1
|
Saenz-de-Juano MD, Silvestrelli G, Buri S, Zinsli LV, Schmelcher M, Ulbrich SE. Mastitis-related Staphylococcus aureus-derived extracellular vesicles induce a pro-inflammatory response in bovine monocyte-derived macrophages. Sci Rep 2025; 15:6059. [PMID: 39972051 PMCID: PMC11840098 DOI: 10.1038/s41598-025-90466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common causative agents of mammary gland infection and mastitis, but the specific role of S. aureus-derived extracellular vesicles (SaEVs) in mastitis has been poorly studied to date. Here, we aimed to investigate the response of bovine monocyte-derived macrophages (boMdM) to SaEVs of the genotype B (GTB) mastitis-related strain M5512B. Specifically, we evaluated the effects on the actin cytoskeleton, gene expression, and the SaEV proteomic cargo. Furthermore, we assessed to what extent the cellular and molecular response of boMdM to SaEVs differed from peripheral mononuclear blood cells (PBMCs) used for in vitro derivation of the former. We observed that SaEVs induced morphological changes in boMdM, leading to a pro-inflammatory and pyroptosis-related increased gene expression. Additionally, our study revealed that boMdM and PBMCs exhibited stimulus-specific differing responses. The proteomic analysis of SaEVs identified clusters of proteins related to virulence and antibiotic resistance, supporting the theory that S. aureus might use EVs to evade host defences and colonize the mammary gland. Our results bring new insights into how SaEVs might impact the host during an S. aureus infection, which can be useful for future S. aureus vaccine development.
Collapse
Affiliation(s)
- Mara D Saenz-de-Juano
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Silvestrelli
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Samuel Buri
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland
- ZHAW School of Life Sciences and Facility Management, Fachstelle Biochemie und Bioanalytik, Einsiedlerstrasse 31, Wädenswil, 8820, Switzerland
| | - Susanne E Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
2
|
Morelli M, Cabezuelo Rodríguez M, Queiroz K. A high-throughput gut-on-chip platform to study the epithelial responses to enterotoxins. Sci Rep 2024; 14:5797. [PMID: 38461178 PMCID: PMC10925042 DOI: 10.1038/s41598-024-56520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.
Collapse
|
3
|
Yang J, Hai Z, Hou L, Liu Y, Zhang D, Zhou X. Baicalin Attenuates Panton-Valentine Leukocidin (PVL)-Induced Cytoskeleton Rearrangement via Regulating the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β Pathways in Bovine Mammary Epithelial Cells. Int J Mol Sci 2023; 24:14520. [PMID: 37833969 PMCID: PMC10572466 DOI: 10.3390/ijms241914520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Pore-forming toxins (PFTs) exert physiological effects by rearrangement of the host cell cytoskeleton. Staphylococcus aureus-secreted PFTs play an important role in bovine mastitis. In the study, we examined the effects of recombinant Panton-Valentine leukocidin (rPVL) on cytoskeleton rearrangement, and identified the signaling pathways involved in regulating the process in bovine mammary epithelial cells (BMECs) in vitro. Meanwhile, the underlying regulatory mechanism of baicalin for this process was investigated. The results showed that S. aureus induced cytoskeleton rearrangement in BMECs mainly through PVL. S. aureus and rPVL caused alterations in the cell morphology and layer integrity due to microfilament and microtubule rearrangement and focal contact inability. rPVL strongly induced the phosphorylation of cofilin at Ser3 mediating by the activation of the RhoA/ROCK/LIMK pathway, and resulted in the activation of loss of actin stress fibers, or the hyperphosphorylation of Tau at Ser396 inducing by the inhibition of the PI3K/AKT/GSK-3β pathways, and decreased the microtubule assembly. Baicalin significantly attenuated rPVL-stimulated cytoskeleton rearrangement in BMECs. Baicalin inhibited cofilin phosphorylation or Tau hyperphosphorylation via regulating the activation of RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β signaling pathways. These findings provide new insights into the pathogenesis and potential treatment in S. aureus causing bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China; (J.Y.); (Z.H.)
