1
|
Sun J, Zhao N, Zhang R, Li Y, Yu T, Nong Q, Lin L, Yang X, Luan T, Chen B, Huang Y. Metabolic landscape of human alveolar type II epithelial cells undergoing epithelial-mesenchymal transition induced directly by silica exposure. J Environ Sci (China) 2025; 149:676-687. [PMID: 39181677 DOI: 10.1016/j.jes.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 08/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays an irreplaceable role in the development of silicosis. However, molecular mechanisms of EMT induced by silica exposure still remain to be addressed. Herein, metabolic profiles of human alveolar type II epithelial cells (A549 cells) exposed directly to silica were characterized using non-targeted metabolomic approaches. A total of 84 differential metabolites (DMs) were identified in silica-treated A549 cells undergoing EMT, which were mainly enriched in metabolisms of amino acids (e.g., glutamate, alanine, aspartate), purine metabolism, glycolysis, etc. The number of DMs identified in the A549 cells obviously increased with the elevated exposure concentration of silica. Remarkably, glutamine catabolism was significantly promoted in the silica-treated A549 cells, and the levels of related metabolites (e.g., succinate) and enzymes (e.g., α-ketoglutarate (α-KG) dehydrogenase) were substantially up-regulated, with a preference to α-KG pathway. Supplementation of glutamine into the cell culture could substantially enhance the expression levels of both EMT-related markers and Snail (zinc finger transcription factor). Our results suggest that the EMT of human alveolar epithelial cells directly induced by silica can be essential to the development of silicosis.
Collapse
Affiliation(s)
- Jin Sun
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Ruijia Zhang
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Yizheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 540080, China
| | - Qiying Nong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Li Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xubin Yang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China.
| |
Collapse
|
2
|
Wang J, Zhang X, Zhan S, Han F, Wang Q, Liu Y, Huang Z. Possible Metabolic Remodeling based on de novo Biosynthesis of L-serine in Se-Subtoxic or -Deficient Mammals. J Nutr 2025; 155:9-26. [PMID: 39477017 DOI: 10.1016/j.tjnut.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Current research studies point to an increased risk of diabetes with selenium (Se) intake beyond the physiological requirement used to prevent cancers. The existing hypothesis of "selenoprotein overexpression leads to intracellular redox imbalance" cannot clearly explain the U-shaped dose-effect relationship between Se intake and the risk of diabetes. In this review, it is speculated that metabolic remodeling based on the de novo biosynthesis of L-serine may occur in mammals at supranutritional or subtoxic levels of Se. It is also speculated that a large amount of L-serine is consumed by the body during insufficient Se intake, thus resulting in similar metabolic reprogramming. The increase in atypical ceramide and its derivatives due to the lack of L-serine may also play a role in the development of diabetes.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xue Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China; Key Laboratory of Public Nutrition and Health, National Health Commission, Beijing, PR China.
| |
Collapse
|
3
|
Miguel V, Shaw IW, Kramann R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol 2025; 21:39-56. [PMID: 39289568 DOI: 10.1038/s41581-024-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac W Shaw
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Huang J, Wang X, Zeng Y, Xu H, Zhang S, Ding Z, Guo R. Identification of key mitochondria-related genes and their potential crosstalk role with immune pattern in Idiopathic pulmonary fibrosis. Gene 2024; 930:148840. [PMID: 39147114 DOI: 10.1016/j.gene.2024.148840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) stands out as a life-threatening and one of the most severe interstitial lung diseases. The pathogenesis of IPF is not fully understood, while recent studies have highlighted the association of mitochondrial dysfunction with IPF. This study is dedicated to pinpointing crucial genes related to mitochondria that potentially impact the advancement of IPF, thereby offering new perspectives on the pathogenesis of this condition. METHODS The Gene Expression Omnibus (GEO) database was utilized to download three datasets (GSE32537, GSE92592, and GSE150910), following which a comprehensive analysis was conducted to identify differentially expressed mitochondria-related genes (DEMTRGs) in the IPF lung tissues. Subsequently, GO and KEGG enrichment analysis of the DEMTRGs was performed. Next, external datasets and in vivo experiments were performed to validate their expression. Additionally, a Logistic regression model based on key DEMTRGs was constructed, and the model's ability to distinguish between IPF and controls was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). Finally, gene set enrichment analysis (GSEA) and CIBERSORT algorithm were conducted. RESULTS We identified five key DEMTRGs (ALDH18A1, ALDH1B1, MCCC1, ACAT1, and PDHA1), ALDH18A1 and ALDH1B1 exhibited upregulated expression levels, whereas MCCC1, ACAT1, and PDHA1 showed downregulation in the lung tissue of individuals with IPF. The expression levels of these key DEMTRGs were validated by an independent external dataset (GSE53845) and the bleomycin-induced pulmonary fibrosis mice. In addition, the ROCs indicated that the diagnostic model constructed based on key DEMTRGs could effectively distinguish between IPF and controls (AUC>0.8). GSEA analysis and immune-related analysis shed light on the potential mechanisms through which these key DEMTRGs influence IPF. CONCLUSION Our research has pinpointed key genes associated with mitochondria that may ultimately contribute to the progression of IPF by exerting regulatory effects on mitochondrial function, thereby influencing multiple cellular processes.
Collapse
Affiliation(s)
- Jun Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Huilin Xu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Siyi Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhigang Ding
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
5
|
Mlawer SJ, Pinto FR, Sikes KJ, Connizzo BK. Coordination of Glucose and Glutamine Metabolism in Tendon is Lost in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629426. [PMID: 39763790 PMCID: PMC11702705 DOI: 10.1101/2024.12.19.629426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tendinopathy is an age-associated degenerative disease characterized by a loss in extracellular matrix (ECM). Since glucose and glutamine metabolism is critical to amino acid synthesis and known to be altered in aging, we sought to investigate if age-related changes in metabolism are linked to changes in ECM remodeling. We exposed young and aged tendon explants to various concentrations of glucose and glutamine to observe changes in metabolic processing (enzyme levels, gene expression, etc.) and matrix biosynthesis. Interestingly, we found that glutamine processing is affected by glucose levels, but this effect was lost with aging. ECM synthesis was altered in a protein-dependent manner by increased glucose and glutamine levels in young tendons. However, these changes were not conserved in aged tendons. Overall, our work suggests that glucose and glutamine metabolism is important for ECM homeostasis, and age-related changes in nutrient metabolism could be a key driver of tendon degeneration.
Collapse
Affiliation(s)
- Samuel J. Mlawer
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| | - Felicia R. Pinto
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| | - Katie J. Sikes
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brianne K. Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
6
|
Zhao Y, Shi Y, Zhang J, Zhang H, Wang Z, Wu S, Zhang M, Liu M, Ye X, Gu H, Jiang C, Ye X, Zhu H, Li Q, Huang X, Cao M. The potential lipid biomarker 5-HETE for acute exacerbation identified by metabolomics in patients with idiopathic pulmonary fibrosis. Respirology 2024. [PMID: 39681341 DOI: 10.1111/resp.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Acute exacerbation (AE) is often the fatal complication of idiopathic pulmonary fibrosis (IPF). Emerging evidence indicates that metabolic reprogramming and dysregulation of lipid metabolism are distinctive characteristics of IPF. However, the lipid metabolic mechanisms that underlie the pathophysiology of AE-IPF remain elusive. METHODS Serum samples for pilot study were collected from 34 Controls, 37 stable IPF (S-IPF) cases and 41 AE-IPF patients. UHPLC-MS/MS was utilized to investigate metabolic variations and identify lipid biomarkers in serum. ELISA, quantitative PCR and western blot were employed to validate the identified biomarkers. RESULTS There were 32 lipid metabolites and 5 lipid metabolism pathways enriched in all IPF patients compared to Controls. In AE-IPF versus S-IPF, 19 lipid metabolites and 12 pathways were identified, with 5-hydroxyeicosatetraenoic Acid (5-HETE) significantly elevated in AE-IPF. Both in internal and external validation cohorts, the serum levels of 5-HETE were significantly elevated in AE-IPF patients compared to S-IPF subjects. Consequently, the indicators related to 5-HETE in lipid metabolic pathway were significantly changed in AE-IPF patients compared with S-IPF cases in the lung tissues. The serum level of 5-HETE was significantly correlated with the disease severity (CT score and PaO2/FiO2 ratio) and survival time. Importantly, the receiver operating characteristic (ROC) curve, Kaplan-Meier analysis and Multivariate Cox regression analysis demonstrated that 5-HETE represents a promising lipid biomarker for the diagnosis and prognosis of AE-IPF. CONCLUSION Our study highlights lipid reprogramming as a novel therapeutic approach for IPF, and 5-HETE may be a potential biomarker of AE-IPF patients.
