1
|
Lin S, Chen M, Lin S, Huang X, Chen W, Wu S. Network pharmacology and experimental verification unraveled the mechanism of Bailing Capsule against asthma. Medicine (Baltimore) 2024; 103:e40391. [PMID: 39495985 PMCID: PMC11537631 DOI: 10.1097/md.0000000000040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Asthma is a serious public health challenge around the world. Recent studies into traditional Chinese medicine preparations for asthma have yielded promising findings regarding Bailing Capsule's potential in bronchial asthma prevention and treatment. This study aims to initially clarify the potential mechanism of Bailing Capsule in the treatment of asthma using network pharmacology and in vitro experimental approaches. Network pharmacology was adopted to detect the active ingredients of Bailing Capsule via Traditional Chinese Medicine Systems Pharmacology Database, and the key targets and signaling pathways in the treatment of asthma were predicted. Docking and molecular dynamics simulations were conducted to verify the most important interactions formed by these probes within different regions of the binding site. The predicted targets were validated in lipopolysaccharide-induced 16HBE cell experiment. Seven active ingredients were screened from Bailing Capsule, 294 overlapping targets matched with asthma were considered potential therapeutic targets, such as SRC, TP53, STAT3, and E1A binding protein P300. The main functional pathways involving these key targets include phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, renin-angiotensin system and other signaling pathways, which were mainly involved in the inflammatory response, apoptosis, and xenobiotic stimulus. Moreover, molecular docking showed that Cerevisterol have higher affinity for SRC, TP53, STAT3, and E1A binding protein P300 than other main active components, which is close to the docking results of the co-crystallized ligands to proteins. Consequently, Cerevisterol was selected for molecular dynamics simulation and the results show that Cerevisterol can bind most tightly to SRC, TP53, and STAT3. Bailing Capsule can promote the growth of 16HBE cell, reduce the production of IL-4, TNF-α and IL-6, and down-regulate the levels of SRC and STAT3 mRNA. This study preliminarily reveals the potential mechanism of Bailing Capsule against asthma with the aid of network pharmacology and in vitro cell experiment, which provided reference and guidance for in-depth research and clinical application.
Collapse
Affiliation(s)
- Shaomei Lin
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Mingzhu Chen
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Shifeng Lin
- Nephrology Department, Quanzhou Hospital of Traditional Chinese Medicine, Quanzhou, Fujian, China
| | - Xiaowei Huang
- Pharmaceutical Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Wanqiong Chen
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Shuifa Wu
- Pharmaceutical Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Xiao H, Tang AZ, Xu ML, Chen HL, Wang F, Li CQ. Mycobacterium vaccae attenuates airway inflammation by inhibiting autophagy and activating PI3K/Akt signaling pathway in OVA-induced allergic airway inflammation mouse model. Mol Immunol 2024; 173:30-39. [PMID: 39018745 DOI: 10.1016/j.molimm.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE The etiology of asthma remains elusive, with no known cure. Based on accumulating evidence, autophagy, a self-degradation process that maintains cellular metabolism and homeostasis, participates in the development of asthma. Mycobacterium vaccae vaccine (M. vaccae), an immunomodulatory agent, has previously been shown to effectively alleviate airway inflammation and airway remodeling. However, its therapeutic effect on asthma via the regulation of autophagy remains unknown. Therefore, this study aimed to investigate the impact of M. vaccae in attenuating asthma airway inflammation via autophagy-mediated pathways. METHODS Balb/c mice were used to generate an ovalbumin (OVA)-immunized allergic airway model and were subsequently administered either M. vaccae or M. vaccae + rapamycin (an autophagy activator) prior to each challenge. Next, airway inflammation, mucus secretion, and airway remodeling in mouse lung tissue were assessed via histological analyses. Lastly, the expression level of autophagy proteins LC3B, Beclin1, p62, and autolysosome was determined both in vivo and in vitro, along with the expression level of p-PI3K, PI3K, p-Akt, and Akt in mouse lung tissue. RESULTS The findings indicated that aerosol inhalation of M. vaccae in an asthma mouse model has the potential to decrease eosinophil counts, alleviate airway inflammation, mucus secretion, and airway remodeling through the inhibition of autophagy. Likewise, M. vaccae could reduce the levels of OVA-specific lgE, IL-5, IL-13, and TNF-α in asthma mouse models by inhibiting autophagy. Furthermore, this study revealed that M. vaccae also suppressed autophagy in IL-13-stimulated BEAS-2B cells. Moreover, M. vaccae may activate the PI3K/Akt signaling pathway in the lung tissue of asthmatic mice. CONCLUSION In summary, the present study suggests that M. vaccae may contribute to alleviating airway inflammation and remodeling in allergic asthma by potentially modulating autophagy and the PI3K/Akt signaling pathway. These discoveries offer a promising avenue for the development of therapeutic interventions targeting allergic airway inflammation.
Collapse
Affiliation(s)
- Huan Xiao
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China
| | - An-Zhou Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China
| | - Mei-Li Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China
| | - Hong-Liu Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China
| | - Fan Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China
| | - Chao-Qian Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
3
|
Pinkerton JW, Preite S, Piras A, Zervas D, Markou T, Freeman MS, Hofving T, Ivarsson E, Bonvini SJ, Brailsford W, Yrlid L, Belvisi MG, Birrell MA. PI3Kγδ inhibition suppresses key disease features in a rat model of asthma. Respir Res 2024; 25:175. [PMID: 38654248 PMCID: PMC11040934 DOI: 10.1186/s12931-024-02814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.
Collapse
Affiliation(s)
- James W Pinkerton
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Silvia Preite
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Antonio Piras
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Dimitrios Zervas
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Thomais Markou
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Mark S Freeman
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Tobias Hofving
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Emil Ivarsson
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Sara J Bonvini
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Wayne Brailsford
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Linda Yrlid
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Maria G Belvisi
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Mark A Birrell
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden.
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK.
| |
Collapse
|
4
|
Chen L, Yuan X, He Y, Fan Z, Guan Y, Li Q, Chen Y, Bao L, Huang Y, Lai K. The Expression of Semaphorin3E in Vagal Ganglion and Lung Tissue Is Related to Airway Hyperresponsiveness in Murine Asthma Model. J Immunol Res 2023; 2023:6459234. [PMID: 38111650 PMCID: PMC10727799 DOI: 10.1155/2023/6459234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Objective Semaphorin3E (Sema3E) mediates reorganization of the actin cytoskeleton, and plays an important role in ensuring the specificity of synapse formation and angiogenesis. However, the role of Sema3E in allergic asthma (AS) and eosinophilic bronchitis (EB) is still elusive. This study aimed to investigate the relationship between Sema3E in vagal ganglion and lung tissue, airway reactivity, and eosinophilic inflammation. Methods The frequency of coughs and airway reactivity as well as the airway inflammation were observed in ovalbumin- (OVA-) induced AS and EB mouse models. The expression of Sema3E was examined in the vagal ganglion and lung tissues by immunofluorescence staining and western blotting analyses. In the Sema3E treatment protocol, exogenous Sema3E was administrated intranasally before challenge in AS model to study the effect of Sema3E on airway hyperresponsiveness, airway inflammation, mucus production, and collagen deposition. Results The similar higher frequency of coughs and airway eosinophilic inflammation could be seen in AS and EB groups compared with nasal saline (NS) and dexamethasone (DXM) groups. The absence of the airway hyperresponsiveness was observed in EB and DXM group, while AS group showed increase in airway reactivity to methacholine. The expression of Sema3E in vagal ganglion and lung tissue was remarkably decreased in AS and DXM group compared with EB group. Sema3E-treated asthma mice displayed ameliorated airway hyperresponsiveness, mucus production, and collagen deposition. Conclusion Sema3E in lungs and vagal ganglia is related to eosinophilic inflammation and has a protective effect on OVA-induced AHR in asthma.
Collapse
Affiliation(s)
- Liyan Chen
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
- Shenzhen Hyzen Hospital, Shenzhen 518000, Guangdong, China
| | - Xiaohui Yuan
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
| | - Yaowei He
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Zichuan Fan
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
| | - Ya Guan
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
| | - Qiuying Li
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
| | - Yaying Chen
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
| | - Lianglan Bao
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
| | - Yidan Huang
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
- The Affiliated Dongguan Houjie Hospital of Guangdong Medical University, Dongguan 523945, Guangdong, China
| | - Kefang Lai
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, Guangdong, China
| |
Collapse
|
5
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Li W, Xue L, Peng C, Zhao P, Peng Y, Chen W, Wang W, Shen J. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, relieves airway hyperresponsiveness, mucus hypersecretion and inflammation in a murine asthma model. Mol Med 2023; 29:154. [PMID: 37936054 PMCID: PMC10629066 DOI: 10.1186/s10020-023-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Tyrosine kinase and phosphoinositide kinase pathways play important roles in asthma formation. As a dual tyrosine and phosphoinositide kinase inhibitor, PP121 has shown anticancer efficacy in multiple tumors. However, the study of PP121 in pulmonary diseases is still limited. Herein, we investigated the therapeutic activities of PP121 in asthma treatment. METHODS Tension measurements and patch clamp recordings were made to investigate the anticontractile characteristics of PP121 in vitro. Then, an asthma mouse model was established to further explore the therapeutic characteristics of PP121 via measurement of respiratory system resistance, histological analysis and western blotting. RESULTS We discovered that PP121 could relax precontracted mouse tracheal rings (mTRs) by blocking certain ion channels, including L-type voltage-dependent Ca2+ channels (L-VDCCs), nonselective cation channels (NSCCs), transient receptor potential channels (TRPCs), Na+/Ca2+ exchangers (NCXs) and K+ channels, and accelerating calcium mobilization. Furthermore, PP121 relieved asthmatic pathological features, including airway hyperresponsiveness, systematic inflammation and mucus secretion, via downregulation of inflammatory factors, mucins and the mitogen-activated protein kinase (MAPK)/Akt signaling pathway in asthmatic mice. CONCLUSION In summary, PP121 exerts dual anti-contractile and anti-inflammatory effects in asthma treatment, which suggests that PP121 might be a promising therapeutic compound and shed new light on asthma therapy.