| |
Collapse
|
4
|
Xu Z, Yan J, Wen W, Zhang N, Bachert C. Pathophysiology and management of Staphylococcus aureus in nasal polyp disease. Expert Rev Clin Immunol 2023; 19:981-992. [PMID: 37409375 DOI: 10.1080/1744666x.2023.2233700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is a common pathogen that frequently colonizes the sinonasal cavity. Recent studies demonstrated the essential role of Staphylococcus aureus in the pathophysiology of uncontrolled severe chronic rhinosinusitis with nasal polyps (NP) by initiating an immune response to the germ and its products, resulting in type 2 inflammation. AREAS COVERED This review aims to summarize the evidence for the role of S. aureus in the development of NP disease including S. aureus-related virulence factors, the pathophysiologic mechanisms used by S. aureus, and the synergistic effects of S. aureus and other pathogens. It also describes the current management of S. aureus associated with NPs as well as potential therapeutic strategies that are used in clinical practice. EXPERT OPINION S. aureus is able to damage the nasal mucosal epithelial barrier, impair the clearance of the host immune system, and trigger adaptive and innate immune reactions which lead to the formation of inflammation and nasal polyp growth. Further studies should focus on the development of novel therapeutic strategies, such as biologics, bacteriophages, probiotics, and nanomedicine, which could be used to treat S. aureus and its immunological consequences in the future.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Jieying Yan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Weiping Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- Division of ENT Diseases, Stockholm, Sweden
- Clinic for ENT Diseases and Head and Neck Surgery, University Clinic Münster, Münster, Germany
| |
Collapse
|
5
|
Sharman K, Patterson NH, Weiss A, Neumann EK, Guiberson ER, Ryan DJ, Gutierrez DB, Spraggins JM, Van de Plas R, Skaar EP, Caprioli RM. Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. J Proteome Res 2023; 22:1394-1405. [PMID: 35849531 PMCID: PMC9845430 DOI: 10.1021/acs.jproteome.2c00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spatially targeted proteomics analyzes the proteome of specific cell types and functional regions within tissue. While spatial context is often essential to understanding biological processes, interpreting sub-region-specific protein profiles can pose a challenge due to the high-dimensional nature of the data. Here, we develop a multivariate approach for rapid exploration of differential protein profiles acquired from distinct tissue regions and apply it to analyze a published spatially targeted proteomics data set collected from Staphylococcus aureus-infected murine kidney, 4 and 10 days postinfection. The data analysis process rapidly filters high-dimensional proteomic data to reveal relevant differentiating species among hundreds to thousands of measured molecules. We employ principal component analysis (PCA) for dimensionality reduction of protein profiles measured by microliquid extraction surface analysis mass spectrometry. Subsequently, k-means clustering of the PCA-processed data groups samples by chemical similarity. Cluster center interpretation revealed a subset of proteins that differentiate between spatial regions of infection over two time points. These proteins appear involved in tricarboxylic acid metabolomic pathways, calcium-dependent processes, and cytoskeletal organization. Gene ontology analysis further uncovered relationships to tissue damage/repair and calcium-related defense mechanisms. Applying our analysis in infectious disease highlighted differential proteomic changes across abscess regions over time, reflecting the dynamic nature of host-pathogen interactions.
