1
|
Ghojazadeh M, Pourmanaf H, Fekri V, Nikoukheslat S, Nasoudi Y, Mills DE. The effects of aerobic exercise training on inflammatory markers in adult tobacco smokers: A systematic review and meta-analysis of randomized controlled trials. Respir Med 2024; 231:107732. [PMID: 38971338 DOI: 10.1016/j.rmed.2024.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Aerobic exercise training may reduce systemic inflammation, but the effects of this on systemic inflammatory markers in adult tobacco smokers has not been systematically reviewed. Therefore, we evaluated the effects of aerobic exercise training on C-reactive protein (CRP) and tumor necrosis factor-α (TNF-α) in adult tobacco smokers using a systematic review and meta-analysis of randomized controlled trials. METHODS A comprehensive literature search was carried out using PubMed/Medline, Web of Science, EMBASE, Google Scholar, and hand search of bibliographies of the retrieved English or Persian articles up to August 2023. This review only included randomized controlled trials which investigated the effect of aerobic exercise training on CRP and TNF-α in adult smokers, based on a predefined inclusion and exclusion criteria. RESULTS A total of 1641 articles were identified. Six studies were included in the review and four evaluated CRP and two evaluated TNF-α in only males. The meta-analysis demonstrated that aerobic exercise training significantly decreased TNF-α concentrations in males (MD = -6.68, 95 % CI = -13.90 to -0.54, P = 0.05). CRP concentrations did not decrease significantly when the data from the four studies were pooled (MD = -0.17, 95 % CI = -0.37 to 0.03, P = 0.09). CONCLUSION Aerobic exercise training may reduce the concentration of TNF-α in male smokers, but it does not have a significant effect on CRP concentrations. However, these findings are based upon a small number of studies, that enrolled either exclusively male or female participants, and further investigation is necessary to increase statistical inference.
Collapse
Affiliation(s)
- Morteza Ghojazadeh
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourmanaf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Vahid Fekri
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Nikoukheslat
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Yasmin Nasoudi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dean E Mills
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Queensland, Australia.
| |
Collapse
|
2
|
Fu H, Zhang D, Li Y. NHANES-based analysis of the correlation between leisure-time physical activity, serum cotinine levels and periodontitis risk. BMC Oral Health 2024; 24:466. [PMID: 38632582 PMCID: PMC11022427 DOI: 10.1186/s12903-024-04141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE To investigate the association of leisure-time physical activity and serum cotinine levels with the risk of periodontitis in the general population and to further analyze the interaction between leisure-time physical activity and serum cotinine levels on the risk of periodontitis. METHODS This was a cross-sectional study, extracting data from 9605 (56.19%) participants in the National Health and Nutrition Examination Survey (NHANES) database from 2009 to 2014, and analyzing the relationship and interaction effects of serum cotinine level, leisure time physical activity, and risk of periodontitis by weighted univariate logistic modeling; Effect sizes were determined using ratio of ratios (OR), 95% confidence intervals (95% CI). RESULTS 5,397 (56.19%) of 9,605 participants had periodontitis; an increased risk of periodontitis was found in those in the leisure time physical activity intensity < 750 MET × min/week group (OR = 1.44, 95% CI: 1.17-1.78). Serum cotinine levels ≥ 0.05 ng/ml were associated with an increased risk of periodontitis (OR = 1.99, 95% CI: 1.69-2.33). The group with low leisure physical activity and serum cotinine levels ≥ 0.05 ng/ml had an increased risk of periodontitis compared to the group with high leisure physical activity and serum cotinine levels < 0.05 ng/ml (OR = 2.48, 95% CI: 1.88-3.27). Interaction metrics RERI = 0.90 (95% CI: 0.44-1.36) and API = 0.36 (95% CI: 0.18-0.55); CI for SI = 2.55 (95% CI: 1.03-6.28). for API 0.36. CONCLUSION Leisure time physical activity intensity interacted with smoking exposure on periodontitis risk and may provide the general population with the opportunity to Increasing leisure-time physical activity and smoking cessation may provide recommendations for the general population.
Collapse
Affiliation(s)
- Hua Fu
- Shangyu people's Hospital, Shaoxing City, Zhejiang Province, 312300, China.
| | - Diya Zhang
- Run Run Shaw Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Yining Li
- Zhejiang University Affiliated Stomatology Hospital, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
3
|
Morgan M, Farra YM, Vergara-Anglim A, Bellini C, Oakes JM, Shefelbine SJ. E-cigarette aerosol exposure effect on bone biomechanical properties in murine models. J Biomech 2024; 162:111879. [PMID: 38043496 PMCID: PMC10836423 DOI: 10.1016/j.jbiomech.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Numerous studies have shown the detrimental health effects of tobacco smoking on bone volume and strength in human and animal models. Little is known regarding the impacts of e-cigarettes, a form of smoke-less nicotine intake, despite their growing population of users. This study uses murine models to evaluate the effects of exposure to e-cigarette aerosols (JUUL) on bone structure and strength through micro-CT imaging and mechanical testing. JUUL mice had more trabecular bone in thickness and volume, yet lower ultimate stress and modulus values in the cortical bone than the control mice. These outcomes suggest that, although vaping can result in a higher bone volume, this bone is weaker than average. E-cigarettes should be examined more closely regarding adolescence and long-term consequences on skeletal health.