Collapse
Affiliation(s)
- Wei Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Changsi Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yongbo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
7
|
Pirmoradi S, Hosseiniyan Khatibi SM, Zununi Vahed S, Homaei Rad H, Khamaneh AM, Akbarpour Z, Seyedrezazadeh E, Teshnehlab M, Chapman KR, Ansarin K. Unraveling the link between PTBP1 and severe asthma through machine learning and association rule mining method. Sci Rep 2023; 13:15399. [PMID: 37717070 PMCID: PMC10505163 DOI: 10.1038/s41598-023-42581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Severe asthma is a chronic inflammatory airway disease with great therapeutic challenges. Understanding the genetic and molecular mechanisms of severe asthma may help identify therapeutic strategies for this complex condition. RNA expression data were analyzed using a combination of artificial intelligence methods to identify novel genes related to severe asthma. Through the ANOVA feature selection approach, 100 candidate genes were selected among 54,715 mRNAs in blood samples of patients with severe asthmatic and healthy groups. A deep learning model was used to validate the significance of the candidate genes. The accuracy, F1-score, AUC-ROC, and precision of the 100 genes were 83%, 0.86, 0.89, and 0.9, respectively. To discover hidden associations among selected genes, association rule mining was applied. The top 20 genes including the PTBP1, RAB11FIP3, APH1A, and MYD88 were recognized as the most frequent items among severe asthma association rules. The PTBP1 was found to be the most frequent gene associated with severe asthma among those 20 genes. PTBP1 was the gene most frequently associated with severe asthma among candidate genes. Identification of master genes involved in the initiation and development of asthma can offer novel targets for its diagnosis, prognosis, and targeted-signaling therapy.
Collapse
Affiliation(s)
- Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Hamed Homaei Rad
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Mahdi Khamaneh
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Akbarpour
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Teshnehlab
- Department of Electric and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Kenneth R Chapman
- Division of Respiratory Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Khalil Ansarin
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
8
|
Bao C, Gu L, Wang S, Zou K, Zhang Z, Jiang L, Chen L, Fang H. Priority index for asthma (PIA): In silico discovery of shared and distinct drug targets for adult- and childhood-onset disease. Comput Biol Med 2023; 162:107095. [PMID: 37285660 DOI: 10.1016/j.compbiomed.2023.107095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/30/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Asthma is a chronic disease that is caused by a combination of genetic risks and environmental triggers and can affect both adults and children. Genome-wide association studies have revealed partly distinct genetic architectures for its two age-of-onset subtypes (namely, adult-onset and childhood-onset). We reason that identifying shared and distinct drug targets between these subtypes may inform the development of subtype-specific therapeutic strategies. In attempting this, we here introduce Priority Index for Asthma or PIA, a genetics-led and network-driven drug target prioritisation tool for asthma. We demonstrate the validity of the tool in improving drug target prioritisation for asthma compared to the status quo methods, as well as in capturing the underlying etiology and existing therapeutics for the disease. We also illustrate how PIA can be used to prioritise drug targets for adult- and childhood-onset asthma, as well as to identify shared and distinct pathway crosstalk genes. Shared crosstalk genes are mostly involved in JAK-STAT signaling, with clinical evidence supporting that targeting this pathway may be a promising drug repurposing opportunity for both subtypes. Crosstalk genes specific to childhood-onset asthma are enriched for PI3K-AKT-mTOR signaling, and we identify genes that are already targeted by licensed medications as repurposed drug candidates for this subtype. We make all our results accessible and reproducible at http://www.genetictargets.com/PIA. Collectively, our study has significant implications for asthma computational medicine research and can guide the future development of subtype-specific therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leyao Gu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Zou
- School of Life Sciences, Central South University, Hunan, China
| | - Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lulu Jiang
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Zhu Z, Freishtat RJ, Harmon B, Hahn A, Teach SJ, Pérez-Losada M, Hasegawa K, Camargo CA. Nasal airway microRNA profiling of infants with severe bronchiolitis and risk of childhood asthma: a multicentre prospective study. Eur Respir J 2023; 62:2300502. [PMID: 37321621 PMCID: PMC10578345 DOI: 10.1183/13993003.00502-2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. We examined the longitudinal relationship between nasal airway miRNAs during severe bronchiolitis and the risk of developing asthma. METHODS In a 17-centre prospective cohort study of infants with severe bronchiolitis, we sequenced their nasal microRNA at hospitalisation. First, we identified differentially expressed microRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, we characterised the DEmiRNAs based on their association with asthma-related clinical features, and expression level by tissue and cell types. Third, we conducted pathway and network analyses by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of DEmiRNAs and nasal cytokines. RESULTS In 575 infants (median age 3 months), we identified 23 DEmiRNAs associated with asthma development (e.g. hsa-miR-29a-3p; false discovery rate (FDR) <0.10), particularly in infants with respiratory syncytial virus infection (FDR for the interaction <0.05). These DEmiRNAs were associated with 16 asthma-related clinical features (FDR <0.05), e.g. infant eczema and corticosteroid use during hospitalisation. In addition, these DEmiRNAs were highly expressed in lung tissue and immune cells (e.g. T-helper cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA targets (e.g. hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR <0.05), e.g. toll-like receptor, PI3K-Akt and FcɛR signalling pathways, and validated by cytokine data. CONCLUSION In a multicentre cohort of infants with severe bronchiolitis, we identified nasal miRNAs during illness that were associated with major asthma-related clinical features, immune response, and risk of asthma development.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Stephen J Teach
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wan R, Srikaram P, Guntupalli V, Hu C, Chen Q, Gao P. Cellular senescence in asthma: from pathogenesis to therapeutic challenges. EBioMedicine 2023; 94:104717. [PMID: 37442061 PMCID: PMC10362295 DOI: 10.1016/j.ebiom.2023.104717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogeneous chronic respiratory disease that impacts nearly 10% of the population worldwide. While cellular senescence is a normal physiological process, the accumulation of senescent cells is considered a trigger that transforms physiology into the pathophysiology of a tissue/organ. Recent advances have suggested the significance of cellular senescence in asthma. With this review, we focus on the literature regarding the physiology and pathophysiology of cellular senescence and cellular stress responses that link the triggers of asthma to cellular senescence, including telomere shortening, DNA damage, oncogene activation, oxidative-related senescence, and senescence-associated secretory phenotype (SASP). The association of cellular senescence to asthma phenotypes, airway inflammation and remodeling, was also reviewed. Importantly, several approaches targeting cellular senescence, such as senolytics and senomorphics, have emerged as promising strategies for asthma treatment. Therefore, cellular senescence might represent a mechanism in asthma, and the senescence-related molecules and pathways could be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Vineeta Guntupalli
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiong Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
11
|
Beri P, Plunkett C, Barbara J, Shih CC, Barnes SW, Ross O, Choconta P, Trinh T, Gomez D, Litvin B, Walker J, Qiu M, Hammack S, Toyama EQ. A high-throughput 3D cantilever array to model airway smooth muscle hypercontractility in asthma. APL Bioeng 2023; 7:026104. [PMID: 37206658 PMCID: PMC10191677 DOI: 10.1063/5.0132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Asthma is often characterized by tissue-level mechanical phenotypes that include remodeling of the airway and an increase in airway tightening, driven by the underlying smooth muscle. Existing therapies only provide symptom relief and do not improve the baseline narrowing of the airway or halt progression of the disease. To investigate such targeted therapeutics, there is a need for models that can recapitulate the 3D environment present in this tissue, provide phenotypic readouts of contractility, and be easily integrated into existing assay plate designs and laboratory automation used in drug discovery campaigns. To address this, we have developed DEFLCT, a high-throughput plate insert that can be paired with standard labware to easily generate high quantities of microscale tissues in vitro for screening applications. Using this platform, we exposed primary human airway smooth muscle cell-derived microtissues to a panel of six inflammatory cytokines present in the asthmatic niche, identifying TGF-β1 and IL-13 as inducers of a hypercontractile phenotype. RNAseq analysis further demonstrated enrichment of contractile and remodeling-relevant pathways in TGF-β1 and IL-13 treated tissues as well as pathways generally associated with asthma. Screening of 78 kinase inhibitors on TGF-β1 treated tissues suggests that inhibition of protein kinase C and mTOR/Akt signaling can prevent this hypercontractile phenotype from emerging, while direct inhibition of myosin light chain kinase does not. Taken together, these data establish a disease-relevant 3D tissue model for the asthmatic airway, which combines niche specific inflammatory cues and complex mechanical readouts that can be utilized in drug discovery efforts.