Collapse
Affiliation(s)
- Kavya Sharman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma R Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Ryan
- Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Ziesemer S, Meyer S, Edelmann J, Vennmann J, Gudra C, Arndt D, Effenberg M, Hayas O, Hayas A, Thomassen JS, Kubickova B, Pöther DC, Hildebrandt JP. Target Mechanisms of the Cyanotoxin Cylindrospermopsin in Immortalized Human Airway Epithelial Cells. Toxins (Basel) 2022; 14:toxins14110785. [PMID: 36422959 PMCID: PMC9698144 DOI: 10.3390/toxins14110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanobacterial toxin that occurs in aquatic environments worldwide. It is known for its delayed effects in animals and humans such as inhibition of protein synthesis or genotoxicity. The molecular targets and the cell physiological mechanisms of CYN, however, are not well studied. As inhalation of CYN-containing aerosols has been identified as a relevant route of CYN uptake, we analyzed the effects of CYN on protein expression in cultures of immortalized human bronchial epithelial cells (16HBE14o-) using a proteomic approach. Proteins whose expression levels were affected by CYN belonged to several functional clusters, mainly regulation of protein stability, cellular adhesion and integration in the extracellular matrix, cell proliferation, cell cycle regulation, and completion of cytokinesis. With a few exceptions of upregulated proteins (e.g., ITI inhibitor of serine endopeptidases and mRNA stabilizer PABPC1), CYN mediated the downregulation of many proteins. Among these, centrosomal protein 55 (CEP55) and osteonectin (SPARC) were significantly reduced in their abundance. Results of the detailed semi-quantitative Western blot analyses of SPARC, claudin-6, and CEP55 supported the findings from the proteomic study that epithelial cell adhesion, attenuation of cell proliferation, delayed completion of mitosis, as well as induction of genomic instability are major effects of CYN in eukaryotic cells.
Collapse
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Susann Meyer
- Federal Institute for Occupational Safety and Occupational Medicine, Nöldnerstrasse 40-42, D-10317 Berlin, Germany
| | - Julia Edelmann
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Janita Vennmann
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Celine Gudra
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Denise Arndt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Marcus Effenberg
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Olla Hayas
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Aref Hayas
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Johanna Sophia Thomassen
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Barbara Kubickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Dierk-Christoph Pöther
- Federal Institute for Occupational Safety and Occupational Medicine, Nöldnerstrasse 40-42, D-10317 Berlin, Germany
| | - Jan-Peter Hildebrandt
- Federal Institute for Occupational Safety and Occupational Medicine, Nöldnerstrasse 40-42, D-10317 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)3834-4204295
| |
Collapse
|
8
|
Ziesemer S, Kuhn SO, Hahnenkamp A, Gerber M, Lutjanov E, Gruendling M, Hildebrandt JP. Staphylococcus aureus Alpha-Toxin in Deep Tracheal Aspirates—Preliminary Evidence for Its Presence in the Lungs of Sepsis Patients. Toxins (Basel) 2022; 14:toxins14070450. [PMID: 35878188 PMCID: PMC9320683 DOI: 10.3390/toxins14070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The pore forming alpha-toxin (hemolysin A, Hla) of Staphylococcus aureus (S. aureus) is a major virulence factor with relevance for the pathogenicity of this bacterium, which is involved in many cases of pneumonia and sepsis in humans. Until now, the presence of Hla in the body fluids of potentially infected humans could only be shown indirectly, e.g., by the presence of antibodies against Hla in serum samples or by hemolysis testing on blood agar plates of bacterial culture supernatants of the clinical isolates. In addition, nothing was known about the concentrations of Hla actually reached in the body fluids of the infected hosts. Western blot analyses on 36 samples of deep tracheal aspirates (DTA) isolated from 22 hospitalized sepsis patients using primary antibodies against different epitopes of the Hla molecule resulted in the identification of six samples from five patients containing monomeric Hla (approx. 33 kDa). Two of these samples showed also signals at the molecular mass of heptameric Hla (232 kDa). Semiquantitative analyses of the samples revealed that the concentrations of monomeric Hla ranged from 16 to 3200 ng/mL. This is, to our knowledge, the first study directly showing the presence of S. aureus Hla in samples of airway surface liquid in human patients.
Collapse
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany; (S.Z.); (E.L.)
| | - Sven-Olaf Kuhn
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Anke Hahnenkamp
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Manuela Gerber
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Elvira Lutjanov
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany; (S.Z.); (E.L.)
| | - Matthias Gruendling
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany; (S.Z.); (E.L.)