Collapse
Affiliation(s)
- Meagan Morgan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
4
|
Jin F, Li Y, Gao X, Yang X, Li T, Liu S, Wei Z, Li S, Mao N, Liu H, Cai W, Xu H, Zhang H. Exercise training inhibits macrophage-derived IL-17A-CXCL5-CXCR2 inflammatory axis to attenuate pulmonary fibrosis in mice exposed to silica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166443. [PMID: 37611700 DOI: 10.1016/j.scitotenv.2023.166443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Exposure to crystalline silica leads to health effects beyond occupational silicosis. Exercise training's potential benefits on pulmonary diseases yield inconsistent outcomes. In this study, we utilized experimental silicotic mice subjected to exercise training and pharmacological interventions, including interleukin-17A (IL-17A) neutralizing antibody or clodronate liposome for macrophage depletion. Findings reveal exercise training's ability to mitigate silicosis progression in mice by suppressing scavenger receptor B (SRB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Toll-like receptor 4 (TLR4) pathways. Macrophage-derived IL-17A emerges as primary source and trigger for silica-induced pulmonary inflammation and fibrosis. Exercise training effectively inhibits IL-17A-CXC motif chemokine ligand 5 (CXCL5)-Chemokine (C-X-C motif) Receptor 2 (CXCR2) axis in silicotic mice. Our study evidences exercise training's potential to reduce collagen deposition, preserve elastic fibers, slow pulmonary fibrosis advancement, and enhance pulmonary function post silica exposure by impeding macrophage-derived IL-17A-CXCL5-CXCR2 axis.
Collapse
Affiliation(s)
- Fuyu Jin
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yaqian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xuemin Gao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xinyu Yang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shupeng Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongqiu Wei
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shifeng Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Na Mao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Wenchen Cai
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Hong Xu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China; Health Science Center, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Haibo Zhang
- Department of Anesthesiology and Pain Medicine, Department of Physiology, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
6
|
Iskander MMZ, Lamont GJ, Tan J, Pisano M, Uriarte SM, Scott DA. Tobacco smoke exacerbates Filifactor alocis pathogenicity. J Clin Periodontol 2023; 50:121-130. [PMID: 36122937 PMCID: PMC9976951 DOI: 10.1111/jcpe.13729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
AIM Filifactor alocis has recently emerged as a periodontal pathobiont that appears to thrive in the oral cavity of smokers. We hypothesized that identification of smoke-responsive F. alocis genes would provide insight into adaptive strategies and that cigarette smoke would enhance F. alocis pathogenesis in vivo. MATERIALS AND METHODS F. alocis was grown in vitro and cigarette smoke extract-responsive genes determined by RNAseq. Mice were exposed, or not, to mainstream 1R6F research cigarette smoke and infected with F. alocis, or not, in an acute ligature model of periodontitis. Key clinical, infectious, and immune data were collected. RESULTS In culture, F. alocis growth was unaffected by smoke conditioning and only a small number of genes were specifically regulated by smoke exposure. Reduced murine mass, differences in F. alocis-cognizant antibody production, and altered immune profiles as well as altered alveolar bone loss were all attributable to smoke exposure and/or F. alocis infection in vivo. CONCLUSIONS F. alocis is well-adapted to tobacco-rich conditions and its pathogenesis is enhanced by tobacco smoke exposure. A smoke-exposed ligature model of periodontitis shows promise as a tool with which to further unravel mechanisms underlying tobacco-enhanced, bacteria-induced disease.