Collapse
Affiliation(s)
- Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ji Zhang
- Department of Lung Transplant, The First Affiliated Hospital College of Medicine, Zhejiang University, Hangzhou, China
| | - Huizhe Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
7
|
Zhang X, Zeng Y, Ying H, Hong Y, Xu J, Lin R, Chen Y, Wu X, Cai W, Xia Z, Zhao Q, Wang Y, Zhou R, Zhu D, Yu F. AdipoRon mitigates liver fibrosis by suppressing serine/glycine biosynthesis through ATF4-dependent glutaminolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117511. [PMID: 39662457 DOI: 10.1016/j.ecoenv.2024.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
AdipoRon has been validated for its ability to reverse liver fibrosis, yet the underlying mechanisms remain to be thoroughly investigated. Collagen, predominantly synthesized and secreted in hepatic stellate cells (HSCs), relies on glycine as a crucial constituent. Activating transcription factor 4 (ATF4) serves as a pivotal transcriptional regulator in amino acid metabolism. Therefore, our objective is to explore the impact of AdipoRon on ATF4-mediated endoplasmic reticulum stress and amino acid metabolism in HSCs. We induced liver fibrosis in mice through intraperitoneal injection of CCl4 and administered AdipoRon (50 mg/kg) via gavage. In vitro studies were predominantly conducted using LX-2 cells. Our findings demonstrated that AdipoRon effectively suppressed ATF4-mediated endoplasmic reticulum stress in HSCs and assumed a crucial role in hindering serine/glycine biosynthesis. Interestingly, this inhibitory effect of AdipoRon on serine/glycine biosynthesis is regulated by PSAT1-mediated glutaminolysis, resulting in a subsequent decrease in collagen synthesis within HSCs. This study provides potential mechanistic insights into the treatment of liver fibrosis with AdipoRon.
Collapse
Affiliation(s)
- Xiangting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiya Ying
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwen Hong
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Chen
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weimin Cai
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziqiang Xia
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixiao Wang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruoru Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Mahout M, Schwartz L, Attal R, Bakkar A, Peres S. Metabolic modelling links Warburg effect to collagen formation, angiogenesis and inflammation in the tumoral stroma. PLoS One 2024; 19:e0313962. [PMID: 39625899 PMCID: PMC11614220 DOI: 10.1371/journal.pone.0313962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer cells are known to express the Warburg effect-increased glycolysis and formation of lactic acid even in the presence of oxygen-as well as high glutamine uptake. In tumors, cancer cells are surrounded by collagen, immune cells, and neoangiogenesis. Whether collagen formation, neoangiogenesis, and inflammation in cancer are associated with the Warburg effect needs to be established. Metabolic modelling has proven to be a tool of choice to understand biological reality better and make in silico predictions. Elementary Flux Modes (EFMs) are essential for conducting an unbiased decomposition of a metabolic model into its minimal functional units. EFMs can be investigated using our tool, aspefm, an innovative approach based on logic programming where biological constraints can be incorporated. These constraints allow networks to be characterized regardless of their size. Using a metabolic model of the human cell containing collagen, neoangiogenesis, and inflammation markers, we derived a subset of EFMs of biological relevance to the Warburg effect. Within this model, EFMs analysis provided more adequate results than parsimonious flux balance analysis and flux sampling. Upon further inspection, the EFM with the best linear regression fit to cancer cell lines exometabolomics data was selected. The minimal pathway, presenting the Warburg effect, collagen synthesis, angiogenesis, and release of inflammation markers, showed that collagen production was possible directly de novo from glutamine uptake and without extracellular import of glycine and proline, collagen's main constituents.
Collapse
Affiliation(s)
- Maxime Mahout
- CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Universite Paris-Saclay, Orsay, France
- INRIA Lyon Centre, Villeurbanne, France
| | | | - Romain Attal
- Cité des Sciences et de l’Industrie, Paris, France
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Sabine Peres
- UMR CNRS 5558, Laboratoire de Biométrie et de Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne, France
- INRIA Lyon Centre, Villeurbanne, France
| |
Collapse
|
9
|
Bøgh N, Bertelsen LB, Rasmussen CW, Bech SK, Keller AK, Madsen MG, Harving F, Thorsen TH, Mieritz IK, Hansen ES, Wanders A, Laustsen C. Metabolic MRI With Hyperpolarized 13 C-Pyruvate for Early Detection of Fibrogenic Kidney Metabolism. Invest Radiol 2024; 59:813-822. [PMID: 38913443 DOI: 10.1097/rli.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
OBJECTIVES Fibrosis is the final common pathway for chronic kidney disease and the best predictor for disease progression. Besides invasive biopsies, biomarkers for its detection are lacking. To address this, we used hyperpolarized 13 C-pyruvate MRI to detect the metabolic changes associated with fibrogenic activity of myofibroblasts. MATERIALS AND METHODS Hyperpolarized 13 C-pyruvate MRI was performed in 2 pig models of kidney fibrosis (unilateral ureteral obstruction and ischemia-reperfusion injury). The imaging data were correlated with histology, biochemical, and genetic measures of metabolism and fibrosis. The porcine experiments were supplemented with cell-line experiments to inform the origins of metabolic changes in fibrogenesis. Lastly, healthy and fibrotic human kidneys were analyzed for the metabolic alterations accessible with hyperpolarized 13 C-pyruvate MRI. RESULTS In the 2 large animal models of kidney fibrosis, metabolic imaging revealed alterations in amino acid metabolism and glycolysis. Conversion from hyperpolarized 13 C-pyruvate to 13 C-alanine decreased, whereas conversion to 13 C-lactate increased. These changes were shown to reflect profibrotic activity in cultured epithelial cells, macrophages, and fibroblasts, which are important precursors of myofibroblasts. Importantly, metabolic MRI using hyperpolarized 13 C-pyruvate was able to detect these changes earlier than fibrosis-sensitive structural imaging. Lastly, we found that the same metabolic profile is present in fibrotic tissue from human kidneys. This affirms the translational potential of metabolic MRI as an early indicator of fibrogenesis associated metabolism. CONCLUSIONS Our findings demonstrate the promise of hyperpolarized 13 C-pyruvate MRI for noninvasive detection of fibrosis development, which could enable earlier diagnosis and intervention for patients at risk of kidney fibrosis.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- From the MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (N.B., L.B.B., C.W.R., S.K.B., T.H.T., I.K.M., E.S.S.H., C.L.); Department of Urology, Aarhus University Hospital, Aarhus, Denmark (A.K.K., M.G.M.); and Department of Pathology, Aalborg University Hospital, Aalborg, Denmark (F.H., A.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu X, Wu Y, Liu Y, Qian W, Huang L, Wu Y, Ke B. UPLC-MS/MS-based serum metabolomics analysis for comprehensive pathological myopia profiling. Exp Eye Res 2024; 251:110152. [PMID: 39603320 DOI: 10.1016/j.exer.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Pathological myopia (PM) is associated with ocular morbidities that cause blindness. PM often occurs in eyes with high myopia (HM) while they are distinctly different. Identifying the differences in metabolites and metabolic pathways between patients with PM and HM may provide information about the pathogenesis of PM, which is currently unknown. This study aimed to reveal the comprehensive metabolic alterations associated with PM. Thirty patients with PM, 27 with simple HM and 27 with low myopia (LM) were enrolled in this study. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed, and a Venn diagram was generated to explore the overlapping differential metabolites and enriched pathways between each set of two groups. The area under the receiver operating characteristic curve (AUC) was computed to assess the discrimination capacity of each metabolite marker. A total of 134, 125 and 81 differential metabolites were identified in each comparison. Thirty-two differential metabolites were overlapped between the PM vs HM comparison and the PM vs LM comparison. Of these 32 metabolites, 16 were common to all three comparisons; among these metabolites, high levels of 4-hydroxy-l-glutamic acid and low levels of succinic semialdehyde and 2,3-dinor-8-iso prostaglandin F2α appeared to be risk factors for PM. The remaining 16 metabolites were shared only between the PM versus HM and PM versus LM comparisons, most of which are lipid molecules. Pathway analysis revealed that alanine, aspartate and glutamate metabolism was the key metabolic pathway altered in PM patients. Overall, significant differences in the metabolites and metabolic pathways were observed in patients with PM. The metabolic differences identified in this study included differential factors between PM and HM patients, addressing current gaps in PM research. These findings provide a novel perspective of the molecular mechanism of PM.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yuying Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Wenzhe Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Liandi Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yixiang Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China; Department of Ophthalmology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
11
|
Zhang HY, Shu YQ, Li Y, Hu YL, Wu ZH, Li ZP, Deng Y, Zheng ZJ, Zhang XJ, Gong LF, Luo Y, Wang XY, Li HP, Liao XP, Li G, Ren H, Qiu W, Sun J. Metabolic disruption exacerbates intestinal damage during sleep deprivation by abolishing HIF1α-mediated repair. Cell Rep 2024; 43:114915. [PMID: 39527478 DOI: 10.1016/j.celrep.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep deprivation (SD) has been reported to induce intestinal damage by several mechanisms, yet its role in modulating epithelial repair remains unclear. In this study, we find that chronic SD leads to colonic damage through continuous hypoxia. However, HIF1α, which generally responds to hypoxia to modulate barrier integrity, was paradoxically dysregulated in the colon. Further investigation revealed that a metabolic disruption during SD causes accumulation of α-ketoglutarate in the colon. The excessive α-ketoglutarate degrades HIF1α protein through PHD2 (prolyl hydroxylase 2) to abolish the intestinal repair functions of HIF1α. Collectively, these findings provide insights into how SD can exacerbate intestinal damage by fine-tuning metabolism to abolish HIF1α-mediated repair.