- Correspondence: ; Tel.: +49-(0)3834-4204295
| |
Collapse
|
9
|
Gupta I, Pedersen S, Vranic S, Al Moustafa AE. Implications of Gut Microbiota in Epithelial-Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers (Basel) 2022; 14:2964. [PMID: 35740629 PMCID: PMC9221329 DOI: 10.3390/cancers14122964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Advancement in the development of molecular sequencing platforms has identified infectious bacteria or viruses that trigger the dysregulation of a set of genes inducing the epithelial-mesenchymal transition (EMT) event. EMT is essential for embryogenesis, wound repair, and organ development; meanwhile, during carcinogenesis, initiation of the EMT can promote cancer progression and metastasis. Recent studies have reported that interactions between the host and dysbiotic microbiota in different tissues and organs, such as the oral and nasal cavities, esophagus, stomach, gut, skin, and the reproductive tract, may provoke EMT. On the other hand, it is revealed that certain microorganisms display a protective role against cancer growth, indicative of possible therapeutic function. In this review, we summarize recent findings elucidating the underlying mechanisms of pathogenic microorganisms, especially the microbiota, in eliciting crucial regulator genes that induce EMT. Such an approach may help explain cancer progression and pave the way for developing novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
10
|
The cyanotoxin cylindrospermopsin slows down cell cycle progression and extends metaphase duration in immortalised human airway epithelial cells. Toxicon 2022; 209:28-35. [DOI: 10.1016/j.toxicon.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022]
|
11
|
Bacterial Toxins from Staphylococcus aureus and Bordetella bronchiseptica Predispose the Horse's Respiratory Tract to Equine Herpesvirus Type 1 Infection. Viruses 2022; 14:v14010149. [PMID: 35062352 PMCID: PMC8778808 DOI: 10.3390/v14010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Respiratory disease in horses is caused by a multifactorial complex of infectious agents and environmental factors. An important pathogen in horses is equine herpesvirus type 1 (EHV-1). During co-evolution with this ancient alphaherpesvirus, the horse’s respiratory tract has developed multiple antiviral barriers. However, these barriers can become compromised by environmental threats. Pollens and mycotoxins enhance mucosal susceptibility to EHV-1 by interrupting cell junctions, allowing the virus to reach its basolateral receptor. Whether bacterial toxins also play a role in this impairment has not been studied yet. Here, we evaluated the role of α-hemolysin (Hla) and adenylate cyclase (ACT), toxins derived from the facultative pathogenic bacterium Staphylococcus aureus (S. aureus) and the primary pathogen Bordetella bronchiseptica (B. bronchiseptica), respectively. Equine respiratory mucosal explants were cultured at an air–liquid interface and pretreated with these toxins, prior to EHV-1 inoculation. Morphological analysis of hematoxylin–eosin (HE)-stained sections of the explants revealed a decreased epithelial thickness upon treatment with both toxins. Additionally, the Hla toxin induced detachment of epithelial cells and a partial loss of cilia. These morphological changes were correlated with increased EHV-1 replication in the epithelium, as assessed by immunofluorescent stainings and confocal microscopy. In view of these results, we argue that the ACT and Hla toxins increase the susceptibility of the epithelium to EHV-1 by disrupting the epithelial barrier function. In conclusion, this study is the first to report that bacterial exotoxins increase the horse’s sensitivity to EHV-1 infection. Therefore, we propose that horses suffering from infection by S. aureus or B. bronchiseptica may be more susceptible to EHV-1 infection.