Collapse
Affiliation(s)
- Mina M Z Iskander
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Aakerøy L, Cheng CW, Sustova P, Scrimgeour NR, Wahl SGF, Steinshamn S, Bowen TS, Brønstad E. Identification of exercise-regulated genes in mice exposed to cigarette smoke. Physiol Rep 2022; 10:e15505. [PMID: 36324300 PMCID: PMC9630761 DOI: 10.14814/phy2.15505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Cigarette smoke (CS) is the major risk factor for COPD and is linked to cardiopulmonary dysfunction. Exercise training as part of pulmonary rehabilitation is recommended for all COPD patients. It has several physiological benefits, but the mechanisms involved remain poorly defined. Here, we employed transcriptomic profiling and examined lung endothelium to investigate novel interactions between exercise and CS on cardiopulmonary alterations. Mice were exposed to 20 weeks of CS, CS + 6 weeks of high-intensity interval training on a treadmill, or control. Lung and cardiac (left and right ventricle) tissue were harvested and RNA-sequencing was performed and validated with RT-qPCR. Immunohistochemistry assessed pulmonary arteriolar changes. Transcriptome analysis between groups revealed 37 significantly regulated genes in the lung, 21 genes in the left ventricle, and 43 genes in the right ventricle (likelihood-ratio test). Validated genes that showed interaction between exercise and CS included angiotensinogen (p = 0.002) and resistin-like alpha (p = 0.019) in left ventricle, with prostacyclin synthetase different in pulmonary arterioles (p = 0.004). Transcriptomic profiling revealed changes in pulmonary and cardiac tissue following exposure to CS, with exercise training exerting rescue effects. Exercise-regulated genes included angiotensinogen and resistin-like alpha, however, it remains unclear if these represent potential candidate genes or biomarkers that could play a role during pulmonary rehabilitation.
Collapse
Affiliation(s)
- Lars Aakerøy
- Department of Thoracic MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Chew W. Cheng
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Pavla Sustova
- Department of PathologySt. Olav Hospital, Trondheim University HospitalTrondheimNorway
| | - Nathan R. Scrimgeour
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | | | - Sigurd Steinshamn
- Department of Thoracic MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Eivind Brønstad
- Department of Thoracic MedicineSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health ScienceNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
8
|
De Brandt J, Beijers RJHCG, Chiles J, Maddocks M, McDonald MLN, Schols AMWJ, Nyberg A. Update on the Etiology, Assessment, and Management of COPD Cachexia: Considerations for the Clinician. Int J Chron Obstruct Pulmon Dis 2022; 17:2957-2976. [PMID: 36425061 PMCID: PMC9680681 DOI: 10.2147/copd.s334228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Cachexia is a commonly observed but frequently neglected extra-pulmonary manifestation in patients with chronic obstructive pulmonary disease (COPD). Cachexia is a multifactorial syndrome characterized by severe loss of body weight, muscle, and fat, as well as increased protein catabolism. COPD cachexia places a high burden on patients (eg, increased mortality risk and disease burden, reduced exercise capacity and quality of life) and the healthcare system (eg, increased number, length, and cost of hospitalizations). The etiology of COPD cachexia involves a complex interplay of non-modifiable and modifiable factors (eg, smoking, hypoxemia, hypercapnia, physical inactivity, energy imbalance, and exacerbations). Addressing these modifiable factors is needed to prevent and treat COPD cachexia. Oral nutritional supplementation combined with exercise training should be the primary multimodal treatment approach. Adding a pharmacological agent might be considered in some, but not all, patients with COPD cachexia. Clinicians and researchers should use longitudinal measures (eg, weight loss, muscle mass loss) instead of cross-sectional measures (eg, low body mass index or fat-free mass index) where possible to evaluate patients with COPD cachexia. Lastly, in future research, more detailed phenotyping of cachectic patients to enable a better comparison of included patients between studies, prospective longitudinal studies, and more focus on the impact of exacerbations and the role of biomarkers in COPD cachexia, are highly recommended.
Collapse
Affiliation(s)
- Jana De Brandt
- Faculty of Medicine, Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| | - Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joe Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, London, UK
| | - Merry-Lynn N McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - André Nyberg
- Faculty of Medicine, Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Nikniaz L, Ghojazadeh M, Nateghian H, Nikniaz Z, Farhangi MA, Pourmanaf H. The interaction effect of aerobic exercise and vitamin D supplementation on inflammatory factors, anti-inflammatory proteins, and lung function in male smokers: a randomized controlled trial. BMC Sports Sci Med Rehabil 2021; 13:102. [PMID: 34461991 PMCID: PMC8406718 DOI: 10.1186/s13102-021-00333-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/20/2021] [Indexed: 01/26/2023]
Abstract
Background This study aimed to investigate the interaction effect of aerobic exercise and vitamin D supplementation on inflammation (TNF-α, IL-6, CC16, SP-D, and CC16/SP-D ratio) and lung function (FEV1, FVC, and FEV1/FVC ratio) in male smokers.