Collapse
Affiliation(s)
- Pranjali Beri
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | | | - Joshua Barbara
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Chien-Cheng Shih
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Olivia Ross
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Datzael Gomez
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Bella Litvin
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - John Walker
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Minhua Qiu
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Erin Quan Toyama
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| |
Collapse
|
12
|
Liu X, Yu Y, Wu Y, Luo A, Yang M, Li T, Li T, Mao B, Chen X, Fu J, Jiang H, Liu W. A systematic pharmacology-based in vivo study to reveal the effective mechanism of Yupingfeng in asthma treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154783. [PMID: 37004399 DOI: 10.1016/j.phymed.2023.154783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The clinical effect of Yupingfeng (YPF) has been confirmed in asthma patients, however, it lacks a study to verify its pharmacological mechanism. HYPOTHESIS/PURPOSE To reveal the molecular basis and potential pharmacological mechanism of YPF in the treatment of asthma. STUDY DESIGN AND METHODS First, a systems pharmacology-based method integrating pharmacokinetic screening, target prediction, network analyses, GO and KEGG analyses were used for the systematic deciphering of the mechanism of YPF in asthma. Second, differentially expressed genes (DEGs) between asthma patients and healthy controls were identified by GEO2R online tool. Third, based on systems pharmacology and DEGs results, molecular docking was performed utilizing the Discovery Studio 2020 Client version to detect the binding capacity between compounds and targets. Finally, ovalbumin (OVA)-challenged C57BL/6 mice were treated with YPF or its effective compound to assess the predictions. RESULTS A total of 35 active compounds were filtered out, with 87 potential targets being identified for further analysis after target fishing and matching. Quercetin, kaempferol, and wogonin were identified as the main ingredients in YPF. The signaling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), tumor necrosis factor (TNF) and IL-17 were identified as the top signaling pathways in KEGG enrichment analysis. GEO2R tools of NCBI discovered five DEGs that overlapped with the therapeutic targets of YPF. Wogonin was proven to be the top active compound in YPF through the results of molecular docking. In vivo experiments indicated that YPF and wogonin significantly attenuated airway resistance and lung inflammation by decreasing the levels of inflammatory cytokines and key factors in PI3K/AKT, IL-17, and TNF signaling pathways. CONCLUSIONS YPF and its main active compound wogonin may exert some therapeutic effects on asthma inflammation through multiple molecular targets and signaling pathways including PI3K/AKT, IL-17 and TNF-α.
Collapse
Affiliation(s)
- Xuemei Liu
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China; Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China
| | - Yan Yu
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Yanqing Wu
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Ai Luo
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China; Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China
| | - Mei Yang
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Ting Li
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Tingqian Li
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Bing Mao
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China
| | - Juanjuan Fu
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Hongli Jiang
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China
| | - Wei Liu
- Division of Pulmonary Diseases, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan, PR. China; Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, PR. China.
| |
Collapse
|
13
|
McClean N, Hasday JD, Shapiro P. Progress in the development of kinase inhibitors for treating asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:145-178. [PMID: 37524486 DOI: 10.1016/bs.apha.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current therapies to mitigate inflammatory responses involved in airway remodeling and associated pathological features of asthma and chronic obstructive pulmonary disease (COPD) are limited and largely ineffective. Inflammation and the release of cytokines and growth factors activate kinase signaling pathways that mediate changes in airway mesenchymal cells such as airway smooth muscle cells and lung fibroblasts. Proliferative and secretory changes in mesenchymal cells exacerbate the inflammatory response and promote airway remodeling, which is often characterized by increased airway smooth muscle mass, airway hyperreactivity, increased mucus secretion, and lung fibrosis. Thus, inhibition of relevant kinases has been viewed as a potential therapeutic approach to mitigate the debilitating and, thus far, irreversible airway remodeling that occurs in asthma and COPD. Despite FDA approval of several kinase inhibitors for the treatment of proliferative disorders, such as cancer and inflammation associated with rheumatoid arthritis and ulcerative colitis, none of these drugs have been approved to treat asthma or COPD. This review will provide a brief overview of the role kinases play in the pathology of asthma and COPD and an update on the status of kinase inhibitors currently in clinical trials for the treatment of obstructive pulmonary disease. In addition, potential issues associated with the current kinase inhibitors, which have limited their success as therapeutic agents in treating asthma or COPD, and alternative approaches to target kinase functions will be discussed.
Collapse
Affiliation(s)
- Nathaniel McClean
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
14
|
Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023; 22:14. [PMID: 36800956 PMCID: PMC9938600 DOI: 10.1186/s12941-023-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to protective immune responses within the early phase of infection. However, these cells are also adversely associated with disease progression and exacerbation and can contribute to pathology, for example in the development of bronchiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutrophils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and the evidence reporting neutrophils' capability to kill NTM. Next, we present an overview of the positive and negative effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-directed therapy for these important infections.
Collapse
Affiliation(s)
- Meyad Alkarni
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| | - Marc Lipman
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - David M. Lowe
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| |
Collapse
|
15
|
Liu Y, Li P, Jiang T, Li Y, Wang Y, Cheng Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir Med 2023; 207:107117. [PMID: 36626942 DOI: 10.1016/j.rmed.2023.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway is involved in the pathogenesis of asthma. Although decades of intensive research have focused on the role of EGFR in asthma, the specific mechanisms and pathways of EGFR signaling remain unclear. Various reports have indicated that inhibition of EGFR improves the pathological features in asthma models. However, extending these experimental findings to clinical applications is difficult. Several measures can be adopted to promote clinical application of EGFR inhibitors. This review focuses on the role of EGFR in the pathogenesis of asthma and the development of a potentially novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Ye Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Qasim M, Abdullah M, Ali Ashfaq U, Noor F, Nahid N, Alzamami A, Alturki NA, Khurshid M. Molecular mechanism of Ferula asafoetida for the treatment of asthma: Network pharmacology and molecular docking approach. Saudi J Biol Sci 2023; 30:103527. [PMID: 36568408 PMCID: PMC9772567 DOI: 10.1016/j.sjbs.2022.103527] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a significant health-care burden that has great impact on the quality of life of patients and their families. The limited amount of previously reported data and complicated pathophysiology of asthma make it a difficult to treat and significant economic burden on public healthcare systems. Ferula asafoetida is an herbaceous, monoecious, perennial plant of the Umbelliferae family. In Asia, F. asafoetida is used to treat a range of diseases and disorders, including asthma. Several in vitro studies demonstrated the therapeutic efficacy of F. asafoetida against asthma. Nevertheless, the precise molecular mechanism is yet to be discovered. In the framework of current study, network pharmacology approach was used to identify the bioactive compounds of F. asafoetida in order to better understand its molecular mechanism for the treatment of asthma. In present work, we explored a compound-target-pathway network and discovered that assafoetidin, cynaroside, farnesiferol-B, farnesiferol-C, galbanic-acid, and luteolin significantly influenced the development of asthma by targeting MAPK3, AKT1 and TNF genes. Later, docking analysis revealed that active constituents of F. asafoetida bind stably with three target proteins and function as asthma repressor by regulating the expression of MAPK3, AKT1 and TNF genes. Thus, integration of network pharmacology with molecular docking revealed that F. asafoetida prevent asthma by modulating asthma-related signaling pathways. This study lays the basis for establishing the efficacy of multi-component, multi-target compound formulae, as well as investigating new therapeutic targets for asthma.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan,Corresponding author at: Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Ahmad Alzamami
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia
| | - Norah A Alturki
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
17
|
Citrus junos Tanaka Peel Extract Ameliorates HDM-Induced Lung Inflammation and Immune Responses In Vivo. Nutrients 2022; 14:nu14235024. [PMID: 36501052 PMCID: PMC9740624 DOI: 10.3390/nu14235024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the wake of the COVID-19 pandemic, lung disorders have become a major health concern for humans. Allergic asthma is the most prevalent form of asthma, and its treatments target the inflammation process. Despite significant developments in the diagnosis and management of allergic asthma, side effects are a major concern. Additionally, its extreme heterogeneity impedes the efficacy of the majority of treatments. Thus, newer, safer therapeutic substances, such as natural products, are desired. Citrus junos Tanaka has traditionally been utilized as an anti-inflammatory, sedative, antipyretic, and antitoxic substance. In this study, the protective effects of Citrus junos Tanaka peel extract (B215) against lung inflammation were examined, and efforts were made to understand the underlying protective mechanism using an HDM-induced lung inflammation murine model. The administration of B215 reduced immune cell infiltration in the lungs, plasma IgE levels, airway resistance, mucus hypersecretions, and cytokine production. These favorable effects alleviated HDM-induced lung inflammation by modulating the NF-κB signaling pathway. Hence, B215 might be a promising functional food to treat lung inflammation without adverse effects.