Collapse
|
12
|
Fu Y, Yang Z, Zhang H, Liu Y, Hao B, Shang R. 14-O-[(4,6-Diamino-pyrimidine-2-yl) thioacetyl] mutilin inhibits α-hemolysin and protects Raw264.7 cells from injury induced by methicillin-resistant S. aureus. Microb Pathog 2021; 161:105229. [PMID: 34624494 DOI: 10.1016/j.micpath.2021.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
A new pleuromutilin derivative, 14-O-[(4,6-Diaminopyrimidine-2-yl) thioacetyl] mutilin (DPTM), has been synthesized and proven to be a potent agent against Gram-positive pathogens, especially for Staphylococcus aureus (S. aureus). However, its pharmacological activities against α-hemolysin (Hla), a major virulence factor produced by S. aureus, and inflammations related to S. aureus are still unknown. In the present study, we investigated the DPTM inhibition activities against methicillin-resistant S. aureus (MRSA) Hla and protective efficacy of Raw264.7 cells from injury induced by MRSA. The results showed that DPTM with sub-inhibitory concentrations significantly inhibited Hla on the hemolysis of rabbit erythrocytes and down-regulated the gene expressions of Hla and agrA with a dose-dependent fashion. In Raw264.7 cells infected with MRSA, DPTM efficiently attenuated the productions of lactate dehydrogenase (LDH), nitric oxide (NO) and pro-inflammatory cytokines, as well as the express levels of nuclear factor-kappaB (NF-κB), nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, DPTM inhibited the translocation of p-65 to nucleus in RAW264.7 cells infected by MRSA.
Collapse
Affiliation(s)
- Yunxing Fu
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China; College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China.
| |
Collapse
|
13
|
Peerapen P, Thongboonkerd V. Calcium oxalate monohydrate crystal disrupts tight junction via F-actin reorganization. Chem Biol Interact 2021; 345:109557. [PMID: 34147488 DOI: 10.1016/j.cbi.2021.109557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Tight junction is an intercellular protein complex that regulates paracellular permeability and epithelial cell polarization. This intercellular barrier is associated with actin filament. Calcium oxalate monohydrate (COM), the major crystalline composition in kidney stones, has been shown to disrupt tight junction but with an unclear mechanism. This study aimed to address whether COM crystal disrupts tight junction via actin deregulation. MDCK distal renal tubular epithelial cells were treated with 100 μg/ml COM crystals for 48 h. Western blot analysis revealed that level of a tight junction protein, zonula occludens-1 (ZO-1), significantly decreased, whereas that of β-actin remained unchanged after exposure to COM crystals. Immunofluorescence study showed discontinuation and dissociation of ZO-1 and filamentous actin (F-actin) expression at the cell border. In addition, clumping of F-actin was found in some cytoplasmic areas of the COM-treated cells. Moreover, transepithelial resistance (TER) was reduced by COM crystals, indicating the defective barrier function of the polarized cells. All of these COM-induced defects could be completely abolished by pretreatment with 20 μM phalloidin, an F-actin stabilizer, 2-h prior to the 48-h crystal exposure. These findings indicate that COM crystal does not reduce the total level of actin but causes tight junction disruption via F-actin reorganization.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
14
|
Karauzum H, Venkatasubramaniam A, Adhikari RP, Kort T, Holtsberg FW, Mukherjee I, Mednikov M, Ortines R, Nguyen NTQ, Doan TMN, Diep BA, Lee JC, Aman MJ. IBT-V02: A Multicomponent Toxoid Vaccine Protects Against Primary and Secondary Skin Infections Caused by Staphylococcus aureus. Front Immunol 2021; 12:624310. [PMID: 33777005 PMCID: PMC7987673 DOI: 10.3389/fimmu.2021.624310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a wide range of diseases from skin infections to life threatening invasive diseases such as bacteremia, endocarditis, pneumonia, surgical site infections, and osteomyelitis. Skin infections such as furuncles, carbuncles, folliculitis, erysipelas, and cellulitis constitute a large majority of infections caused by S. aureus (SA). These infections cause significant morbidity, healthcare costs, and represent a breeding ground for antimicrobial resistance. Furthermore, skin infection with SA is a major risk factor for invasive disease. Here we describe the pre-clinical efficacy of a multicomponent toxoid vaccine (IBT-V02) for prevention of S. aureus acute skin infections and recurrence. IBT-V02 targets six SA toxins including the pore-forming toxins alpha hemolysin (Hla), Panton-Valentine leukocidin (PVL), leukocidin AB (LukAB), and the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxins A and B. Immunization of mice and rabbits with IBT-V02 generated antibodies with strong neutralizing activity against toxins included in the vaccine, as well as cross-neutralizing activity against multiple related toxins, and protected against skin infections by several clinically relevant SA strains of USA100, USA300, and USA1000 clones. Efficacy of the vaccine was also shown in non-naïve mice pre-exposed to S. aureus. Furthermore, vaccination with IBT-V02 not only protected mice from a primary infection but also demonstrated lasting efficacy against a secondary infection, while prior challenge with the bacteria alone was unable to protect against recurrence. Serum transfer studies in a primary infection model showed that antibodies are primarily responsible for the protective response.