Methods After applying inclusion criteria, a total of 40 healthy male smokers were recruited in this study. The participants were randomly divided into four groups as follows: Aerobic Exercise + vitamin D Supplementation (AE + VitD, n = 10), Aerobic Exercise (AE, n = 10), vitamin D Supplementation (VitD, n = 10), and Control (C, n = 10). The participants in the AE + VitD and AE groups performed aerobic exercise training (running) up to 50% of the maximum heart rate, three times a week for four weeks. Participants in AE + VitD and VitD groups received 6000 IU/w vitamin D3 for four weeks. The participants in control group did not receive any intervention. Serum tumor necrosis factor (TNF)-α, interleukin (IL)-6, Clara cell protein (CC16), surfactant protein (SP)-D, CC16/SP-D ratio, and lung function (FEV1, FVC, and FEV1/FVC ratio) were measured before and after four weeks of intervention. Results Serum levels of TNF-α, IL-6, and CC16 decreased significantly in AE + VitD, VitD, and AE groups after four weeks (P < 0.05). Serum SP-D level decreased significantly only in the AE + VitD group (P = 0.011). In addition, FEV1 and FVC increased significantly (P < 0.05) in AE + VitD and AE groups after four weeks of intervention. However, the interventions did not have a significant effect on CC16/SP-D ratio and FEV1/FVC ratio (P > 0.05). Furthermore, serum levels of 1,25-dihydroxyvitamin D increased significantly in AE + VitD and VitD groups (P < 0.05) after four weeks of intervention. However, except for TNF-α, between-group comparisons showed no significant differences in levels of IL-6, CC16, SP-D, CC16/SP-D ratio, FEV1, FVC, FEV1/FVC, and 1,25-dihydroxyvitamin D (P > 0.05). Conclusions The results of present study were that aerobic exercise combined with vitamin D supplementation can reduce serum inflammatory factors and anti-inflammatory proteins and improve lung function after four weeks of intervention. Further trials with larger sample size and longer duration are suggested to confirm these results. Trial registration Retrospectively registered. IRCT20180513039637N4. Registration date: 2020/10/20. URL: https://www.irct.ir/search/result?query=IRCT20180513039637N4
Collapse
Affiliation(s)
- Leila Nikniaz
- Tabriz Health Services Management Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hooman Nateghian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Pourmanaf
- Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Ajime TT, Serré J, Wüst RCI, Burniston JG, Maes K, Janssens W, Troosters T, Gayan-Ramirez G, Degens H. The combination of smoking with vitamin D deficiency impairs skeletal muscle fiber hypertrophy in response to overload in mice. J Appl Physiol (1985) 2021; 131:339-351. [PMID: 34080919 DOI: 10.1152/japplphysiol.00733.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vitamin D deficiency, which is highly prevalent in the general population, exerts similar deleterious effects on skeletal muscles to those induced by cigarette smoking. We examined whether cigarette smoke (CS) exposure and/or vitamin D deficiency impairs the skeletal muscle hypertrophic response to overload. Male C57Bl/6JolaH mice on a normal or vitamin D-deficient diet were exposed to CS or room air for 18 wk. Six weeks after initiation of smoke or air exposure, sham surgery or denervation of the agonists of the left plantaris muscle was performed. The right leg served as internal control. Twelve weeks later, the hypertrophic response was assessed. CS exposure instigated loss of body and muscle mass, and increased lung inflammatory cell infiltration (P < 0.05), independently of diet. Maximal exercise capacity, whole body strength, in situ plantaris muscle force, and key markers of hypertrophic signaling (Akt, 4EBP1, and FoxO1) were not significantly affected by smoking or diet. The increase in plantaris muscle fiber cross-sectional area in response to overload was attenuated in vitamin D-deficient CS-exposed mice (smoking × diet interaction for hypertrophy, P = 0.03). In situ fatigue resistance was elevated in hypertrophied plantaris, irrespective of vitamin D deficiency and/or CS exposure. In conclusion, our data show that CS exposure or vitamin D deficiency alone did not attenuate the hypertrophic response of overloaded plantaris muscles, but this hypertrophic response was weakened when both conditions were combined. These data suggest that current smokers who also present with vitamin D deficiency may be less likely to respond to a training program.NEW & NOTEWORTHY Plantaris hypertrophy caused by compensatory overload after denervation of the soleus and gastrocnemius muscles showed increased mass and fiber dimensions, but to a lesser extent when vitamin D deficiency was combined with cigarette smoking. Fatigue resistance was elevated in hypertrophied plantaris, irrespective of diet or smoking, whereas physical fitness, hypertrophic markers, and in situ plantaris force were similar. These data showed that the hypertrophic response to overload is attenuated when both conditions are combined.