Collapse
Affiliation(s)
- Hai-Yi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Qing Shu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China
| | - Yan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Lin Hu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Hong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yao Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liu-Fei Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gong Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
12
|
Hamanaka RB, Shin KWD, Atalay MV, Cetin-Atalay R, Shah H, Houpy Szafran JC, Woods PS, Meliton AY, Shamaa OR, Tian Y, Cho T, Mutlu GM. Role of Arginine and its Metabolism in TGF-β-Induced Activation of Lung Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.618293. [PMID: 39554075 PMCID: PMC11565920 DOI: 10.1101/2024.11.01.618293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to TGF-β-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we used metabolic dropouts and labeling strategies to determine how activated fibroblasts utilize arginine. We found that arginine limitation leads to activation of GCN2 while inhibiting TGF-β-induced mTORC1 activation and collagen protein production. Extracellular citrulline could rescue the effect of arginine deprivation in an ASS1-dependent manner. Using metabolic tracers of arginine and its precursors, we found little evidence of arginine synthesis or catabolism in lung fibroblasts treated with TGF-β. Extracellular ornithine or glutamine were the primary sources of ornithine and polyamines, not arginine. Our findings suggest that the major role for arginine in lung fibroblasts is for charging of arginyl-tRNAs and for promotion of mTOR signaling. Highlights Arginine depletion inhibits TGF-β-induced transcription in human lung fibroblasts (HLFs).Arginine is not significantly catabolized in HLFs either through NOS or ARG dependent pathways.Extracellular glutamine and ornithine are the primary sources of polyamines in lung fibroblasts.The primary role of arginine in lung fibroblasts is for signaling through mTOR and GNC2.
Collapse
|
13
|
Guillard J, Schwörer S. Metabolic control of collagen synthesis. Matrix Biol 2024; 133:43-56. [PMID: 39084474 PMCID: PMC11402592 DOI: 10.1016/j.matbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The extracellular matrix (ECM) is present in all tissues and crucial in maintaining normal tissue homeostasis and function. Defects in ECM synthesis and remodeling can lead to various diseases, while overproduction of ECM components can cause severe conditions like organ fibrosis and influence cancer progression and therapy resistance. Collagens are the most abundant core ECM proteins in physiological and pathological conditions and are predominantly synthesized by fibroblasts. Previous efforts to target aberrant collagen synthesis in fibroblasts by inhibiting pro-fibrotic signaling cascades have been ineffective. More recently, metabolic rewiring downstream of pro-fibrotic signaling has emerged as a critical regulator of collagen synthesis in fibroblasts. Here, we propose that targeting the metabolic pathways involved in ECM biomass generation provides a novel avenue for treating conditions characterized by excessive collagen accumulation. This review summarizes the unique metabolic challenges collagen synthesis imposes on fibroblasts and discusses how underlying metabolic networks could be exploited to create therapeutic opportunities in cancer and fibrotic disease. Finally, we provide a perspective on open questions in the field and how conceptual and technical advances will help address them to unlock novel metabolic vulnerabilities of collagen synthesis in fibroblasts and beyond.
Collapse
Affiliation(s)
- Julien Guillard
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Simon Schwörer
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA; Committee on Cancer Biology, Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
14
|
Wang W, Dai R, Cheng M, Chen Y, Gao Y, Hong X, Zhang W, Wang Y, Zhang L. Metabolic reprogramming and renal fibrosis: what role might Chinese medicine play? Chin Med 2024; 19:148. [PMID: 39465434 PMCID: PMC11514863 DOI: 10.1186/s13020-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic reprogramming is a pivotal biological process in which cellular metabolic patterns change to meet the energy demands of increased cell growth and proliferation. In this review, we explore metabolic reprogramming and its impact on fibrotic diseases, providing a detailed overview of the key processes involved in the metabolic reprogramming of renal fibrosis, including fatty acid decomposition and synthesis, glycolysis, and amino acid catabolism. In addition, we report that Chinese medicine ameliorates renal inflammation, oxidative stress, and apoptosis in chronic kidney disease by regulating metabolic processes, thereby inhibiting renal fibrosis. Furthermore, we reveal that multiple targets and signaling pathways contribute to the metabolic regulatory effects of Chinese medicine. In summary, this review aims to elucidate the mechanisms by which Chinese medicine inhibits renal fibrosis through the remodeling of renal cell metabolic processes, with the goal of discovering new therapeutic drugs for treating renal fibrosis.
Collapse
Affiliation(s)
- Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yilin Gao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Hong
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| |
Collapse
|
15
|
Liang B, Lin W, Tang Y, Li T, Chen Q, Zhang W, Zhou X, Ma J, Liu B, Yu Z, Zha L, Zhang M. Selenium supplementation elevated SELENBP1 to inhibit fibroblast activation in pulmonary arterial hypertension. iScience 2024; 27:111036. [PMID: 39435142 PMCID: PMC11492086 DOI: 10.1016/j.isci.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease induced by abnormal activation of pulmonary adventitial fibroblasts (PAFs) in the early stage. The association between selenium deficiency and PAH is not yet fully understood. In this study, we found that the serum selenium content of PAH patients was significantly lower than that of healthy volunteers in two independent cohorts. Moreover, PAH patients with lower selenium levels may present poorer prognosis. Prophylactic selenium supplementation could effectively improve hemodynamics and pulmonary vascular remodeling in monocrotaline-induced pulmonary hypertension rat models. Mechanistically, selenium supplementation restored the level of selenium binding protein 1 (SELENBP1) which could exert an antagonistic effect on PAF activation. The rescue assay further proved that selenium supplementation worked in a SELENBP1-dependent manner. These findings demonstrated that selenium deficiency is an important risk factor in PAH, and the selenium-SELENBP1 axis represents a promising target for PAH prevention.