Collapse
Affiliation(s)
| | | | | | - Tom Kort
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | | | - Mark Mednikov
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Roger Ortines
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Nhu T. Q. Nguyen
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Thien M. N. Doan
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| |
Collapse
|
15
|
Major Determinants of Airway Epithelial Cell Sensitivity to S. aureus Alpha-Toxin: Disposal of Toxin Heptamers by Extracellular Vesicle Formation and Lysosomal Degradation. Toxins (Basel) 2021; 13:toxins13030173. [PMID: 33668237 PMCID: PMC7996177 DOI: 10.3390/toxins13030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Alpha-toxin is a major virulence factor of Staphylococcus aureus. Monomer binding to host cell membranes results in the formation of heptameric transmembrane pores. Among human model airway epithelial cell lines, A549 cells were most sensitive toward the toxin followed by 16HBE14o- and S9 cells. In this study we investigated the processes of internalization of pore-containing plasma membrane areas as well as potential pathways for heptamer degradation (lysosomal, proteasomal) or disposal (formation of exosomes/micro-vesicles). The abundance of toxin heptamers upon applying an alpha-toxin pulse to the cells declined both in extracts of whole cells and of cellular membranes of S9 cells, but not in those of 16HBE14o- or A549 cells. Comparisons of heptamer degradation rates under inhibition of lysosomal or proteasomal degradation revealed that an important route of heptamer degradation, at least in S9 cells, seems to be the lysosomal pathway, while proteasomal degradation appears to be irrelevant. Exosomes prepared from culture supernatants of toxin-exposed S9 cells contained alpha-toxin as well as low amounts of exosome and micro-vesicle markers. These results indicate that lysosomal degradation of internalized toxin heptamers may be the most important determinant of toxin-resistance of some types of airway epithelial cells.
Collapse
|
16
|
Möller N, Ziesemer S, Hildebrandt P, Assenheimer N, Völker U, Hildebrandt JP. S. aureus alpha-toxin monomer binding and heptamer formation in host cell membranes - Do they determine sensitivity of airway epithelial cells toward the toxin? PLoS One 2020; 15:e0233854. [PMID: 32470006 PMCID: PMC7259691 DOI: 10.1371/journal.pone.0233854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Alpha-toxin (Hla) is a major virulence factor of Staphylococcus aureus (S. aureus) and plays an important role in S. aureus-induced pneumonia. It binds as a monomer to the cell surface of eukaryotic host cells and forms heptameric transmembrane pores. Sensitivities toward the toxin of various types of potential host cells have been shown to vary substantially, and the reasons for these differences are unclear. We used three human model airway epithelial cell lines (16HBE14o-, S9, A549) to correlate cell sensitivity (measured as rate of paracellular gap formation in the cell layers) with Hla monomer binding, presence of the potential Hla receptors ADAM10 or α5β1 integrin, presence of the toxin-stabilizing factor caveolin-1 as well as plasma membrane lipid composition (phosphatidylserine/choline, sphingomyelin). The abundance of ADAM10 correlated best with gap formation or cell sensitivities, respectively, when the three cell types were compared. Caveolin-1 or α5β1 integrin did not correlate with toxin sensitivity. The relative abundance of sphingomyelin in plasma membranes may also be used as a proxi for cellular sensitivity against alpha-toxin as sphingomyelin abundances correlated well with the intensities of alpha-toxin mediated gap formation in the cell layers.