Collapse
|
18
|
Zhou K, Lu D, You J, Liu T, Sun J, Lu Y, Pan J, Li Y, Liu C. Integrated plasma pharmacochemistry and network pharmacology to explore the mechanism of Gerberae Piloselloidis Herba in treatment of allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115624. [PMID: 35970314 DOI: 10.1016/j.jep.2022.115624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gerberae Piloselloidis Herba (GPH), a commonly used traditional medicine in China, is derived from Gerbera piloselloides (Linn.) Cass. It is featured by its special bioactivities as antitussive, expectorant, anti-asthma, anti-bacterial, anti-tumor, uterine analgesia, and immunity-enhancing. With a long history of medication in ethnic minority areas in China, it is often used as an effective treatment for cough and sore throat as well as allergic asthma. Although our previous investigation also has discovered GPH performed effective treatment on allergic asthma, its underlying mechanism remains unclear. AIM OF THE STUDY This research aims to reveal the pharmacological mechanism of GPH in the treatment for allergic asthma through combination of plasma pharmacology and network pharmacology. MATERIALS AND METHODS Firstly, the components of GPH in blood samples were identified using UHPLC- Q-Orbitrap HRMS. An interaction network of "compound-target-disease" was constructed based on the compounds confirmed in blood and on their corresponding targets of allergic asthma acquired from disease gene databases, predicting the possible biological targets and potential signal pathways of GPH with the network pharmacology analysis. Then, a molecular docking between the blood ingredients and the core targets was carried out using the Autodock Vina software. Subsequently, after establishing a mouse model with allergic asthma induced by ovalbumin (OVA), the effect of GPH on allergic asthma was evaluated by analyzing a series of indicators including behavior, lung pathological changes, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF). Finally, the key pathway and targets predicted by network pharmacology and molecular docking were further verified using Western blot analysis. RESULTS Eleven chemical constituents (such as arbutin, neochlorogenic acid, chlorogenic acid, etc.) were identified through the analysis of plasma samples, on which basis a total of 142 genes intersecting GPH and allergic asthma were collected by network pharmacology. After performing enrichment analysis of these genes in gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG), it was found that arbutin-related targets mainly focused on phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signal pathway, while luteolin and marmesin -related targets tended to locate at Interleukin-17 (IL-17) signal pathway. Meanwhile, the findings of molecular docking suggested that such components as arbutin, luteolin and marmesin entering into blood had good binding with the core targets related to PI3K/Akt and IL-17 pathways. In addition, GPH improved the OVA-induced asthma symptoms, the alveolar septa thickening and the infiltration of inflammatory cell around bronchi and bronchioles as well as reduced the levels of IgE, IL-8 and TNF-α in serum or BALF. Furthermore, GPH could inhibit the phosphorylation level of Akt and the expression of PI3K, an efficacy supported by the findings by way of Western blot which suggests that GPH in the treatment of allergic asthma was linked to PI3K/Akt signal pathway. CONCLUSION In this study, a comprehensive strategy to combine the UPLC-Q-Orbitrap HRMS with network pharmacology was employed to clarify the mechanism of GPH against allergic asthma, a finding where GPH may inhibit PI3K/Akt signal pathway to protect mice from OVA-induced allergic asthma. This study provides a deeper understanding of the pharmacological mechanism of GPH in treatment of asthma, offering a scientific reference for further research and clinical application of GPH in terms of allergic asthma.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Dingyan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jingrui You
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China.
| | - Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
19
|
Identification of miRNA-mRNA-TFs regulatory network and crucial pathways involved in asthma through advanced systems biology approaches. PLoS One 2022; 17:e0271262. [PMID: 36264868 PMCID: PMC9584516 DOI: 10.1371/journal.pone.0271262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.
Collapse
|
20
|
Namba S, Konuma T, Wu KH, Zhou W, Okada Y. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. CELL GENOMICS 2022; 2:100190. [PMID: 36778001 PMCID: PMC9903693 DOI: 10.1016/j.xgen.2022.100190] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Genomics-driven drug discovery is indispensable for accelerating the development of novel therapeutic targets. However, the drug discovery framework based on evidence from genome-wide association studies (GWASs) has not been established, especially for cross-population GWAS meta-analysis. Here, we introduce a practical guideline for genomics-driven drug discovery for cross-population meta-analysis, as lessons from the Global Biobank Meta-analysis Initiative (GBMI). Our drug discovery framework encompassed three methodologies and was applied to the 13 common diseases targeted by GBMI (N mean = 1,329,242). Individual methodologies complementarily prioritized drugs and drug targets, which were systematically validated by referring previously known drug-disease relationships. Integration of the three methodologies provided a comprehensive catalog of candidate drugs for repositioning, nominating promising drug candidates targeting the genes involved in the coagulation process for venous thromboembolism and the interleukin-4 and interleukin-13 signaling pathway for gout. Our study highlighted key factors for successful genomics-driven drug discovery using cross-population meta-analyses.
Collapse
Affiliation(s)
- Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takahiro Konuma
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Japan
| | - Kuan-Han Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Global Biobank Meta-analysis Initiative
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Japan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
| |
Collapse
|
21
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
22
|
Fagone E, Fruciano M, Gili E, Sambataro G, Vancheri C. Developing PI3K Inhibitors for Respiratory Diseases. Curr Top Microbiol Immunol 2022; 436:437-466. [DOI: 10.1007/978-3-031-06566-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Wang X, Xu L, Yu Y, Fu Y. LncRNA RP5-857K21.7 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the miR-508-3p/PI3K/AKT/mTOR axis. Autoimmunity 2021; 55:65-73. [PMID: 34913773 DOI: 10.1080/08916934.2021.1998895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continuous increase in the prevalence of asthma poses a threat to human health. Despites numerous researches, the understanding of asthma development still remain elusive, hindering the development of effective treatment. Here, we explored the role of lncRNA RP5-857K21.7 (RP5-857K21.7) in the development of asthma and its potential molecular mechanism of regulation. Airway smooth muscle cells (ASMCs) were isolated and cultured after which some of the cells were induced with PDGF-BB to build an asthma cell model, and then, qRT-PCR analysis was used to measure the expression level of RP5-857K21.7 in the cell model. Result shows that the RP5-857K21.7 is significantly downregulated in PDGF-BB-induced ASMCs cells. Through CCK-8, transwell, and flow cytometry assay, we examined the functional impact of RP5-857K21.7 on the proliferation, migration, and apoptosis of the ASMCs, respectively, and found that the overexpression of RP5-857K21.7 markedly inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. Bioinformatics analysis predicted that the RP5-857K21.7 could sponge miR-508-3p and result was validated through a dual-luciferase reporter assay, biotinylated RNA pull-down assay, and RIP-qRT-PCR analysis. Mechanistically, RP5-857K21.7 regulates the PI3K/AKT/mTOR pathway by endogenously sponging miR-508-3p to inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. The current research suggests that the RP5-857K21.7 and its associated molecular pathway (miR-508-3p/PI3K/AKT/mTOR axis) might be a useful therapeutic target for the treatment of asthma disease.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| | - Lingfen Xu
- Department of General Medicine, Qinghai Province People's Hospital, Xining, China
| | - Yong Yu
- Urinary surgery, Qinghai Province People's Hospital, Xining, China
| | - Yimin Fu
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
24
|
Zhu Y, Sun D, Liu H, Sun L, Jie J, Luo J, Peng L, Song L. Bixin protects mice against bronchial asthma though modulating PI3K/Akt pathway. Int Immunopharmacol 2021; 101:108266. [PMID: 34678694 DOI: 10.1016/j.intimp.2021.108266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence has implicated the potential of natural compounds in treatment of asthma. Bixin is a natural food coloring isolated from the seeds of Bixa Orellana, which possesses anti-tumor, anti-inflammatory and antioxidative properties. Nevertheless, its therapeutic effect in asthma has not been elucidated. Our present study demonstrated that administration of Bixin suppressed allergic airway inflammation and reversed glucocorticoids resistance, as well as alleviated airway remodeling and airway hyperresponsiveness (AHR) in asthmatic mice. In vitro studies showed that Bixin treatment could inhibit the development of epithelial-mesenchymal transition (EMT) mediated by transforming growth factor beta (TGF-β) signaling. Importantly, Bixin antagonized activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway both in vitro and in vivo. Above all, our findings reveal that Bixin functions as a potent antagonist of PI3K/Akt signaling to protect against allergic asthma, highlighting a novel strategy for asthma treatment based on natural products.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Han Liu
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Linzi Sun
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Jing Jie
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| | - Liping Peng
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| | - Lei Song
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| |
Collapse
|
25
|
Kim YS, Han D, Mo JH, Kim YM, Kim DW, Choi HG, Park JW, Shin HW. Antibiotic-Dependent Relationships Between the Nasal Microbiome and Secreted Proteome in Nasal Polyps. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:589-608. [PMID: 34212546 PMCID: PMC8255347 DOI: 10.4168/aair.2021.13.4.589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory condition of the paranasal sinuses and nasal passages. Although antibiotics are used to reduce inflammation or to treat an episode of acute rhinosinusitis, their effects on the nasal environment and host response in CRS is unclear. METHODS We analyzed the effects of antibiotics on the nasal microbiome and secreted proteome in CRS using multi-omic analysis. Nasal secretions were collected from 29 controls, 30 CRS patients without nasal polyps (NP), and 40 CRS patients with NP. A total of 99 subjects were divided into 2 groups that included subjects who had taken antibiotics 3 months prior to sampling and those who had not. We performed 16S ribosomal DNA sequence analyses and Orbitrap mass spectrometry-based proteomic analyses. Spearman correlation was used to assess the correlations between the nasal microbiome and secreted proteome. RESULTS The associations between the nasal microbiome and secreted proteome were noted in subjects who had used antibiotics. Antibiotics could have stronger effects on their associations in patients with CRS with NP than in those without. It remains unknown whether these holistic changes caused by antibiotics are beneficial or harmful to CRS, however, the associations could be differentially affected by disease severity. CONCLUSION These findings provide new insight into the nasal environment and the host response in CRS.