Collapse
Affiliation(s)
- Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenchao Lin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tangzhiming Li
- Department of Cardiology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Qin Chen
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Zhang
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Zhou
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiayao Ma
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boqing Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqiu Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Zhan J, Jarrell ZR, Hu X, Weinberg J, Orr M, Marts L, Jones DP, Go YM. A pilot metabolomics study across the continuum of interstitial lung disease fibrosis severity. Physiol Rep 2024; 12:e70093. [PMID: 39424430 PMCID: PMC11489002 DOI: 10.14814/phy2.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Interstitial lung diseases (ILDs) include a variety of inflammatory and fibrotic pulmonary conditions. This study employs high-resolution metabolomics (HRM) to explore plasma metabolites and pathways across ILD phenotypes, including non-fibrotic ILD, idiopathic pulmonary fibrosis (IPF), and non-IPF fibrotic ILD. The study used 80 plasma samples for HRM, and involved linear trend and group-wise analyses of metabolites altered in ILD phenotypes. We utilized limma one-way ANOVA and mummichog algorithms to identify differences in metabolites and pathways across ILD groups. Then, we focused on metabolites within critical pathways, indicated by high pathway overlap sizes and low p-values, for further analysis. Targeted HRM identified putrescine, hydroxyproline, prolyl-hydroxyproline, aspartate, and glutamate with significant linear increases in more fibrotic ILD phenotypes, suggesting their role in ILD fibrogenesis. Untargeted HRM highlighted pathway alterations in lysine, vitamin D3, tyrosine, and urea cycle metabolism, all associated with pulmonary fibrosis. In addition, methylparaben level had a significantly increasing linear trend and was higher in the IPF than fibrotic and non-ILD groups. This study highlights the importance of specific amino acids, metabolic pathways, and xenobiotics in the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiada Zhan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Xin Hu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jaclyn Weinberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Lucian Marts
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Gan PXL, Zhang S, Fred Wong WS. Targeting reprogrammed metabolism as a therapeutic approach for respiratory diseases. Biochem Pharmacol 2024; 228:116187. [PMID: 38561090 DOI: 10.1016/j.bcp.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid β-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Shanshan Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
18
|
Huo C, Jiao X, Wang Y, Jiang Q, Ning F, Wang J, Jia Q, Zhu Z, Tian L. Silica aggravates pulmonary fibrosis through disrupting lung microbiota and amino acid metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174028. [PMID: 38889818 DOI: 10.1016/j.scitotenv.2024.174028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Silicosis, recognized as a severe global public health issue, is an irreversible pulmonary fibrosis caused by the long-term inhalation of silica particles. Given the intricate pathogenesis of silicosis, there is no effective intervention measure, which poses a severe threat to public health. Our previous study reported that dysbiosis of lung microbiota is associated with the development of pulmonary fibrosis, potentially involving the lipopolysaccharides/toll-like receptor 4 pathway. Similarly, the process of pulmonary fibrosis is accompanied by alterations in metabolic pathways. This study employed a combined approach of 16S rDNA sequencing and metabolomic analysis to investigate further the role of lung microbiota in silicosis delving deeper into the potential pathogenesis of silicosis. Silica exposure can lead to dysbiosis of the lung microbiota and the occurrence of pulmonary fibrosis, which was alleviated by a combination antibiotic intervention. Additionally, significant metabolic disturbances were found in silicosis, involving 85 differential metabolites among the three groups, which are mainly focused on amino acid metabolic pathways. The changed lung metabolites showed a substantial correlation with lung microbiota. The relative abundance of Pseudomonas negatively correlated with L-Aspartic acid, L-Glutamic acid, and L-Threonine levels. These results indicate that dysbiosis in pulmonary microbiota exacerbates silica-induced fibrosis through impacts on amino acid metabolism, providing new insights into the potential mechanisms and interventions of silicosis.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuao Ning
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Kim H, Kwak I, Kim M, Um J, Lee S, Chung B, Park C, Won J, Kim H. Evaluation of a Cosmetic Formulation Containing Arginine Glutamate in Patients with Burn Scars: A Pilot Study. Pharmaceutics 2024; 16:1283. [PMID: 39458612 PMCID: PMC11510376 DOI: 10.3390/pharmaceutics16101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Patients with burn scars require effective treatments able to alleviate dry skin and persistent itching. Ion pairing has been employed in cosmetic formulations to enhance solubility in solvents and improve skin permeability. To evaluate the efficacy and safety of the cosmetic formula "RE:pair (arginine-glutamate ion pair)", we analyzed scar size, itching and pain, skin barrier function, scar scale evaluation, and satisfaction in our study participants. Methods: A total of 10 patients were recruited, and the formula was used twice a day for up to 4 weeks. Results: Itching was significantly alleviated after 4 weeks of treatment (95% CI = -0.11-1.71) compared to before application (95% CI = 2.11-4.68). Transepidermal water loss (TEWL) showed an 11% improvement after 4 weeks (95% CI = 3.43-8.83) compared to before application (95% CI = 3.93-9.88), and skin coreneum hydration (SCH) showed a significant 41% improvement after 4 weeks (95% CI = 43.01-62.38) compared to before application (95% CI = 20.94-40.65). Conclusions: Based on the confirmation that RE:pair improves skin barrier function and relieves itching, it is likely to be used as a topical treatment for burn scars pending evaluation in follow-up studies (IRB no. HG2023-016).
Collapse
Affiliation(s)
- HanBi Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - InSuk Kwak
- Department of Anesthesiology and Pain Medicine, Burn Center, Hallym University Hangang Sacred Heart Hospital, Seoul 07247, Republic of Korea;
| | - MiSun Kim
- LG Science Park R&D Center, LG Household & Healthcare (LG H&H), Seoul 07796, Republic of Korea; (M.K.); (J.W.)
| | - JiYoung Um
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - SoYeon Lee
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - BoYoung Chung
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - ChunWook Park
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| | - JongGu Won
- LG Science Park R&D Center, LG Household & Healthcare (LG H&H), Seoul 07796, Republic of Korea; (M.K.); (J.W.)
| | - HyeOne Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (H.K.); (J.U.); (S.L.); (B.C.); (C.P.)
| |
Collapse
|
20
|
Xu T, Liu C, Ning X, Gao Z, Li A, Wang S, Leng L, Kong P, Liu P, Zhang S, Zhang P. Causal relationship between circulating glutamine levels and idiopathic pulmonary fibrosis: a two-sample mendelian randomization study. BMC Pulm Med 2024; 24:451. [PMID: 39272013 PMCID: PMC11401390 DOI: 10.1186/s12890-024-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating respiratory disease with a median survival of less than 5 years. In recent years, glutamine has been reported to be involved in the regulation of collagen deposition and cell proliferation in fibroblasts, thereby influencing the progression of IPF. However, the relationships between glutamine and the incidence, progression, and treatment response of IPF remain unclear. Our study aimed to investigate the relationship between circulating glutamine levels and IPF, as well as its potential as a therapeutic target. METHODS We performed a comprehensive Mendelian Randomization (MR) analysis using the most recent genome-wide association study summary-level data. A total of 32 single nucleotide polymorphisms significantly correlated to glutamine levels were identified as instrumental variables. Eight MR analysis methods, including inverse variance weighted, MR-Egger, weighted median, weighted mode, constrained maximum likelihood, contamination mixture, robust adjusted profile score, and debiased inverse-variance weighted method, were used to assess the relationship between glutamine levels with IPF. RESULTS The inverse variance weighted analysis revealed a significant inverse correlation between glutamine levels and IPF risk (Odds Ratio = 0.750; 95% Confidence Interval : 0.592-0.951; P = 0.017). Sensitivity analyses, including MR-Egger regression and MR-PRESSO global test, confirmed the robustness of our findings, with no evidence of horizontal pleiotropy or heterogeneity. CONCLUSION Our study provides novel evidence for a causal relationship between lower circulating glutamine levels and increased risk of IPF. This finding may contribute to the early identification of high-risk individuals for IPF, disease monitoring, and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
- Department of Internal Medicine, Graduate School of Hebei North University, Zhangjiakou, China
| | - Chengyu Liu
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Xuecong Ning
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| | - Zhiguo Gao
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| | - Aimin Li
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| | - Shengyun Wang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| | - Lina Leng
- Department of Rheumatology and Immunology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| | - Pinpin Kong
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Pengshuai Liu
- Graduate School of Chengde Medical University, Chengde, China
| | - Shusen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China.
- Hebei Province Xingtai People's Hospital Postdoctoral Workstation, Xingtai, China.