Collapse
Affiliation(s)
- Nils Möller
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Assenheimer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
17
|
Niederman MS, Nair GB, Matt U, Herold S, Pennington K, Crothers K, Cummings M, Schluger NW. Update in Lung Infections and Tuberculosis 2018. Am J Respir Crit Care Med 2020; 200:414-422. [PMID: 31042415 DOI: 10.1164/rccm.201903-0606up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael S Niederman
- 1Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Girish Balachandran Nair
- 2Division of Pulmonary and Critical Care Medicine, Beaumont Health, William Beaumont School of Medicine, Oakland University, Royal Oak, Michigan
| | - Ulrich Matt
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Susanne Herold
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Kelly Pennington
- 4Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kristina Crothers
- 5Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, Seattle, Washington.,6University of Washington, Seattle, Washington; and
| | | | - Neil W Schluger
- 7Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
18
|
Maghsoudloo M, Azimzadeh Jamalkandi S, Najafi A, Masoudi-Nejad A. Identification of biomarkers in common chronic lung diseases by co-expression networks and drug-target interactions analysis. Mol Med 2020; 26:9. [PMID: 31952466 PMCID: PMC6969427 DOI: 10.1186/s10020-019-0135-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) are three serious pulmonary diseases that contain common and unique characteristics. Therefore, the identification of biomarkers that differentiate these diseases is of importance for preventing misdiagnosis. In this regard, the present study aimed to identify the disorders at the early stages, based on lung transcriptomics data and drug-target interactions. Methods To this end, the differentially expressed genes were found in each disease. Then, WGCNA was utilized to find specific and consensus gene modules among the three diseases. Finally, the disease-disease similarity was analyzed, followed by determining candidate drug-target interactions. Results The results confirmed that the asthma lung transcriptome was more similar to COPD than IPF. In addition, the biomarkers were found in each disease and thus were proposed for further clinical validations. These genes included RBM42, STX5, and TRIM41 in asthma, CYP27A1, GM2A, LGALS9, SPI1, and NLRC4 in COPD, ATF3, PPP1R15A, ZFP36, SOCS3, NAMPT, and GADD45B in IPF, LRRC48 and CETN2 in asthma-COPD, COL15A1, GIMAP6, and JAM2 in asthma-IPF and LMO7, TSPAN13, LAMA3, and ANXA3 in COPD-IPF. Finally, analyzing drug-target networks suggested anti-inflammatory candidate drugs for treating the above mentioned diseases. Conclusion In general, the results revealed the unique and common biomarkers among three chronic lung diseases. Eventually, some drugs were suggested for treatment purposes.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.,Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran. .,Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
19
|
Vergara D, Simeone P, Damato M, Maffia M, Lanuti P, Trerotola M. The Cancer Microbiota: EMT and Inflammation as Shared Molecular Mechanisms Associated with Plasticity and Progression. JOURNAL OF ONCOLOGY 2019; 2019:1253727. [PMID: 31772577 PMCID: PMC6854237 DOI: 10.1155/2019/1253727] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
Abstract
With the advent of novel molecular platforms for high-throughput/next-generation sequencing, the communities of commensal and pathogenic microorganisms that inhabit the human body have been defined in depth. In the last decade, the role of microbiota-host interactions in driving human cancer plasticity and malignant progression has been well documented. Germ-free preclinical models provided an invaluable tool to demonstrate that the human microbiota can confer susceptibility to various types of cancer and can also modulate the host response to therapeutic treatments. Of interest, besides the detrimental effects of dysbiosis on cancer etiopathogenesis, specific microorganisms have been shown to exert protective activities against cancer growth. This has strong clinical implications, as restoration of the physiologic microbiota is being rapidly implemented as a novel anticancer therapeutic strategy. Here, we reviewed past and recent literature depicting the role of microbiota-host interactions in modulating key molecular mechanisms that drive human cancer plasticity and lead to malignant progression. We analyzed microbiota-host interactions occurring in the gut as well as in other anatomic sites, such as oral and nasal cavities, lungs, breast, esophagus, stomach, reproductive tract, and skin. We revealed a common ground of biological alterations and pathways modulated by a dysbiotic microbiota and potentially involved in the control of cancer progression. The molecular mechanisms most frequently affected by the pathogenic microorganisms to induce malignant progression involve epithelial-mesenchymal transition- (EMT-) dependent barrier alterations and tumor-promoting inflammation. This evidence may pave the way to better stratify high-risk cancer patients based on unique microenvironmental/microbial signatures and to develop novel, personalized, biological therapies.