Collapse
Affiliation(s)
- Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Rob C I Wüst
- Laboratory of Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jatin G Burniston
- Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Thierry Troosters
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Hans Degens
- Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom.,Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
11
|
Ajime TT, Serré J, Wüst RCI, Messa GAM, Poffé C, Swaminathan A, Maes K, Janssens W, Troosters T, Degens H, Gayan-Ramirez G. Two Weeks of Smoking Cessation Reverse Cigarette Smoke-Induced Skeletal Muscle Atrophy and Mitochondrial Dysfunction in Mice. Nicotine Tob Res 2021; 23:143-151. [PMID: 31965191 DOI: 10.1093/ntr/ntaa016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Apart from its adverse effects on the respiratory system, cigarette smoking also induces skeletal muscle atrophy and dysfunction. Whether short-term smoking cessation can restore muscle mass and function is unknown. We, therefore, studied the impact of 1- and 2-week smoking cessation on skeletal muscles in a mouse model. METHODS Male mice were divided into four groups: Air-exposed (14 weeks); cigarette smoke (CS)-exposed (14 weeks); CS-exposed (13 weeks) followed by 1-week cessation; CS-exposed (12 weeks) followed by 2 weeks cessation to examine exercise capacity, physical activity levels, body composition, muscle function, capillarization, mitochondrial function and protein expression in the soleus, plantaris, and diaphragm muscles. RESULTS CS-induced loss of body and muscle mass was significantly improved within 1 week of cessation due to increased lean and fat mass. Mitochondrial respiration and protein levels of the respiratory complexes in the soleus were lower in CS-exposed mice, but similar to control values after 2 weeks of cessation. Exposing isolated soleus muscles to CS extracts reduced mitochondrial respiration that was reversed after removing the extract. While physical activity was reduced in all groups, exercise capacity, limb muscle force, fatigue resistance, fiber size and capillarization, and diaphragm cytoplasmic HIF-1α were unaltered by CS-exposure. However, CS-induced diaphragm atrophy and increased capillary density were not seen after 2 weeks of smoking cessation. CONCLUSION In male mice, 2 weeks of smoking cessation reversed smoking-induced mitochondrial dysfunction, limb muscle mass loss, and diaphragm muscle atrophy, highlighting immediate benefits of cessation on skeletal muscles. IMPLICATIONS Our study demonstrates that CS-induced skeletal muscle mitochondrial dysfunction and atrophy are significantly improved by 2 weeks of cessation in male mice. We show for the first time that smoking cessation as short as 1 to 2 weeks is associated with immediate beneficial effects on skeletal muscle structure and function with the diaphragm being particularly sensitive to CS-exposure and cessation. This could help motivate smokers to quit smoking as early as possible. The knowledge that smoking cessation has potential positive extrapulmonary effects is particularly relevant for patients referred to rehabilitation programs and those admitted to hospitals suffering from acute or chronic muscle deterioration yet struggling with smoking cessation.
Collapse
Affiliation(s)
- Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium.,Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK
| | - Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| | - Rob C I Wüst
- Laboratory of Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guy Anselme Mpaka Messa
- Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU-Leuven, Leuven, Belgium
| | | | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| | - Thierry Troosters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Hans Degens
- Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Kaunas, Lithuania
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Thirupathi A, Scarparo S, Silva PL, Marqueze LF, Vasconcelos FTF, Nagashima S, Cunha EBB, de Noronha L, Silveira PCL, Nesi RT, Gu Y, Pinho RA. Physical Exercise-Mediated Changes in Redox Profile Contribute to Muscle Remodeling After Passive Hand-Rolled Cornhusk Cigarette Smoke Exposure. Front Physiol 2020; 11:590962. [PMID: 33281621 PMCID: PMC7705113 DOI: 10.3389/fphys.2020.590962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Consumption of non-traditional cigarettes has increased considerably worldwide, and they can induce skeletal muscle dysfunction. Physical exercise has been demonstrated to be important for prevention and treatment of smoking-related diseases. Therfore, the aim of this study was to investigate the effects of combined physical exercise (aerobic plus resistance exercise) on muscle histoarchitecture and oxidative stress in the animals exposed chronically to smoke from hand-rolled cornhusk cigarette (HRCC). Male Swiss mice were exposed to ambient air or passively to the smoke of 12 cigarettes over three daily sessions (four cigarettes per session) for 30 consecutive days with or without combined physical training. 48 h after the last training session, total leukocyte count was measured in bronchoalveolar lavage fluid (BALF), and the quadriceps were removed for histological/immunohistochemical analysis and measurement of oxidative stress parameters. The effects of HRCC on the number of leukocytes in BALF, muscle fiber diameter, central nuclei, and nuclear factor kappa B (NF-κB) were reverted after combined physical training. In addition, increased myogenic factor 5, tumor necrosis factor alpha (TNFα), reduced transforming growth factor beta (TGF-β), and nitrate levels were observed after physical training. However, the reduction in superoxide dismutase and glutathione/glutathione oxidized ratio induced by HRCC was not affected by the training program. These results suggest the important changes in the skeletal muscle brought about by HRCC-induced alteration in the muscle redox profile. In addition, combined physical exercise contributes to remodeling without disrupting muscle morphology.