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, China.
| | - Ping Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China.
| |
Collapse
|
21
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
22
|
Jeon KI, Kumar A, Brookes PS, Nehrke K, Huxlin KR. Manipulating mitochondrial pyruvate carrier function causes metabolic remodeling in corneal myofibroblasts that ameliorates fibrosis. Redox Biol 2024; 75:103235. [PMID: 38889622 PMCID: PMC11231598 DOI: 10.1016/j.redox.2024.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Myofibroblasts are key cellular effectors of corneal wound healing from trauma, surgery, or infection. However, their persistent deposition of disorganized extracellular matrix can also cause corneal fibrosis and visual impairment. Recent work showed that the PPARγ agonist Troglitazone can mitigate established corneal fibrosis, and parallel in vitro data suggested this occurred through inhibition of the mitochondrial pyruvate carrier (MPC) rather than PPARγ. In addition to oxidative phosphorylation (Ox-Phos), pyruvate and other mitochondrial metabolites provide carbon for the synthesis of biological macromolecules. However, it is currently unclear how these roles selectively impact fibrosis. Here, we performed bioenergetic, metabolomic, and epigenetic analyses of corneal fibroblasts treated with TGF-β1 to stimulate myofibroblast trans-differentiation, with further addition of Troglitazone or the MPC inhibitor UK5099, to identify MPC-dependencies that may facilitate remodeling and loss of the myofibroblast phenotype. Our results show that a shift in energy metabolism is associated with, but not sufficient to drive cellular remodeling. Metabolites whose abundances were sensitive to MPC inhibition suggest that sustained carbon influx into the Krebs' cycle is prioritized over proline synthesis to fuel collagen deposition. Furthermore, increased abundance of acetyl-CoA and increased histone H3 acetylation suggest that epigenetic mechanisms downstream of metabolic remodeling may reinforce cellular phenotypes. Overall, our results highlight a novel molecular target and metabolic vulnerability that affects myofibroblast persistence in the context of corneal wounding.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Ankita Kumar
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Dept. Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Keith Nehrke
- Dept. Medicine-Nephrology Division, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
23
|
Du XJ, She G, Wu W, Deng XL. Coupling of β-adrenergic and Hippo pathway signaling: Implications for heart failure pathophysiology and metabolic therapy. Mitochondrion 2024; 78:101941. [PMID: 39122227 DOI: 10.1016/j.mito.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Activation of the sympatho-β-adrenergic receptor (βAR) system is the hallmark of heart disease with adverse consequences that facilitate the onset and progression of heart failure (HF). Use of β-blocking drugs has become the front-line therapy for HF. Last decade has witnessed progress in research demonstrating a pivotal role of Hippo pathway in cardiomyopathy and HF. Clinical studies have revealed myocardial Hippo pathway activation/YAP-TEAD1 inactivation in several types of human cardiomyopathy. Experimental activation of cardiac Hippo signaling or inhibition of YAP-TEAD1 have been shown to leads dilated cardiomyopathy with severe mitochondrial dysfunction and metabolic reprogramming. Studies have also convincingly shown that stimulation of βAR activates cardiac Hippo pathway with inactivation of the down-stream effector molecules YAP/TAZ. There is strong evidence for the adverse consequences of the βAR-Hippo signaling leading to HF. In addition to promoting cardiomyocyte death and fibrosis, recent progress is the demonstration of mitochondrial dysfunction and metabolic reprogramming mediated by βAR-Hippo pathway signaling. Activation of cardiac βAR-Hippo signaling is potent in downregulating a range of mitochondrial and metabolic genes, whereas expression of pro-inflammatory and pro-fibrotic factors are upregulated. Coupling of βAR-Hippo pathway signaling is mediated by several kinases, mechanotransduction and/or Ca2+ signaling, and can be blocked by β-antagonists. Demonstration of the converge of βAR signaling and Hippo pathway bears implications for a better understanding on the role of enhanced sympathetic nervous activity, efficacy of β-antagonists, and metabolic therapy targeting this pathway in HF. In this review we summarize the progress and discuss future research directions in this field.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia,.
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Cardiology, Shaanxi Provincial Hospital and the Third Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
24
|
Ayhan S, Dursun A. ELFN1 is a new extracellular matrix (ECM)-associated protein. Life Sci 2024; 352:122900. [PMID: 38986898 DOI: 10.1016/j.lfs.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
AIMS The ELFN1, discovered in 2007, is a single-pass transmembrane protein. Studies conducted thus far to elucidate the function of the Elfn1 have been limited only to animal studies. These studies have reported that ELFN1 is a universal binding partner of metabotropic glutamate receptors (mGluRs) in the central nervous system and its functional deficiency has been associated with the pathogenesis of neurological and neuropsychiatric diseases. In 2021, we described the first disease-associated human ELFN1 pathogenic gene mutation. Severe joint laxity, which was the most striking finding of this new disease and was clearly seen in the patients since early infancy, showed that the ELFN1 may have a possible function in the connective tissue besides the nervous system. Here, we present the first experimental evidence of the extracellular matrix (ECM)-related function of the ELFN1. MATERIALS AND METHODS Primary skin fibroblasts were isolated from the skin biopsies of ELFN1 mutated patients and healthy foreskin donors. For the clinical trial in a dish, in vitro ECM and DEM (decellularized ECM) models were created from skin fibroblasts. All the in vitro models were comparatively characterized and analyzed. KEY FINDINGS The mutation in the ELFN1 signal peptide region of patients resulted in a severe lack of ELFN1 expression and dramatically altered the characteristic morphology and behavior (growth, proliferation, and motility) of fibroblasts. SIGNIFICANCE We propose that ELFN1 is involved in the cell-ECM attachment, and its deficiency is critical enough to cause a loss of cell motility and soft ECM stiffness.
Collapse
Affiliation(s)
- Selda Ayhan
- Department of Pediatrics Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.
| | - Ali Dursun
- Department of Pediatrics Metabolism, Faculty of Medicine, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.
| |
Collapse
|
25
|
Contento G, Wilson JAA, Selvarajah B, Platé M, Guillotin D, Morales V, Trevisani M, Pitozzi V, Bianchi K, Chambers RC. Pyruvate metabolism dictates fibroblast sensitivity to GLS1 inhibition during fibrogenesis. JCI Insight 2024; 9:e178453. [PMID: 39315548 PMCID: PMC11457851 DOI: 10.1172/jci.insight.178453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Fibrosis is a chronic disease characterized by excessive extracellular matrix production, which leads to disruption of organ function. Fibroblasts are key effector cells of this process, responding chiefly to the pleiotropic cytokine transforming growth factor-β1 (TGF-β1), which promotes fibroblast to myofibroblast differentiation. We found that extracellular nutrient availability profoundly influenced the TGF-β1 transcriptome of primary human lung fibroblasts and that biosynthesis of amino acids emerged as a top enriched TGF-β1 transcriptional module. We subsequently uncovered a key role for pyruvate in influencing glutaminase (GLS1) inhibition during TGF-β1-induced fibrogenesis. In pyruvate-replete conditions, GLS1 inhibition was ineffective in blocking TGF-β1-induced fibrogenesis, as pyruvate can be used as the substrate for glutamate and alanine production via glutamate dehydrogenase (GDH) and glutamic-pyruvic transaminase 2 (GPT2), respectively. We further show that dual targeting of either GPT2 or GDH in combination with GLS1 inhibition was required to fully block TGF-β1-induced collagen synthesis. These findings embolden a therapeutic strategy aimed at additional targeting of mitochondrial pyruvate metabolism in the presence of a glutaminolysis inhibitor to interfere with the pathological deposition of collagen in the setting of pulmonary fibrosis and potentially other fibrotic conditions.
Collapse
Affiliation(s)
- Greg Contento
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Jo-Anne A.M. Wilson
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Brintha Selvarajah
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| | - Valle Morales
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | | | - Vanessa Pitozzi
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Rachel C. Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
26
|
Kang S, Antoniewicz MR, Hay N. Metabolic and transcriptomic reprogramming during contact inhibition-induced quiescence is mediated by YAP-dependent and YAP-independent mechanisms. Nat Commun 2024; 15:6777. [PMID: 39117624 PMCID: PMC11310444 DOI: 10.1038/s41467-024-51117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic rewiring during the proliferation-to-quiescence transition is poorly understood. Here, using a model of contact inhibition-induced quiescence, we conducted 13C-metabolic flux analysis in proliferating (P) and quiescent (Q) mouse embryonic fibroblasts (MEFs) to investigate this process. Q cells exhibit reduced glycolysis but increased TCA cycle flux and mitochondrial respiration. Reduced glycolytic flux in Q cells correlates with reduced glycolytic enzyme expression mediated by yes-associated protein (YAP) inhibition. The increased TCA cycle activity and respiration in Q cells is mediated by induced mitochondrial pyruvate carrier (MPC) expression, rendering them vulnerable to MPC inhibition. The malate-to-pyruvate flux, which generates NADPH, is markedly reduced by modulating malic enzyme 1 (ME1) dimerization in Q cells. Conversely, the malate dehydrogenase 1 (MDH1)-mediated oxaloacetate-to-malate flux is reversed and elevated in Q cells, driven by high mitochondrial-derived malate levels, reduced cytosolic oxaloacetate, elevated MDH1 levels, and a high cytoplasmic NAD+/NADH ratio. Transcriptomic analysis revealed large number of genes are induced in Q cells, many of which are associated with the extracellular matrix (ECM), while YAP-dependent and cell cycle-related genes are repressed. The results suggest that high TCA cycle flux and respiration in Q cells are required to generate ATP and amino acids to maintain de-novo ECM protein synthesis and secretion.