Collapse
Affiliation(s)
- Yi Sook Kim
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji Hun Mo
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University Hospital, Cheonan, Korea
- Clinical Mucosal Immunology Study Group, Seoul, Korea
| | - Yong Min Kim
- Clinical Mucosal Immunology Study Group, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, Korea
| | - Dae Woo Kim
- Clinical Mucosal Immunology Study Group, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center; Seoul, Korea
| | - Hyo Guen Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Jong Wan Park
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Clinical Mucosal Immunology Study Group, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
26
|
Sadiq MW, Asimus S, Belvisi MG, Brailsford W, Fransson R, Fuhr R, Hagberg A, Hashemi M, Jellesmark Jensen T, Jonsson J, Keen C, Körnicke T, Kristensson C, Mäenpää J, Necander S, Nemes S, Betts J. Characterisation of pharmacokinetics, safety and tolerability in a first-in-human study for AZD8154, a novel inhaled selective PI3Kγδ dual inhibitor targeting airway inflammatory disease. Br J Clin Pharmacol 2021; 88:260-270. [PMID: 34182611 DOI: 10.1111/bcp.14956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS This 3-part, randomised, phase 1 first-in-human study (NCT03436316) investigated the safety, tolerability and pharmacokinetics (PK) of AZD8154, a dual phosphoinositide 3-kinase (PI3K) γδ inhibitor developed as a novel inhaled anti-inflammatory treatment for respiratory disease. METHODS Healthy men, and women of nonchildbearing potential, were enrolled to receive single and multiple ascending inhaled doses of AZD8154 in parts 1 and 3 of the study, respectively, while part 2 characterised the systemic PK after a single intravenous (IV) dose. In part 1, participants received 0.1-7.7 mg AZD8154 in 6 cohorts. In part 2, participants were given 0.15 mg AZD8154 as an IV infusion. In part 3, AZD8154 was given in 3 cohorts of 0.6, 1.8 and 3.1 mg, with a single dose on Day 1 followed by repeated once-daily doses on Days 4-12. RESULTS In total, 78 volunteers were randomised. All single inhaled, single IV and multiple inhaled doses were shown to be well tolerated without any safety concerns. A population PK model, using nonlinear mixed-effect modelling, was developed to describe the PK of AZD8154. The terminal mean half-life of AZD8154 was 18.0-32.0 hours. The geometric mean of the absolute pulmonary bioavailability of AZD8154 via the inhaled route was 94.1%. CONCLUSION AZD8154 demonstrated an acceptable safety profile, with no reports of serious adverse events and no clinically significant drug-associated safety concerns reported in healthy volunteers. AZD8154 demonstrated prolonged lung retention and a half-life supporting once-daily dosing.
Collapse
Affiliation(s)
- Muhammad Waqas Sadiq
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara Asimus
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, Sweden
| | - Maria G Belvisi
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Respiratory Pharmacology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Wayne Brailsford
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rebecca Fransson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rainard Fuhr
- Parexel Early Phase Clinical Unit, Berlin, Germany
| | - Anette Hagberg
- Patient Safety, Respiratory & Immunology, Chief Medical Office, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mahdi Hashemi
- Early Biostats & Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tina Jellesmark Jensen
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Julia Jonsson
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christina Keen
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Cecilia Kristensson
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jukka Mäenpää
- Patient Safety, Respiratory & Immunology, Chief Medical Office, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sofia Necander
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Szilárd Nemes
- Early Biostats & Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joanne Betts
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
27
|
Raita Y, Pérez-Losada M, Freishtat RJ, Harmon B, Mansbach JM, Piedra PA, Zhu Z, Camargo CA, Hasegawa K. Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma. Nat Commun 2021; 12:3601. [PMID: 34127671 PMCID: PMC8203688 DOI: 10.1038/s41467-021-23859-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) bronchiolitis is not only the leading cause of hospitalization in U.S. infants, but also a major risk factor for asthma development. While emerging evidence suggests clinical heterogeneity within RSV bronchiolitis, little is known about its biologically-distinct endotypes. Here, we integrated clinical, virus, airway microbiome (species-level), transcriptome, and metabolome data of 221 infants hospitalized with RSV bronchiolitis in a multicentre prospective cohort study. We identified four biologically- and clinically-meaningful endotypes: A) clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-intermediate, B) clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-high, C) clinicalseveremicrobiomemixedinflammationIFN-low, and D) clinicalnon-atopicmicrobiomeM.catarrhalisinflammationIL-6. Particularly, compared with endotype A infants, endotype B infants-who are characterized by a high proportion of IgE sensitization and rhinovirus coinfection, S. pneumoniae/M. catarrhalis codominance, and high IFN-α and -γ response-had a significantly higher risk for developing asthma (9% vs. 38%; OR, 6.00: 95%CI, 2.08-21.9; P = 0.002). Our findings provide an evidence base for the early identification of high-risk children during a critical period of airway development.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro A Piedra
- Departments of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Chan Y, MacLoughlin R, Zacconi FC, Tambuwala MM, Pabari RM, Singh SK, Jesus Andreoli Pinto TD, Gupta G, Chellappan DK, Dua K. Advances in nanotechnology-based drug delivery in targeting PI3K signaling in respiratory diseases. Nanomedicine (Lond) 2021; 16:1351-1355. [PMID: 33998829 DOI: 10.2217/nnm-2021-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway H91 HE94, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farma-cia, Pontificia Universidad Católica deChile, Av Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Londonderry, Northern Ireland, UK
| | - Ritesh M Pabari
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara, 144411, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000 Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
29
|
Wang S, Wuniqiemu T, Tang W, Teng F, Bian Q, Yi L, Qin J, Zhu X, Wei Y, Dong J. Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting Beclin-1-PI3KC3 complex. Int Immunopharmacol 2021; 94:107460. [PMID: 33621850 DOI: 10.1016/j.intimp.2021.107460] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022]
Abstract
Allergic asthma is a common chronic inflammatory disease characterized by airway inflammation, mucus hypersecretion and airway remodeling. Autophagy is a highly conserved intracellular degradation pathway in eukaryotic cells. There is growing evidence suggesting that dysregulation of autophagy is involved in the pathological process of asthma. Luteolin is a typical flavonoid compound with anti-inflammatory, anti-allergic and immune-enhancing functions. Previous studies have shown that luteolin can attenuate airway inflammation and hypersensitivity in asthma. However, whether luteolin can play a role in treating asthma by regulating autophagy remains unclear. The aim of the present study was to evaluate the therapeutic effect of luteolin on ovalbumin (OVA)-induced asthmatic mice, observe its effect on the level of autophagy in lung tissues, and further elucidate its underlying mechanism. The results showed that OVA-induced mice developed airway hyperresponsiveness, mucus over-production and collagen deposition. The number of inflammatory cells, levels of interleukin (IL)-4, IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF) and OVA-specific IgE in serum were significantly increased. Furthermore, the infiltration of inflammatory cells was observed along with the activation of autophagy in lung tissues. Luteolin treatment significantly inhibited the OVA-induced inflammatory responses and the level of autophagy in lung tissues as well. Moreover, luteolin activated the PI3K/Akt/mTOR pathway and inhibited the Beclin-1-PI3KC3 protein complex in lung tissues of asthmatic mice. In conclusion, this study explored the regulatory mechanism of luteolin on autophagy in allergic asthma, providing biologic evidence for its clinical application.
Collapse
Affiliation(s)
- Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China.
| |
Collapse
|
30
|
Mercurio L, Albanesi C, Madonna S. Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Front Med (Lausanne) 2021; 8:665647. [PMID: 33996865 PMCID: PMC8119789 DOI: 10.3389/fmed.2021.665647] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
PhosphoInositide-3 Kinase (PI3K) represents a family of different classes of kinases which control multiple biological processes in mammalian cells, such as cell growth, proliferation, and survival. Class IA PI3Ks, the main regulators of proliferative signals, consists of a catalytic subunit (α, β, δ) that binds p85 regulatory subunit and mediates activation of AKT and mammalian Target Of Rapamycin (mTOR) pathways and regulation of downstream effectors. Dysregulation of PI3K/AKT/mTOR pathway in skin contributes to several pathological conditions characterized by uncontrolled proliferation, including skin cancers, psoriasis, and atopic dermatitis (AD). Among cutaneous cancers, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) display PI3K/AKT/mTOR signaling hyperactivation, implicated in hyperproliferation, and tumorigenesis, as well as in resistance to apoptosis. Upregulation of mTOR signaling proteins has also been reported in psoriasis, in association with enhanced proliferation, defective keratinocyte differentiation, senescence-like growth arrest, and resistance to apoptosis, accounting for major parts of the overall disease phenotypes. On the contrary, PI3K/AKT/mTOR role in AD is less characterized, even though recent evidence demonstrates the relevant function for mTOR pathway in the regulation of epidermal barrier formation and stratification. In this review, we provide the most recent updates on the role and function of PI3K/AKT/mTOR molecular axis in the pathogenesis of different hyperproliferative skin disorders, and highlights on the current status of preclinical and clinical studies on PI3K-targeted therapies.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
31
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
32
|
Suraya R, Nagano T, Katsurada M, Sekiya R, Kobayashi K, Nishimura Y. Molecular mechanism of asthma and its novel molecular target therapeutic agent. Respir Investig 2021; 59:291-301. [PMID: 33549541 DOI: 10.1016/j.resinv.2020.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Asthma is a chronic disease with major public health ramifications owing to its high morbidity and mortality rates, especially in severe and recurrent cases. Conventional therapeutic options could partially alleviate the burden of asthma, yet a novel approach is needed to completely control this condition. To do so, a comprehensive understanding of the molecular mechanism underlying asthma is essential to recognize and treat the major pathways that drive its pathophysiology. In this review, we will discuss the molecular mechanism of asthma, in particular focusing on the type of inflammatory responses it elicits, namely type 2 and non-type 2 asthma. Furthermore, we will discuss the novel therapeutic options that target the aberrant molecules found in asthma pathophysiology. We will specifically focus on the role of novel monoclonal antibody therapies recently developed, such as the anti-IgE, IL-5, IL-5Rα, and IL-4Rα antibodies, drugs that have been extensively studied preclinically and clinically.