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, ASL-Lecce, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Laboratory of Cytomorphology, Center for Advanced Studies and Technology (CAST), “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marina Damato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, ASL-Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, ASL-Lecce, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Laboratory of Cytomorphology, Center for Advanced Studies and Technology (CAST), “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
20
|
Ziesemer S, Möller N, Nitsch A, Müller C, Beule AG, Hildebrandt JP. Sphingomyelin Depletion from Plasma Membranes of Human Airway Epithelial Cells Completely Abrogates the Deleterious Actions of S. aureus Alpha-Toxin. Toxins (Basel) 2019; 11:toxins11020126. [PMID: 30791542 PMCID: PMC6409578 DOI: 10.3390/toxins11020126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Interaction of Staphylococcus aureus alpha-toxin (hemolysin A, Hla) with eukaryotic cell membranes is mediated by proteinaceous receptors and certain lipid domains in host cell plasma membranes. Hla is secreted as a 33 kDa monomer that forms heptameric transmembrane pores whose action compromises maintenance of cell shape and epithelial tightness. It is not exactly known whether certain membrane lipid domains of host cells facilitate adhesion of Ha monomers, oligomerization, or pore formation. We used sphingomyelinase (hemolysin B, Hlb) expressed by some strains of staphylococci to pre-treat airway epithelial model cells in order to specifically decrease the sphingomyelin (SM) abundance in their plasma membranes. Such a pre-incubation exclusively removed SM from the plasma membrane lipid fraction. It abrogated the formation of heptamers and prevented the formation of functional transmembrane pores. Hla exposure of rHlb pre-treated cells did not result in increases in [Ca2+]i, did not induce any microscopically visible changes in cell shape or formation of paracellular gaps, and did not induce hypo-phosphorylation of the actin depolymerizing factor cofilin as usual. Removal of sphingomyelin from the plasma membranes of human airway epithelial cells completely abrogates the deleterious actions of Staphylococcus aureus alpha-toxin.
Collapse
Affiliation(s)
- Sabine Ziesemer
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Nils Möller
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Andreas Nitsch
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Christian Müller
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Achim G Beule
- Department of Otorhinolaryngology, University Hospital, Münster, Germany and Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, D-17489 Greifswald, Germany.
| | - Jan-Peter Hildebrandt
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| |
Collapse
|
21
|
Microbiota Composition and the Integration of Exogenous and Endogenous Signals in Reactive Nasal Inflammation. J Immunol Res 2018; 2018:2724951. [PMID: 29967798 PMCID: PMC6008798 DOI: 10.1155/2018/2724951] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of reactive nasal inflammatory conditions, for example, allergic rhinitis and chronic rhinosinusitis, is steadily increasing in parallel with significant environmental changes worldwide. Allergens and as yet undefined environmental agents may trigger these conditions via the involvement of host intrinsic factors, including the innate and adaptive immune system, the nasal epithelium, and the nasal nervous system. The critical role of the nasal microbiota in coordinating these components has emerged in recent studies documenting a significant association between microbial composition and the onset and progression of allergic or nonallergic inflammation. It is now clear that the local microbiota is a major player in the development of the mucosa-associated lymphoid tissue and in the regulation of such adaptive responses as IgA production and the function of effector and regulatory T cells. Microbial components also play a major role in the regulation of epithelial barrier functions, including mucus production and the control of paracellular transport across tight junctions. Bacterial components, including lipopolysaccharide, have also been shown to induce or amplify neuroinflammatory responses by engaging specific nociceptors. Finally, bacterial products may promote tissue remodeling processes, including nasal polyp formation, by interacting with formyl peptide receptors and inducing the expression of angiogenic factors and matrix-degrading enzymes.
Collapse
|