Collapse
Affiliation(s)
- Soeun Kang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
27
|
Kumar M, Leekha A, Nandy S, Kulkarni R, Martinez-Paniagua M, Rahman Sefat KMS, Willson RC, Varadarajan N. Enzymatic depletion of circulating glutamine is immunosuppressive in cancers. iScience 2024; 27:109817. [PMID: 38770139 PMCID: PMC11103382 DOI: 10.1016/j.isci.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated Helicobacter pylori gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells in vitro, but in vivo it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.
Collapse
Affiliation(s)
- Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - K. M. Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
28
|
Wang Y, Wu GR, Yue H, Zhou Q, Zhang L, He L, Gu W, Gao R, Dong L, Zhang H, Zhao J, Liu X, Xiong W, Wang CY. Kynurenine acts as a signaling molecule to attenuate pulmonary fibrosis by enhancing the AHR-PTEN axis. J Adv Res 2024:S2090-1232(24)00254-6. [PMID: 38906325 DOI: 10.1016/j.jare.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
INTRODUCTION Pulmonary fibrosis (PF) is a fatal fibrotic lung disease without any options to halt disease progression. Feasible evidence suggests that aberrant metabolism of amino acids may play a role in the pathoetiology of PF. However, the exact impact of kynurenine (Kyn), a metabolite derived from tryptophan (Trp) on PF is yet to be addressed. OBJECTIVES This study aims to elucidate the role of kynurenine in both the onset and advancement of PF. METHODS Liquid chromatography-tandem mass spectrometry was employed to assess Kyn levels in patients with idiopathic PF and PF associated with Sjögren's syndrome. Additionally, a mouse model of PF induced by bleomycin was utilized to study the impact of Kyn administration. Furthermore, cell models treated with TGF-β1 were used to explore the mechanism by which Kyn inhibits fibroblast functions. RESULTS We demonstrated that high levels of Kyn are a clinical feature in both idiopathic PF patients and primary Sjögren syndrome associated PF patients. Further studies illustrated that Kyn served as a braking molecule to suppress fibroblast functionality, thereby protecting mice from bleomycin-induced lung fibrosis. The protective effects depend on AHR, in which Kyn induces AHR nuclear translocation, where it upregulates PTEN expression to blunt TGF-β mediated AKT/mTOR signaling in fibroblasts. However, in fibrotic microenviroment, the expression of AHR is repressed by methyl-CpG-binding domain 2 (MBD2), a reader interpreting the effect of DNA methylation, which results in a significantly reduced sensitivity of Kyn to fibroblasts. Therefore, exogenous administration of Kyn substantially reversed established PF. CONCLUSION Our studies not only highlighted a critical role of Trp metabolism in PF pathogenesis, but also provided compelling evidence suggesting that Kyn could serve as a promising metabolite against PF.
Collapse
Affiliation(s)
- Yi Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200011, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China.
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China; The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Ding X, Liu H, Xu Q, Ji T, Chen R, Liu Z, Dai J. Shared biomarkers and mechanisms in idiopathic pulmonary fibrosis and non-small cell lung cancer. Int Immunopharmacol 2024; 134:112162. [PMID: 38703565 DOI: 10.1016/j.intimp.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Epidemiological evidence has indicated the occurrence of idiopathic pulmonary fibrosis (IPF) with coexisting lung cancer is not a coincidence. The pathogenic mechanisms shared between IPF and non-small cell lung cancer (NSCLC) at the transcriptional level remain elusive and need to be further elucidated. METHODS IPF and NSCLC datasets of expression profiles were obtained from the GEO database. Firstly, to detect the shared dysregulated genes positively correlated with both IPF and NSCLC, differentially expressed analysis and WGCNA analysis were carried out. Functional enrichment and the construction of protein-protein network were employed to reveal pathogenic mechanisms related to two diseases mediated by the shared dysregulated genes. Then, the LASSO regression was adopted for screening critical candidate biomarkers for two disorders. Moreover, ROC curves were applied to evaluate the diagnostic value of the candidate biomarkers in both IPF and NSCLC. RESULTS The 20 shared dysregulated genes positively correlated with both IPF and NSCLC were identified after intersecting differentially expressed analysis and WGCNA analysis. Functional enrichment revealed the 20 shared genes mostly enriched in extracellular region, which is critical in the organization of extracellular matrix. The protein-protein networks unrevealed the interaction of the 11 shared genes involving in collagen deposition and the connection between PYCR1 with PSAT1. PSAT1, PYCR1, COL10A1 and KIAA1683 were screened by the LASSO regression. ROC curves comprising area under the curve (AUC) verified the potential diagnostic value of PSAT1 and COL10A1 in both IPF and NSCLC. CONCLUSIONS We revealed dysregulated extracellular matrix through aberrant expression of the relevant genes, which provided further understanding for the common molecular mechanisms predisposing the occurrence of both IPF and NSCLC.
Collapse
Affiliation(s)
- Xiaorui Ding
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Tong Ji
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
30
|
Shin KWD, Atalay MV, Cetin-Atalay R, O'Leary EM, Glass ME, Szafran JCH, Woods PS, Meliton AY, Shamaa OR, Tian Y, Mutlu GM, Hamanaka RB. ATF4 and mTOR regulate metabolic reprogramming in TGF-β-treated lung fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598694. [PMID: 38915485 PMCID: PMC11195155 DOI: 10.1101/2024.06.12.598694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that fibroblast activation is supported by metabolic reprogramming, including the upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. How fibroblast metabolic reprogramming is regulated downstream of TGF-β is incompletely understood. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote increased expression of the enzymes required for de novo glycine synthesis; however, whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-β. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression, but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-β-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts while mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single cell RNAseq data sets and found increased expression of ATF4 and mTOR metabolic targets in pathologic fibroblast populations from the lungs of IPF patients. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.
Collapse
Affiliation(s)
- Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | | | - Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Erin M O'Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Mariel E Glass
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
31
|
Shan B, Guo C, Zhou H, Chen J. Tanshinone IIA alleviates pulmonary fibrosis by modulating glutamine metabolic reprogramming based on [U- 13C 5]-glutamine metabolic flux analysis. J Adv Res 2024:S2090-1232(24)00172-3. [PMID: 38697470 DOI: 10.1016/j.jare.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION Glutamine metabolic reprogramming, mediated by glutaminase (GLS), is an important signal during pulmonary fibrosis (PF) progression. Tanshinone IIA (Tan IIA) is a naturally lipophilic diterpene with antioxidant and antifibrotic properties. However, the potential mechanisms of Tan IIA for regulating glutamine metabolic reprogramming are not yet clear. OBJECTIVES This study aimed was to evaluate the role of Tan IIA in intervening in glutamine metabolic reprogramming to exert anti-PF and to explore the potential new mechanisms of metabolic regulation. METHODS Fibrotic characteristics was detected via immunofluorescence and western blotting analysis. Cell proliferation was examined with EdU Assay. Cell metabolites were labeled by using stable isotope [U-13C5]-glutamine. By utilizing 100% 13C glutamine tracers and employing network analysis to investigate the activation of metabolic pathways in fibroblasts, as well as evaluating the impact of Tan IIA on these pathways, we accurately quantified the absolute flux of glutaminolysis, proline synthesis, and the TCA cycle pathway using isotopomer network compartmental analysis (INCA), a user-friendly software tool for 13C metabolic flux analysis (13C-MFA). Molecular docking was used for identifying the binding of Tan IIA with target protein. RESULTS Tan IIA ameliorate TGF-β1-induced myofibroblast proliferation, reduce collagen I and III and α-SMA protein expression in MRC-5 and NIH-3T3 cells. Furthermore, Tan IIA regulate mitochondrial energy metabolism by modulating TGF-β1-stimulated glutamine metabolic reprogramming in NIH-3T3 cells and inhibiting GLS1 expression, which reduced the metabolic flux of glutamine into mitochondria in myofibroblasts, and also targeted inhibited the expression of Δ1-pyrroline-5-carboxylate synthase (P5CS), P5C reductase 1 (PYCR1), and phosphoserine aminotransferase 1 (PSAT1), and reduced proline hydroxylation and blocked the collagen synthesis pathway. CONCLUSION Tan IIA reverses glutamine metabolic reprogramming, reduces mitochondrial energy expenditure, and inhibits collagen matrix synthesis by modulating potential targets in glutamine metabolism. This novel perspective sheds light on the essential role of glutamine metabolic reprogramming in PF.