Collapse
Affiliation(s)
- Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Reina Sekiya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
33
|
Airway Epithelial Dysfunction in Asthma: Relevant to Epidermal Growth Factor Receptors and Airway Epithelial Cells. J Clin Med 2020; 9:jcm9113698. [PMID: 33217964 PMCID: PMC7698733 DOI: 10.3390/jcm9113698] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Airway epithelium plays an important role as the first barrier from external pathogens, including bacteria, viruses, chemical substances, and allergic components. Airway epithelial cells also have pivotal roles as immunological coordinators of defense mechanisms to transfer signals to immunologic cells to eliminate external pathogens from airways. Impaired airway epithelium allows the pathogens to remain in the airway epithelium, which induces aberrant immunological reactions. Dysregulated functions of asthmatic airway epithelium have been reported in terms of impaired wound repair, fragile tight junctions, and excessive proliferation, leading to airway remodeling, which contributes to aberrant airway responses caused by external pathogens. To maintain airway epithelium integrity, a family of epidermal growth factor receptors (EGFR) have pivotal roles in mechanisms of cell growth, proliferation, and differentiation. There are extensive studies focusing on the relation between EGFR and asthma pathophysiology, which describe airway remodeling, airway hypermucus secretion, as well as immunological responses of airway inflammation. Furthermore, the second EGFR family member, erythroblastosis oncogene B2 (ErbB2), has been recognized to be involved with impaired wound recovery and epithelial differentiation in asthmatic airway epithelium. In this review, the roles of the EGFR family in asthmatic airway epithelium are focused on to elucidate the pathogenesis of airway epithelial dysfunction in asthma.
Collapse
|
34
|
Kachroo P, Morrow JD, Kho AT, Vyhlidal CA, Silverman EK, Weiss ST, Tantisira KG, DeMeo DL. Co-methylation analysis in lung tissue identifies pathways for fetal origins of COPD. Eur Respir J 2020; 56:13993003.02347-2019. [PMID: 32482784 DOI: 10.1183/13993003.02347-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
COPD likely has developmental origins; however, the underlying molecular mechanisms are not fully identified. Investigation of lung tissue-specific epigenetic modifications such as DNA methylation using network approaches might facilitate insights linking in utero smoke (IUS) exposure and risk for COPD in adulthood.We performed genome-wide methylation profiling for adult lung DNA from 160 surgical samples and 78 fetal lung DNA samples isolated from discarded tissue at 8-18 weeks of gestation. Co-methylation networks were constructed to identify preserved modules that shared methylation patterns in fetal and adult lung tissues and associations with fetal IUS exposure, gestational age and COPD.Weighted correlation networks highlighted preserved and co-methylated modules for both fetal and adult lung data associated with fetal IUS exposure, COPD and lower adult lung function. These modules were significantly enriched for genes involved in embryonic organ development and specific inflammation-related pathways, including Hippo, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), Wnt, mitogen-activated protein kinase and transforming growth factor-β signalling. Gestational age-associated modules were remarkably preserved for COPD and lung function, and were also annotated to genes enriched for the Wnt and PI3K/AKT pathways.Epigenetic network perturbations in fetal lung tissue exposed to IUS and of early lung development recapitulated in adult lung tissue from ex-smokers with COPD. Overlapping fetal and adult lung tissue network modules highlighted putative disease pathways supportive of exposure-related and age-associated developmental origins of COPD.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alvin T Kho
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Edwin K Silverman
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA .,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
35
|
Korde A, Ahangari F, Haslip M, Zhang X, Liu Q, Cohn L, Gomez JL, Chupp G, Pober JS, Gonzalez A, Takyar SS. An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:550-562. [PMID: 32035607 DOI: 10.1016/j.jaci.2019.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Airway eosinophilia is a prominent feature of asthma and chronic rhinosinusitis (CRS), and the endothelium plays a key role in eosinophil trafficking. To date, microRNA-1 (miR-1) is the only microRNA known to be regulated in the lung endothelium in asthma models. OBJECTIVE We sought to determine the role of endothelial miR-1 in allergic airway inflammation. METHODS We measured microRNA and mRNA expression using quantitative RT-PCR. We used ovalbumin and house dust mite models of asthma. Endothelium-specific overexpression of miR-1 was achieved through lentiviral vector delivery or induction of a transgene. Tissue eosinophilia was quantified by using Congo red and anti-eosinophil peroxidase staining. We measured eosinophil binding with a Sykes-Moore adhesion chamber. Target recruitment to RNA-induced silencing complex was assessed by using anti-Argonaute2 RNA immunoprecipitation. Surface P-selectin levels were measured by using flow cytometry. RESULTS Serum miR-1 levels had inverse correlations with sputum eosinophilia, airway obstruction, and number of hospitalizations in asthmatic patients and sinonasal tissue eosinophilia in patients with CRS. IL-13 stimulation decreased miR-1 levels in human lung endothelium. Endothelium-specific overexpression of miR-1 reduced airway eosinophilia and asthma phenotypes in murine models and inhibited IL-13-induced eosinophil binding to endothelial cells. miR-1 recruited P-selectin, thymic stromal lymphopoietin, eotaxin-3, and thrombopoietin receptor to the RNA-induced silencing complex; downregulated these genes in the lung endothelium; and reduced surface P-selectin levels in IL-13-stimulated endothelial cells. In our asthma and CRS cohorts, miR-1 levels correlated inversely with its target genes. CONCLUSION Endothelial miR-1 regulates eosinophil trafficking in the setting of allergic airway inflammation. miR-1 has therapeutic potential in asthmatic patients and patients with CRS.
Collapse
Affiliation(s)
- Asawari Korde
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Maria Haslip
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn; Yale School of Nursing, Orange, Conn
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Conn
| | | | - Shervin S Takyar
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
36
|
Research advances on selective phosphatidylinositol 3 kinase δ (PI3Kδ) inhibitors. Bioorg Med Chem Lett 2020; 30:127457. [PMID: 32755681 DOI: 10.1016/j.bmcl.2020.127457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
PI3Kδ in B cells mediates antigen receptor signaling and promote neutrophil chemotaxis. The activation of PI3Kδ can cause mast cell maturation and degranulation, myeloid cell dysfunction, and cytokine release. As a key signal molecule, PI3Kδ interacts with the lipid binding domain of a variety of cellular proteins as a secondary messenger, ultimately affecting a series of significant cellular pathways in disease pathology. Therefore, many research organizations and pharmaceutical companies have studied it to develop effectively selective PI3Kδ inhibitors as therapeutics. This review summarizes research advances in varying chemical classes of selective PI3Kδ inhibitors and the structure-activity relationship, and it mainly focuses on the propeller- versus flat-type class of inhibitors.
Collapse
|
37
|
Gunerka P, Gala K, Banach M, Dominowski J, Hucz-Kalitowska J, Mulewski K, Hajnal A, Mikus EG, Smuga D, Zagozda M, Dubiel K, Pieczykolan J, Zygmunt BM, Wieczorek M. Preclinical characterization of CPL302-253, a selective inhibitor of PI3Kδ, as the candidate for the inhalatory treatment and prevention of Asthma. PLoS One 2020; 15:e0236159. [PMID: 32702053 PMCID: PMC7377474 DOI: 10.1371/journal.pone.0236159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is a common chronic inflammatory disease. Although effective asthma therapies are available, part of asthmatic population do not respond to these treatment options. In this work we present the result of development of CPL302-253 molecule, a selective PI3Kδ inhibitor. This molecule is intended to be a preclinical candidate for dry powder inhalation in asthma treatment. Studies we performed showed that this molecule is safe and effective PI3Kδ inhibitor that can impact many immune functions. We developed a short, 15-day HDM induced asthma mouse model, in which we showed that CPL302-253 is able to block inflammatory processes leading to asthma development in vivo.
Collapse
Affiliation(s)
- Paweł Gunerka
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Kamila Gala
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Martyna Banach
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Jakub Dominowski
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Joanna Hucz-Kalitowska
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Krzysztof Mulewski
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Agnes Hajnal
- LabMagister Training and Science Ltd., Budapest, Hungary
| | - Endre G. Mikus
- LabMagister Training and Science Ltd., Budapest, Hungary
| | - Damian Smuga
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Marcin Zagozda
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Krzysztof Dubiel
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Jerzy Pieczykolan
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| | - Beata M. Zygmunt
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
- * E-mail:
| | - Maciej Wieczorek
- CelonPharma Innovative Drugs Research & Development Department, Celon Pharma S.A., Lomianki, Poland
| |
Collapse
|
38
|
Wang K, Zhu H, Zhao H, Zhang K, Tian Y. Application of carbamyl in structural optimization. Bioorg Chem 2020; 98:103757. [PMID: 32217370 DOI: 10.1016/j.bioorg.2020.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Carbamyl is considered a privileged structure in medicinal chemistry. It has a wide range of biological activities such as antimicrobial, anticancer, anti-epilepsy, for which the best evidence is a number of marketed carbamyl-containing drugs. Carbamyl is formed of primary amine and carbonyl moieties that act as hydrogen bond donors and hydrogen acceptors with residues of targets respectively, which are benefit for improving pharmacological activities. In other cases, the introduced carbamyl improves drug-like properties including oral bioavailability. In this review, we introduce the carbamyl-containing drugs and the application of carbamyl in structural optimization as a result of enhancing activities or/and drug-like properties.