Collapse
Affiliation(s)
| | - Silvia Scarparo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Paulo L Silva
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Luis F Marqueze
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Franciane T F Vasconcelos
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Eduardo B B Cunha
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Lúcia de Noronha
- Laboratory of Experimental Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo C L Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Renata T Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
13
|
The acute effects of cigarette smoke exposure on muscle fiber type dynamics in rats. PLoS One 2020; 15:e0233523. [PMID: 32433675 PMCID: PMC7239437 DOI: 10.1371/journal.pone.0233523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 11/30/2022] Open
Abstract
Reduced exercise capacity is common in people with chronic obstructive pulmonary diseases (COPD) and chronic smokers and is suggested to be related to skeletal muscle dysfunction. Previous studies using human muscle biopsies have shown fiber-type shifting in chronic smokers particularly those with COPD. These results, however, are confounded with aging effects because people with COPD tend to be older. In the present study, we implemented an acute 7-day cigarette smoke-exposed model using Sprague-Dawley rats to evaluate early effects of cigarette smoking on soleus muscles. Rats (n = 5 per group) were randomly assigned to either a sham air (SA) or cigarette smoking (CS) groups of three different concentrations of total particulate matters (TPM) (CSTPM2.5, CSTPM5, CSTPM10). Significantly lower percentages of type I and higher type IIa fiber were detected in the soleus muscle in CS groups when compared with SA group. Of these, only CSTMP10 group exhibited significantly lower citrate synthase activity and higher muscle tumor necrosis factor-α level than that of SA group. Tumor necrosis factor-α level was correlated with the percentage of type I and IIa fibers. However, no significant between-group differences were found in fiber cross-sectional area, physical activities, or lung function assessments. In conclusion, acute smoking may directly trigger the onset of glycolytic fiber type shift in skeletal muscle independent of aging.
Collapse
|
14
|
Lin BS, Jhang RJ, Lin BS. Wearable Cardiopulmonary Function Evaluation System for Six-Minute Walking Test. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4656. [PMID: 31717794 PMCID: PMC6865179 DOI: 10.3390/s19214656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
As a submaximal exercise test, a 6-min walking test (6MWT) can be considered a suitable index for the exercise capacity of patients with a respiratory problem. Traditionally, medical staff manually collect cardiopulmonary information using different devices. However, no integrated monitoring system is currently available to simultaneously record the real-time breathing sound, heart rhythm, and precise walking information (i.e., walking distance, speed, and acceleration) during the 6MWT. In this study, a wearable and wireless multiparameter monitoring system is proposed to simultaneously monitor the breathing sound, oxygen saturation (SpO2), electrocardiograph (ECG) signals, and precise walking information during the 6MWT. Here, a wearable mechanical design was successfully used to reduce the effect of motion artifacts on the breathing sound and ECG signal. A multiparameter detection algorithm was designed to effectively estimate heart and breathing rates. Finally, the cardiopulmonary function of smokers was evaluated using the proposed system. The evaluation indicated that this system could reveal dynamic changes and differences in the breathing rate, heart rate, SpO2, walking speed, and acceleration during the 6MWT. The proposed system can serve as a more integrated approach to monitor cardiopulmonary parameters and obtain precise walking information simultaneously during the 6MWT.
Collapse
Affiliation(s)
- Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 23741, Taiwan;
| | - Ruei-Jie Jhang
- Institute of Photonic System, National Chiao Tung University, Tainan 71150, Taiwan;
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Chiao Tung University, Tainan 71150, Taiwan
| |
Collapse
|
15
|
Tsukamoto M, Mori T, Wang KY, Okada Y, Fukuda H, Naito K, Yamanaka Y, Sabanai K, Nakamura E, Yatera K, Sakai A. Systemic bone loss, impaired osteogenic activity and type I muscle fiber atrophy in mice with elastase-induced pulmonary emphysema: Establishment of a COPD-related osteoporosis mouse model. Bone 2019; 120:114-124. [PMID: 30342225 DOI: 10.1016/j.bone.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Although it is suggested that chronic obstructive pulmonary disease (COPD) and bone are related, almost all of the pathological mechanisms of COPD-related osteoporosis remain unknown. There is a mouse model showing a deterioration of bone quality after cigarette smoke exposure; however, in smoking exposure models, various factors exist that affect bone metabolism, such as smoking and body weight loss (muscle and fat mass loss). We considered it appropriate to use an elastase-induced emphysema model to exclude factors influencing bone metabolism and to investigate the influence of pulmonary emphysema on bone metabolism. The purpose of this study was to establish a COPD/emphysema-related osteoporosis mouse model by using the elastase-induced emphysema model. The lumbar vertebrae and femurs/tibiae exhibited trabecular bone loss and impaired osteogenic activity in 24-week-old male elastase-induced emphysema model mice. In addition, the model mice showed atrophy of type I muscle fibers without atrophy of type II muscle fibers. We believe that the mice described in this experimental protocol will be accepted as a COPD/emphysema-related osteoporosis mouse model and contribute to further investigations.