Collapse
Affiliation(s)
- Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Congying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haoyan Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Ziehr DR, Li F, Parnell KM, Krah NM, Leahy KJ, Guillermier C, Varon J, Baron RM, Maron BA, Philp NJ, Hariri LP, Kim EY, Steinhauser ML, Knipe RS, Rutter J, Oldham WM. Lactate transport inhibition therapeutically reprograms fibroblast metabolism in experimental pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591150. [PMID: 38712233 PMCID: PMC11071479 DOI: 10.1101/2024.04.25.591150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal that inhibiting MCT1 or MCT4 reduces TGFβ-stimulated pulmonary myofibroblast differentiation in vitro and decreases bleomycin-induced pulmonary fibrosis in vivo. Through comprehensive metabolic analyses, including bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice, with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited therapeutic options currently exist.
Collapse
Affiliation(s)
- David R. Ziehr
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Fei Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | | | - Nathan M. Krah
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Kevin J. Leahy
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Christelle Guillermier
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jack Varon
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Rebecca M. Baron
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Bradley A. Maron
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- University of Maryland Institute for Health Computing, Bethesda, MD
| | - Nancy J. Philp
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Lida P. Hariri
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Edy Y. Kim
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Matthew L. Steinhauser
- Aging Institute, University of Pittsburgh, Pittsburgh, PA
- UPMC Heart and Vascular Institute, UPMC Presbyterian, Pittsburgh, PA
| | - Rachel S. Knipe
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - William M. Oldham
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Wang Z, Yang M, Li S, Chi H, Wang J, Xiao C. [A transcriptomic analysis of correlation between mitochondrial function and energy metabolism remodeling in mice with myocardial fibrosis following myocardial infarction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:666-674. [PMID: 38708499 DOI: 10.12122/j.issn.1673-4254.2024.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To investigate the changes of mitochondrial respiratory function during myocardial fibrosis in mice with myocardial infarction (MI) and its correlation with the increase of glycolytic flux. METHODS Forty C57BL/6N mice were randomized into two equal groups to receive sham operation or ligation of the left anterior descending coronary artery to induce acute MI. At 28 days after the operation, 5 mice from each group were euthanized and left ventricular tissue samples were collected for transcriptomic sequencing. FPKM method was used to calculate gene expression levels to identify the differentially expressed genes (DEGs) in MI mice, which were analyzed using GO and KEGG databases to determine the pathways affecting the disease process. Heat maps were drawn to show the differential expressions of the pathways and the related genes in the enrichment analysis. In primary cultures of neonatal mouse cardiac fibroblasts (CFs), the changes in mitochondrial respiration and glycolysis levels in response to treatment with the pro-fibrotic agonist TGF-β1 were analyzed using Seahorse experiment. RESULTS The mouse models of MI showed significantly increased diastolic and systolic left ventricular diameter (P < 0.05) and decreased left ventricular ejection fraction (P < 0.0001). A total of 124 up-regulated and 106 down-regulated DEGs were identified in the myocardial tissues of MI mice, and GO and KEGG enrichment analysis showed that these DEGs were significantly enriched in fatty acid metabolism, organelles and other metabolic pathways and in the mitochondria. Heat maps revealed fatty acid beta oxidation, mitochondrial dysfunction and increased glycolysis levels in MI mice. In the primary culture of CFs, treatment with TGF-β1 significantly reduced the basal and maximum respiratory levels and increased the basal and maximum glycolysis levels (P < 0.0001). CONCLUSION During myocardial fibrosis, energy metabolism remodeling occurs in the CFs, manifested by lowered mitochondrial function and increased energy generation through glycolysis.
Collapse
Affiliation(s)
- Z Wang
- Chinese PLA Medical School, Beijing 100853, China
- Department of Cardiovascular Surgery, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| | - M Yang
- Department of Cardiovascular Surgery, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| | - S Li
- Department of Cardiovascular Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - H Chi
- Department of Cardiovascular Surgery, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| | - J Wang
- Department of Cardiovascular Surgery, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| | - C Xiao
- Department of Cardiovascular Surgery, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100037, China
| |
Collapse
|
34
|
Noom A, Sawitzki B, Knaus P, Duda GN. A two-way street - cellular metabolism and myofibroblast contraction. NPJ Regen Med 2024; 9:15. [PMID: 38570493 PMCID: PMC10991391 DOI: 10.1038/s41536-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Tissue fibrosis is characterised by the high-energy consumption associated with myofibroblast contraction. Although myofibroblast contraction relies on ATP production, the role of cellular metabolism in myofibroblast contraction has not yet been elucidated. Studies have so far only focused on myofibroblast contraction regulators, such as integrin receptors, TGF-β and their shared transcription factor YAP/TAZ, in a fibroblast-myofibroblast transition setting. Additionally, the influence of the regulators on metabolism and vice versa have been described in this context. However, this has so far not yet been connected to myofibroblast contraction. This review focuses on the known and unknown of how cellular metabolism influences the processes leading to myofibroblast contraction and vice versa. We elucidate the signalling cascades responsible for myofibroblast contraction by looking at FMT regulators, mechanical cues, biochemical signalling, ECM properties and how they can influence and be influenced by cellular metabolism. By reviewing the existing knowledge on the link between cellular metabolism and the regulation of myofibroblast contraction, we aim to pinpoint gaps of knowledge and eventually help identify potential research targets to identify strategies that would allow switching tissue fibrosis towards tissue regeneration.
Collapse
Affiliation(s)
- Anne Noom
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Birgit Sawitzki
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt University of Berlin, 13353, Berlin, Germany
- Center of Immunomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
35
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrison B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. eLife 2024; 12:RP89136. [PMID: 38564479 PMCID: PMC10987092 DOI: 10.7554/elife.89136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Brett Morrison
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Jeffery D Rothstein
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| |
Collapse
|
36
|
Chen P, Ye C, Huang Y, Xu B, Wu T, Dong Y, Jin Y, Zhao L, Hu C, Mao J, Wu R. Glutaminolysis regulates endometrial fibrosis in intrauterine adhesion via modulating mitochondrial function. Biol Res 2024; 57:13. [PMID: 38561846 PMCID: PMC10983700 DOI: 10.1186/s40659-024-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS The activation model of ESCs was constructed by TGF-β1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.