Collapse
Affiliation(s)
- Kuanglei Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxi Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongqian Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yongshou Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
39
|
Fujita A, Kan-O K, Tonai K, Yamamoto N, Ogawa T, Fukuyama S, Nakanishi Y, Matsumoto K. Inhibition of PI3Kδ Enhances Poly I:C-Induced Antiviral Responses and Inhibits Replication of Human Metapneumovirus in Murine Lungs and Human Bronchial Epithelial Cells. Front Immunol 2020; 11:432. [PMID: 32218789 PMCID: PMC7079687 DOI: 10.3389/fimmu.2020.00432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Viral infections of the airway can exacerbate respiratory diseases, such as asthma or chronic obstructive pulmonary disease (COPD), and accelerate disease progression. Phosphoinositide 3-kinase (PI3K)δ, a class 1A PI3K, has been studied as a potential target for achieving anti-oncogenic and anti-inflammatory effects. However, the role of PI3Kδ in antiviral responses is poorly understood. Using a synthetic double-stranded RNA poly I:C and a selective PI3Kδ inhibitor IC87114, we investigated the role of PI3Kδ signaling in poly I:C-induced expression of the T lymphocyte-inhibitory molecule programmed death 1 ligand 1 (PD-L1), inflammatory responses and antiviral interferon (IFN) responses. C57BL/6N mice were treated with IC87114 or vehicle by intratracheal (i.t.) instillation followed by i.t. administration of poly I:C. Poly I:C increased PD-L1 expression on epithelial cells, lymphocytes, macrophages, and neutrophils in the lungs and IC87114 suppressed poly I:C-induced PD-L1 expression on epithelial cells and neutrophils possibly via inhibition of the Akt/mTOR signaling pathway. IC87114 also attenuated poly I:C-induced increases in numbers of total cells, macrophages, neutrophils and lymphocytes, as well as levels of KC, IL-6 and MIP-1β in bronchoalveolar lavage fluid. Gene expression of IFNβ, IFNλ2 and IFN-stimulated genes (ISGs) were upregulated in response to poly I:C and a further increase in gene expression was observed following IC87114 treatment. In addition, IC87114 enhanced poly I:C-induced phosphorylation of IRF3. We assessed the effects of IC87114 on human primary bronchial epithelial cells (PBECs). IC87114 decreased poly I:C-induced PD-L1 expression on PBECs and secretion of IL-6 and IL-8 into culture supernatants. IC87114 further enhanced poly I:C- induced increases in the concentrations of IFNβ and IFNλ1/3 in culture supernatants as well as upregulated gene expression of ISGs in PBECs. Similar results were obtained in PBECs transfected with siRNA targeting the PIK3CD gene encoding PI3K p110δ, and stimulated with poly I:C. In human metapneumovirus (hMPV) infection of PBECs, IC87114 suppressed hMPV-induced PD-L1 expression and reduced viral replication without changing the production levels of IFNβ and IFNλ1/3 in culture supernatants. These data suggest that IC87114 may promote virus elimination and clearance through PD-L1 downregulation and enhanced antiviral IFN responses, preventing prolonged lung inflammation, which exacerbates asthma and COPD.
Collapse
Affiliation(s)
- Akitaka Fujita
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, Japan
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Norio Yamamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Ogawa
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
40
|
Davies ER, Perotin JM, Kelly JFC, Djukanovic R, Davies DE, Haitchi HM. Involvement of the epidermal growth factor receptor in IL-13-mediated corticosteroid-resistant airway inflammation. Clin Exp Allergy 2020; 50:672-686. [PMID: 32096290 PMCID: PMC7317751 DOI: 10.1111/cea.13591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Effective treatment for severe asthma is a significant unmet need. While eosinophilic inflammation caused by type 2 cytokines is responsive to corticosteroid and biologic therapies, many severe asthmatics exhibit corticosteroid-unresponsive mixed granulocytic inflammation. OBJECTIVE Here, we tested the hypothesis that the pro-allergic cytokine, IL-13, can drive both corticosteroid-sensitive and corticosteroid-resistant responses. RESULTS By integration of in vivo and in vitro models of IL-13-driven inflammation, we identify a role for the epidermal growth factor receptor (EGFR/ERBB1) as a mediator of corticosteroid-unresponsive inflammation and bronchial hyperresponsiveness driven by IL-13. Topological data analysis using human epithelial transcriptomic data from the U-BIOPRED cohort identified severe asthma groups with features consistent with the presence of IL-13 and EGFR/ERBB activation, with involvement of distinct EGFR ligands. Our data suggest that IL-13 may play a dual role in severe asthma: on the one hand driving pathologic corticosteroid-refractory mixed granulocytic inflammation, but on the other hand underpinning beneficial epithelial repair responses, which may confound responses in clinical trials. CONCLUSION AND CLINICAL RELEVANCE Detailed dissection of those molecular pathways that are downstream of IL-13 and utilize the ERBB receptor and ligand family to drive corticosteroid-refractory inflammation should enhance the development of new treatments that target this sub-phenotype(s) of severe asthma, where there is an unmet need.
Collapse
Affiliation(s)
- Elizabeth R Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeanne-Marie Perotin
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Joanne F C Kelly
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Donna E Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
41
|
Transcriptomic changes during TGF-β-mediated differentiation of airway fibroblasts to myofibroblasts. Sci Rep 2019; 9:20377. [PMID: 31889146 PMCID: PMC6937312 DOI: 10.1038/s41598-019-56955-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Asthma is the most common chronic lung disease in children and young adults worldwide. Airway remodelling (including increased fibroblasts and myofibroblasts in airway walls due to chronic inflammation) differentiates asthmatic from non-asthmatic airways. The increase in airway fibroblasts and myofibroblasts occurs via epithelial to mesenchymal transition (EMT) where epithelial cells lose their tight junctions and are transdifferentiated to mesenchymal cells, with further increases in myofibroblasts occurring via fibroblast-myofibroblast transition (FMT). Transforming growth factor (TGF)-β is the central EMT- and FMT-inducing cytokine. In this study, we have used next generation sequencing to delineate the changes in the transcriptome induced by TGF-β treatment of WI-38 airway fibroblasts in both the short term and after differentiation into myofibroblasts, to gain an understanding of the contribution of TGF-β induced transdifferentiation to the asthmatic phenotype. The data obtained from RNAseq analysis was confirmed by quantitative PCR (qPCR) and protein expression investigated by western blotting. As expected, we found that genes coding for intermediates in the TGF-β signalling pathways (SMADs) were differentially expressed after TGF-β treatment, SMAD2 being upregulated and SMAD3 being downregulated as expected. Further, genes involved in cytoskeletal pathways (FN1, LAMA, ITGB1) were upregulated in myofibroblasts compared to fibroblasts. Importantly, genes that were previously shown to be changed in asthmatic lungs (ADAMTS1, DSP, TIMPs, MMPs) were similarly differentially expressed in myofibroblasts, strongly suggesting that TGF-β mediated differentiation of fibroblasts to myofibroblasts may underlie important changes in the asthmatic airway. We also identified new intermediates of signalling pathways (PKB, PTEN) that are changed in myofibroblasts compared to fibroblasts. We have found a significant number of genes that are altered after TGF-β induced transdifferentiation of WI-38 fibroblasts into myofibroblasts, many of which were expected or predicted. We also identified novel genes and pathways that were affected after TGF-β treatment, suggesting additional pathways are activated during the transition between fibroblasts and myofibroblasts and may contribute to the asthma phenotype.
Collapse
|
42
|
Synthesis and Evaluation of Novel 2H-Benzo[e]-[1,2,4]thiadiazine 1,1-Dioxide Derivatives as PI3Kδ Inhibitors. Molecules 2019; 24:molecules24234299. [PMID: 31775363 PMCID: PMC6930582 DOI: 10.3390/molecules24234299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
In previous work, we applied the rotation-limiting strategy and introduced a substituent at the 3-position of the pyrazolo [3,4-d]pyrimidin-4-amine as the affinity element to interact with the deeper hydrophobic pocket, discovered a series of novel quinazolinones as potent PI3Kδ inhibitors. Among them, the indole derivative 3 is one of the most selective PI3Kδ inhibitors and the 3,4-dimethoxyphenyl derivative 4 is a potent and selective dual PI3Kδ/γ inhibitor. In this study, we replaced the carbonyl group in the quinazolinone core with a sulfonyl group, designed a series of novel 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives as PI3Kδ inhibitors. After the reduction of nitro group in N-(2,6-dimethylphenyl)-2-nitrobenzenesulfonamide 5 and N-(2,6-dimethylphenyl)-2-nitro-5-fluorobenzenesulfonamide 6, the resulting 2-aminobenzenesulfonamides were reacted with trimethyl orthoacetate to give the 3-methyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives. After bromination of the 3-methyl group, the nucleophilic substitution with the 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine provided the respective iodide derivatives, which were further reacted with a series of arylboronic acids via Suzuki coupling to furnish the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives 15a-J and 16a-d. In agreement with the quinazolinone derivatives, the introduction of a 5-indolyl or 3,4-dimethoxyphenyl at the affinity pocket generated the most potent analogues 15a and 15b with the IC50 values of 217 to 266 nM, respectively. In comparison with the quinazolinone lead compounds 3 and 4, these 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives exhibited much decreased PI3Kδ inhibitory potency, but maintained the high selectivity over other PI3K isoforms. Unlike the quinazolinone lead compound 4 that was a dual PI3Kδ/γ inhibitor, the benzthiadiazine 1,1-dioxide 15b with the same 3,4-dimethoxyphenyl moiety was more than 21-fold selective over PI3Kγ. Moreover, the introducing of a fluorine atom at the 7-position of the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide core, in general, was not favored for the PI3Kδ inhibitory activity. In agreement with their high PI3Kδ selectivity, 15a and 15b significantly inhibited the SU-DHL-6 cell proliferation.
