell death that is unrelated to the experimental conditions under study. We tested methods of lung tissue dissociation and sought to minimize cell death in the epithelial, endothelial, and hematopoietic lineage cellular compartments. A protocol that involved flushing the pulmonary circulation and inflating the lung with Dispase, a bacillus-derived neutral metalloprotease, at the time of tissue harvest followed by mincing, digestion in a DNase and collagenase solution, and filtration before staining with fluorescent reagents concurrently maximized viable yields of epithelial, endothelial, and hematopoietic lineage cells compared with a standard method that did not use enzymes at the time of tissue harvest. Flow cytometry identified each population-epithelial (CD326(+)CD31(-)CD45(-)), endothelial (CD326(-)CD31(+)CD45(-)), and hematopoietic lineage (CD326(-)CD31(-)CD45(+))-and measured cellular viability by 7-aminoactinomycin D (7-AAD) staining. The Dispase method permitted discrimination of epithelial vs. endothelial cell death in a systemic lipopolysaccharide model of increased pulmonary vascular permeability. We conclude that application of a dissociative enzyme solution directly to the cellular compartments of interest at the time of tissue harvest maximized viable cellular yields of those compartments. Investigators could employ this dissociation method to simultaneously harvest epithelial, endothelial, and hematopoietic lineage and other lineage-negative cells for flow-cytometric analysis.
Collapse
Affiliation(s)
- Benjamin D Singer
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Jason R Mock
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Franco R D'Alessio
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Neil R Aggarwal
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Pooja Mandke
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Laura Johnston
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Mahendra Damarla
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| |
Collapse
|