Collapse
Affiliation(s)
- Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Toshiharu Mori
- Department of Orthopaedic Surgery, Shin-Kokura Hospital, Federation of National Public Service, Personnel Mutual Aid Associations, 1-3-1 Kanada, Kokurakita-ku, Kitakyushu 803-8505, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hokuto Fukuda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Keisuke Naito
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Ken Sabanai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Eiichiro Nakamura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
16
|
Sasaki M, Chubachi S, Kameyama N, Sato M, Haraguchi M, Miyazaki M, Takahashi S, Nakano T, Kuroda Y, Betsuyaku T, Matsuo K. Effects of long-term cigarette smoke exposure on bone metabolism, structure, and quality in a mouse model of emphysema. PLoS One 2018; 13:e0191611. [PMID: 29381718 PMCID: PMC5790271 DOI: 10.1371/journal.pone.0191611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
Smoking is a common risk factor for both chronic obstructive pulmonary disease (COPD) and osteoporosis. In patients with COPD, severe emphysema is a risk factor for vertebral fracture; however, the effects of smoking or emphysema on bone health remain largely unknown. We report bone deterioration in a mouse model of emphysema induced by nose-only cigarette smoke (CS) exposure. Unexpectedly, short-term exposure for 4-weeks decreased bone turnover and increased bone volume in mice. However, prolonged exposure for 20- and 40-weeks reversed the effects from suppression to promotion of bone resorption. This long-term CS exposure increased osteoclast number and impaired bone growth, while it increased bone volume. Strikingly, long-term CS exposure deteriorated bone quality of the lumbar vertebrae as illustrated by disorientation of collagen fibers and the biological apatite c-axis. This animal model may provide a better understanding of the mechanisms underlying the deterioration of bone quality in pulmonary emphysema caused by smoking.
Collapse
Affiliation(s)
- Mamoru Sasaki
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naofumi Kameyama
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minako Sato
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mizuha Haraguchi
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Miyazaki
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Saeko Takahashi
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
Bowen TS, Aakerøy L, Eisenkolb S, Kunth P, Bakkerud F, Wohlwend M, Ormbostad AM, Fischer T, Wisloff U, Schuler G, Steinshamn S, Adams V, Bronstad E. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice. Med Sci Sports Exerc 2017; 49:879-887. [PMID: 28009790 DOI: 10.1249/mss.0000000000001195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. METHODS Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. RESULTS Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). CONCLUSIONS Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.
Collapse
Affiliation(s)
- T Scott Bowen
- 1Department of Internal Medicine and Cardiology, Leipzig University-Heart Center, Leipzig, GERMANY; 2Faculty of Medicine, Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, NORWAY; and 3Department of Thoracic Medicine, Clinic of Thoracic and Occupational Medicine, St. Olav's University Hospital, Trondheim, NORWAY
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Robison P, Sussan TE, Chen H, Biswal S, Schneider MF, Hernández-Ochoa EO. Impaired calcium signaling in muscle fibers from intercostal and foot skeletal muscle in a cigarette smoke-induced mouse model of COPD. Muscle Nerve 2017; 56:282-291. [PMID: 27862020 PMCID: PMC5426995 DOI: 10.1002/mus.25466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Respiratory and locomotor skeletal muscle dysfunction are common findings in chronic obstructive pulmonary disease (COPD); however, the mechanisms that cause muscle impairment in COPD are unclear. Because Ca2+ signaling in excitation-contraction (E-C) coupling is important for muscle activity, we hypothesized that Ca2+ dysregulation could contribute to muscle dysfunction in COPD. METHODS Intercostal and flexor digitorum brevis muscles from control and cigarette smoke-exposed mice were investigated. We used single cell Ca2+ imaging and Western blot assays to assess Ca2+ signals and E-C coupling proteins. RESULTS We found impaired Ca2+ signals in muscle fibers from both muscle types, without significant changes in releasable Ca2+ or in the expression levels of E-C coupling proteins. CONCLUSIONS Ca2+ dysregulation may contribute or accompany respiratory and locomotor muscle dysfunction in COPD. These findings are of significance to the understanding of the pathophysiological course of COPD in respiratory and locomotor muscles. Muscle Nerve 56: 282-291, 2017.