Collapse
|
43
|
Halder AK, Cordeiro MNDS. Development of Multi-Target Chemometric Models for the Inhibition of Class I PI3K Enzyme Isoforms: A Case Study Using QSAR-Co Tool. Int J Mol Sci 2019; 20:ijms20174191. [PMID: 31461863 PMCID: PMC6747073 DOI: 10.3390/ijms20174191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/12/2022] Open
Abstract
The present work aims at establishing multi-target chemometric models using the recently launched quantitative structure–activity relationship (QSAR)-Co tool for predicting the activity of inhibitor compounds against different isoforms of phosphoinositide 3-kinase (PI3K) under various experimental conditions. The inhibitors of class I phosphoinositide 3-kinase (PI3K) isoforms have emerged as potential therapeutic agents for the treatment of various disorders, especially cancer. The cell-based enzyme inhibition assay results of PI3K inhibitors were curated from the CHEMBL database. Factors such as the nature and mutation of cell lines that may significantly alter the assay outcomes were considered as important experimental elements for mt-QSAR model development. The models, in turn, were developed using two machine learning techniques as implemented in QSAR-Co: linear discriminant analysis (LDA) and random forest (RF). Both techniques led to models with high accuracy (ca. 90%). Several molecular fragments were extracted from the current dataset, and their quantitative contributions to the inhibitory activity against all the proteins and experimental conditions under study were calculated. This case study also demonstrates the utility of QSAR-Co tool in solving multi-factorial and complex chemometric problems. Additionally, the combination of different in silico methods employed in this work can serve as a valuable guideline to speed up early discovery of PI3K inhibitors.
Collapse
Affiliation(s)
- Amit Kumar Halder
- Department of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal
| | | |
Collapse
|
44
|
Abstract
Current management of severe asthma relying either on guidelines (bulk approach) or on disease phenotypes (stratified approach) did not improve the burden of the disease. Several severe phenotypes are described: clinical, functional, morphological, inflammatory, molecular and microbiome-related. However, phenotypes do not necessarily relate to or give insights into the underlying pathogenetic mechanisms which are described by the disease endotypes. Based on the major immune-inflammatory pathway involved type-2 high, type-2 low and mixed endotypes are described for severe asthma, with several shared pathogenetic pathways such as genetic and epigenetic, metabolic, neurogenic and remodelling subtypes. The concept of multidimensional endotyping as un unbiased approach to severe asthma is discussed, together with new tools and targets facilitating the shift from the stratified to the precision medicine approach.
Collapse
|
45
|
Liu JH, Li C, Zhang CH, Zhang ZH. LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology 2019; 26:18-26. [PMID: 31412983 DOI: 10.1016/j.pulmoe.2019.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/03/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Asthma, a common chronic inflammatory disease, is treated with corticosteroid in most cases, but corticosteroid resistance in severe asthma patients seriously impairs the therapeutic effects. LncRNA-CASC7 inhibits cell proliferation and enhances drug sensitivity, but the molecular mechanisms of corticosteroid resistance in severe asthma are still unknown. METHODS Airway smooth muscle cells (ASMCs) from healthy and severe asthmatic subjects were used in this study. The expression of CASC7 and miR-21 were modified by transfection with the pcDNA3.1-CASC7, miR-21 mimics and inhibitor. MTT assay was conducted to measure cell proliferation. ELISA assay was used to determine the secretion of CCL5, CCL11 and IL-6. The phosphorylation of glucocorticoid receptor (GR) and the PI3K/AKT signaling were assessed by western blotting assays. qRT-PCR was used to analyze the expression of CASC7, miR-21 and PTEN. Dual-luciferase reporter assay was used to assess the interaction among CASC7, miR-21 and PTEN. RESULTS Compared with AMSCs from severe asthma patients, dexamethasone inhibited cytokines (CCL5, CCL11 and IL-6) and promoted the phosphorylation of GR more significantly in normal AMSCs. CASC7 expression was suppressed while miR-21 expression and AKT activity were promoted in ASMCs from severe asthma patients. CASC7 promoted PTEN expression via directly inhibiting miR-21 expression. Overexpression of CASC7 suppressed the PI3K/AKT signaling pathway and promoted the inhibition effects of dexamethasone on cell proliferation and cytokines secretion via targeting miR-21. CONCLUSION CASC7 increased corticosteroid sensitivity by inhibiting the PI3K/AKT signaling pathway via targeting miR-21, which provided a promising potential target for designing novel therapeutic strategy for severe asthma.
Collapse
Affiliation(s)
- Jian-Hua Liu
- The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, PR China
| | - Chen Li
- The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, PR China
| | - Chang-Hong Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, PR China
| | - Zhi-Hua Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, PR China.
| |
Collapse
|
46
|
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma. Am J Physiol Lung Cell Mol Physiol 2019; 316:L843-L868. [PMID: 30810068 PMCID: PMC6589583 DOI: 10.1152/ajplung.00416.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Severe asthma develops as a result of heightened, persistent symptoms that generally coincide with pronounced neutrophilic airway inflammation. In individuals with severe asthma, symptoms are poorly controlled by high-dose inhaled glucocorticoids and often lead to elevated morbidity and mortality rates that underscore the necessity for novel drug target identification that overcomes limitations in disease management. Many incidences of severe asthma are mechanistically associated with T helper 17 (TH17) cell-derived cytokines and immune factors that mediate neutrophilic influx to the airways. TH17-secreted interleukin-17A (IL-17A) is an independent risk factor for severe asthma that impacts airway smooth muscle (ASM) remodeling. TH17-derived cytokines and diverse immune mediators further interact with structural cells of the airway to induce pathophysiological processes that impact ASM functionality. Transforming growth factor-β1 (TGF-β1) is a pivotal mediator involved in airway remodeling that correlates with enhanced TH17 activity in individuals with severe asthma and is essential to TH17 differentiation and IL-17A production. IL-17A can also reciprocally enhance activation of TGF-β1 signaling pathways, whereas combined TH1/TH17 or TH2/TH17 immune responses may additively impact asthma severity. This review seeks to provide a comprehensive summary of cytokine-driven T cell fate determination and TH17-mediated airway inflammation. It will further review the evidence demonstrating the extent to which IL-17A interacts with various immune factors, specifically TGF-β1, to contribute to ASM remodeling and altered function in TH17-driven endotypes of severe asthma.
Collapse
Affiliation(s)
- Jon M Evasovic
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
47
|
Yin Y, Hu JQ, Wu X, Sha S, Wang SF, Qiao F, Song ZC, Zhu HL. Design, synthesis and biological evaluation of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates containing sulfonamido as potential PI3Kα inhibitors. Bioorg Med Chem 2019; 27:2261-2267. [PMID: 31029551 DOI: 10.1016/j.bmc.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 01/21/2023]
Abstract
A series of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates contained sulfonamido were designed and synthesized, and their anticancer effects in vitro was evaluated to develop some new PI3Kα inhibitors. Most of desired compounds exhibited the better antiproliferative activities against four cancer cell lines than that of LY294002. Out of them, compound 4o displayed the potent antiproliferative activity and high selectivity against the PI3Kα protein and it can induce apoptosis of HCT116 in a dose-dependent manner. Western blot assay indicated that compound 4o obviously down-regulated expression of p-Akt (S473). Molecular docking was performed to clarify the possible binding mode between compound 4o and PI3Kα. All these results indicated that compound 4o could be a potential inhibitor of PI3Kα.
Collapse
Affiliation(s)
- Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jia-Qin Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China; The Joint Research Centre of Gene Interference, Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, 230 Waihuan West Road, Guangzhou 510006, People's Republic of China
| | - Xu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shao Sha
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - She-Feng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Fang Qiao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhong-Cheng Song
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Rd., Changzhou, Jiangsu 213001, People's Republic of China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
48
|
Miller MS, Thompson PE, Gabelli SB. Structural Determinants of Isoform Selectivity in PI3K Inhibitors. Biomolecules 2019; 9:biom9030082. [PMID: 30813656 PMCID: PMC6468644 DOI: 10.3390/biom9030082] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are important therapeutic targets for the treatment of cancer, thrombosis, and inflammatory and immune diseases. The four highly homologous Class I isoforms, PI3K, PI3K, PI3K and PI3K have unique, non-redundant physiological roles and as such, isoform selectivity has been a key consideration driving inhibitor design and development. In this review, we discuss the structural biology of PI3Ks and how our growing knowledge of structure has influenced the medicinal chemistry of PI3K inhibitors. We present an analysis of the available structure-selectivity-activity relationship data to highlight key insights into how the various regions of the PI3K binding site influence isoform selectivity. The picture that emerges is one that is far from simple and emphasizes the complex nature of protein-inhibitor binding, involving protein flexibility, energetics, water networks and interactions with non-conserved residues.
Collapse
Affiliation(s)
- Michelle S Miller
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Departments of Medicine, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Perry MWD, Abdulai R, Mogemark M, Petersen J, Thomas MJ, Valastro B, Westin Eriksson A. Evolution of PI3Kγ and δ Inhibitors for Inflammatory and Autoimmune Diseases. J Med Chem 2018; 62:4783-4814. [DOI: 10.1021/acs.jmedchem.8b01298] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Raolat Abdulai
- Respiratory, Inflammation & Autoimmunity Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts 02451, United States
- Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
50
|
Garces AE, Stocks MJ. Class 1 PI3K Clinical Candidates and Recent Inhibitor Design Strategies: A Medicinal Chemistry Perspective. J Med Chem 2018; 62:4815-4850. [DOI: 10.1021/acs.jmedchem.8b01492] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Aimie E. Garces
- Centre for Biomolecular Sciences, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Michael J. Stocks
- Centre for Biomolecular Sciences, University Park Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|