Collapse
Affiliation(s)
- Patrick Robison
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Thomas E. Sussan
- Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| | - Martin F. Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
19
|
Huang D, Ma Z, He Y, Xiao Y, Luo H, Liang Q, Zhong X, Bai J, He Z. Long-term cigarette smoke exposure inhibits histone deacetylase 2 expression and enhances the nuclear factor-κB activation in skeletal muscle of mice. Oncotarget 2017; 8:56726-56736. [PMID: 28915625 PMCID: PMC5593596 DOI: 10.18632/oncotarget.18089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
Long-term cigarette smoke induces lung inflammatory injury and chronic obstructive pulmonary disease (COPD), associated with skeletal muscle inflammation. This study aimed at investigating how cigarette smoke promotes skeletal muscle inflammation and its molecular pathogenesis. Mice were exposed to air or cigarette smoke for 12 or 24 weeks, and C2C12 cells were stimulated with cigarette smoke extract (CSE). The mass and function, myotube formation, inflammatory cytokine production, histone deacetylase 2 (HDAC2) and nuclear factor-κB (NF-κB) p65 expression were detected in the gastrocnemius muscles of mice and C2C12 cells. In comparison with the control mice, cigarette smoke significantly damaged the lung and reduced the gastrocnemius muscle mass and body weights in mice. Cigarette smoke significantly down-regulated myosin heavy chain (MHC)-IIβ and HDAC2 expression, but enhanced NF-κBp65, keratinocyte chemoattractant (KC) and tumor necrosis factor (TNF)-α expression in the gastrocnemius muscles. CSE stimulation significantly inhibited the myotube formation, MyoD and HDAC2 expression, but enhanced NF-κBp65 expression, KC and TNF-α production in C2C12 cells, which were enhanced by HDAC2 knockdown and abrogated by a NF-κB inhibitor. CSE significantly inhibited the interaction of HDAC2 with NF-κBp65, and increased the levels of acetyl-NF-κBp65 in C2C12 cells. These data indicated that cigarette smoke inhibited HDAC2 expression and its interaction with NF-κBp65 to stimulate inflammation, contributing to the pathogenesis of COPD-related skeletal muscle atrophy in mice.
Collapse
Affiliation(s)
- Dongmei Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiying Ma
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yili He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying Xiao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Honglin Luo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuli Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
20
|
Kochetkova EA, Nevzorova VA, Ugai LG, Maistrovskaia YV, Massard G. The Role of Tumor Necrosis Factor Alpha and TNF Superfamily Members in Bone Damage in Patients with End-Stage Chronic Obstructive Lung Disease Prior to Lung Transplantation. Calcif Tissue Int 2016; 99:578-587. [PMID: 27501819 DOI: 10.1007/s00223-016-0185-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
Abstract
A disequilibrium of tumor necrosis superfamily (TNF) members, including the serum osteoprotegerin, soluble receptor activator of nuclear factor-κB ligand, soluble TNF-related apoptosis-inducing ligand and TNF-α, was associated with the occurrence of a reduced skeletal mass and osteoporosis in male patients with end-stage chronic obstructive pulmonary disease (COPD). The purpose of this study was to explore the associations between serum biomarkers of tumor necrosis factor (TNF) superfamily and body and bone compositions in end-stage COPD males. Pulmonary function, T-score at the lumbar spine and femoral neck, lean mass, serum osteoprotegerin (OPG), soluble receptor activator of nuclear factor-κB ligand (sRANKL), TNF-α and its receptors (sTNFR-I, sTNFR-II) and soluble TNF-related apoptosis-inducing ligand (sTRAIL) levels were evaluated in 48 male patients with end-stage COPD and 36 healthy male volunteers. OPG was lower in male COPD patients than in control subjects, whereas sRANKL, TNF-α and its receptors were higher. The serum sTRAIL level showed a tendency to increase compared with that of healthy subjects (P = 0.062). Serum OPG showed a positive correlation with bone density. In contrast, serum TNF-α, sRANKL and sTRAIL were inversely associated with pretransplant bone density. We have noted the appearance of statistically significant inverse relationships between lean mass values and TNF-α, sTNFR-I and II and sRANKL levels in male COPD patients. Moreover, there was a negative correlation between sTRAIL levels with airway obstruction (P = 0.005) and hypercapnia (P = 0.042) in advanced COPD patients. Through a multiple linear regression analysis, our study revealed that a disequilibrium of TNF family members was strongly associated with the occurrence of a reduced skeletal mass and osteoporosis. These results provide further evidence that abnormal levels of TNF superfamily molecules may cause not only a decrease in BMD, but also lower muscle mass in end-stage COPD.
Collapse
Affiliation(s)
- Evgenia A Kochetkova
- Central Scientific Research Laboratory, Pacific State Medical University, 2 Ostryakova Av., Vladivostok, Russian Federation, 690950.
| | - Vera A Nevzorova
- Central Scientific Research Laboratory, Pacific State Medical University, 2 Ostryakova Av., Vladivostok, Russian Federation, 690950
| | - Ludmila G Ugai
- Central Scientific Research Laboratory, Pacific State Medical University, 2 Ostryakova Av., Vladivostok, Russian Federation, 690950
| | - Yulia V Maistrovskaia
- Central Scientific Research Laboratory, Pacific State Medical University, 2 Ostryakova Av., Vladivostok, Russian Federation, 690950
| | - Gilbert Massard
- Department of Pulmonology, Allergy and Thoracic Surgery, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|