Collapse
Affiliation(s)
- Pei Chen
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Chaoshuang Ye
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yunke Huang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Bingning Xu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Tianyu Wu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yuanhang Dong
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Li Zhao
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Changchang Hu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Jingxia Mao
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Ruijin Wu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
37
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
38
|
Cai Y, Tian B, Deng Y, Liu L, Zhang C, Peng W, Li Q, Zhang T, Han M, Xu G. Glutamine Metabolism Promotes Renal Fibrosis through Regulation of Mitochondrial Energy Generation and Mitochondrial Fission. Int J Biol Sci 2024; 20:987-1003. [PMID: 38250160 PMCID: PMC10797689 DOI: 10.7150/ijbs.89960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Fibroblast activation and proliferation is an essential phase in the progression of renal fibrosis. Despite the recognized significance of glutamine metabolism in cellular growth and proliferation, its precise pathophysiological relevance in renal fibrosis remains uncertain. Therefore, this study aims to investigate the involvement of glutamine metabolism in fibroblast activation and its possible mechanism. Our findings highlight the importance of glutamine metabolism in fibroblast activation and reveal that patients with severe fibrosis exhibit elevated serum glutamine levels and increased expression of kidney glutamine synthetase. Furthermore, the deprivation of glutamine metabolism in vitro and in vivo could inhibit fibroblast activation, thereby ameliorating renal fibrosis. It was also detected that glutamine metabolism is crucial for maintaining mitochondrial function and morphology. These effects may partially depend on the metabolic intermediate α-ketoglutaric acid. Moreover, glutamine deprivation led to upregulated mitochondrial fission in fibroblasts and the activation of the mammalian target of rapamycin / mitochondrial fission process 1 / dynamin-related protein 1 pathway. Thus, these results provide compelling evidence that the modulation of glutamine metabolism initiates the regulation of mitochondrial function, thereby facilitating the progression of renal fibrosis. Consequently, targeting glutamine metabolism emerges as a novel and promising avenue for therapeutic intervention and prevention of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Han
- ✉ Corresponding author: Min Han, E-mail: ; Gang Xu, E-mail:
| | - Gang Xu
- ✉ Corresponding author: Min Han, E-mail: ; Gang Xu, E-mail:
| |
Collapse
|
39
|
Bantug GR, Hess C. The immunometabolic ecosystem in cancer. Nat Immunol 2023; 24:2008-2020. [PMID: 38012409 DOI: 10.1038/s41590-023-01675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023]
Abstract
Our increased understanding of how key metabolic pathways are activated and regulated in malignant cells has identified metabolic vulnerabilities of cancers. Translating this insight to the clinics, however, has proved challenging. Roadblocks limiting efficacy of drugs targeting cancer metabolism may lie in the nature of the metabolic ecosystem of tumors. The exchange of metabolites and growth factors between cancer cells and nonmalignant tumor-resident cells is essential for tumor growth and evolution, as well as the development of an immunosuppressive microenvironment. In this Review, we will examine the metabolic interplay between tumor-resident cells and how targeted inhibition of specific metabolic enzymes in malignant cells could elicit pro-tumorigenic effects in non-transformed tumor-resident cells and inhibit the function of tumor-specific T cells. To improve the efficacy of metabolism-targeted anticancer strategies, a holistic approach that considers the effect of metabolic inhibitors on major tumor-resident cell populations is needed.
Collapse
Affiliation(s)
- Glenn R Bantug
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
40
|
Zhang S, Zhang L, Wang L, Wang H, Wu J, Cai H, Mo C, Yang J. Machine learning identified MDK score has prognostic value for idiopathic pulmonary fibrosis based on integrated bulk and single cell expression data. Front Genet 2023; 14:1246983. [PMID: 38075691 PMCID: PMC10704369 DOI: 10.3389/fgene.2023.1246983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/10/2023] [Indexed: 03/09/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease that poses a significant challenge to medical professionals due to its increasing incidence and prevalence coupled with the limited understanding of its underlying molecular mechanisms. In this study, we employed a novel approach by integrating five expression datasets from bulk tissue with single-cell datasets; they underwent pseudotime trajectory analysis, switch gene selection, and cell communication analysis. Utilizing the prognostic information derived from the GSE47460 dataset, we identified 22 differentially expressed switch genes that were correlated with clinical indicators as important genes. Among these genes, we found that the midkine (MDK) gene has the potential to serve as a marker of Idiopathic pulmonary fibrosis because its cellular communicating genes are differentially expressed in the epithelial cells. We then utilized midkine and its cellular communication-related genes to calculate the midkine score. Machine learning models were further constructed through midkine and related genes to predict Idiopathic pulmonary fibrosis disease through the bulk gene expression datasets. The midkine score demonstrated a correlation with clinical indexes, and the machine learning model achieved an AUC of 0.94 and 0.86 in the Idiopathic pulmonary fibrosis classification task based on lung tissue samples and peripheral blood mononuclear cell samples, respectively. Our findings offer valuable insights into the pathogenesis of Idiopathic pulmonary fibrosis, providing new therapeutic directions and target genes for further investigation.
Collapse
Affiliation(s)
- Shichen Zhang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Wang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongqiu Wang
- Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Jiaxin Wu
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Meliton AY, Cetin-Atalay R, Tian Y, Szafran JCH, Shin KWD, Cho T, Sun KA, Woods PS, Shamaa OR, Chen B, Muir A, Mutlu GM, Hamanaka RB. Mitochondrial One-Carbon Metabolism is Required for TGF-β-Induced Glycine Synthesis and Collagen Protein Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566074. [PMID: 37986788 PMCID: PMC10659399 DOI: 10.1101/2023.11.07.566074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-β upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-β induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-β-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-β; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Takugo Cho
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Alexander Muir
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
42
|
Sun W, Ren J, Jia Z, Liang P, Li S, Song M, Cao Y, Chen H, Luo Q, Yang L, Wang J, Wang C, Wang L. Untargeted Metabolomics Reveals Alterations of Rhythmic Pulmonary Metabolism in IPF. Metabolites 2023; 13:1069. [PMID: 37887394 PMCID: PMC10608701 DOI: 10.3390/metabo13101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive condition characterized by the impairment of alveolar epithelial cells. Despite continued research efforts, the effective therapeutic medication is still absent due to an incomplete understanding of the underlying etiology. It has been shown that rhythmic alterations are of significant importance in the pathophysiology of IPF. However, a comprehensive understanding of how metabolite level changes with circadian rhythms in individuals with IPF is lacking. Here, we constructed an extensive metabolite database by utilizing an unbiased reference system culturing with 13C or 15N labeled nutrients. Using LC-MS analysis via ESI and APCI ion sources, 1300 potential water-soluble metabolites were characterized and applied to evaluate the metabolic changes with rhythm in the lung from both wild-type mice and mice with IPF. The metabolites, such as glycerophospholipids and amino acids, in WT mice exhibited notable rhythmic oscillations. The concentrations of phospholipids reached the highest during the fast state, while those of amino acids reached their peak during fed state. Similar diurnal variations in the metabolite rhythm of amino acids and phospholipids were also observed in IPF mice. Although the rhythmic oscillation of metabolites in the urea cycle remained unchanged, there was a significant up-regulation in their levels in the lungs of IPF mice. 15N-ammonia in vivo isotope tracing further showed an increase in urea cycle activity in the lungs of mice with IPF, which may compensate for the reduced efficiency of the hepatic urea cycle. In sum, our metabolomics database and method provide evidence of the periodic changes in lung metabolites, thereby offering valuable insights to advance our understanding of metabolic reprogramming in the context of IPF.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Care, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Jiuqiang Ren
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Zixian Jia
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Puyang Liang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengxi Li
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Meiyue Song
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
| | - Yinghao Cao
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Haoran Chen
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
| | - Lifeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chen Wang
- Department of Respiratory and Critical Care, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| |
Collapse
|
43
|
Liu G, Summer R. Reclaiming the Balance: Blocking Glutamine Uptake to Restrain Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:378-379. [PMID: 37463521 PMCID: PMC10557921 DOI: 10.1165/rcmb.2023-0189ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023] Open
Affiliation(s)
- Gang Liu
- School of Life Sciences University of Technology Sydney Ultimo, New South Wales, Australia
- Centre for Inflammation Centenary Institute and University of Technology Sydney Camperdown, New South Wales, Australia
| | - Ross Summer
- Sidney Kimmel Medical College Thomas Jefferson University Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Cheng HP, Feng DD, Li XH, Gao LH, Qiu YJ, Liang XY, Zhou Y, Huang P, Shao M, Zhang YN, Chang YF, Fu JF, Huang YH, Liu W, Tang SY, Li C, Luo ZQ. NMDA receptor activation induces damage of alveolar type II cells and lung fibrogenesis through ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119535. [PMID: 37451346 DOI: 10.1016/j.bbamcr.2023.119535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Ferroptosis, a newly discovered type of regulated cell death, has been implicated in numerous human diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease with poor prognosis and limited treatment options. Emerging evidence has linked ferroptosis and glutamate-determined cell fate which is considered a new light on the etiology of pulmonary fibrosis. Here, we observed that N-methyl d-aspartate receptor (NMDAR) activation promoted cell damage and iron deposition in MLE-12 cells in a dose-, time-, and receptor-dependent manner. This mediated substantial Ca2+ influx, upregulated the expression levels of nNOS and IRP1, and affected intracellular iron homeostasis by regulating the expression of iron transport-related proteins (i.e., TFR1, DMT1, and FPN). Excessive iron load promoted the continuous accumulation of total intracellular and mitochondrial reactive oxygen species, which ultimately led to ferroptosis. NMDAR inhibition reduced lung injury and pulmonary fibrosis in bleomycin-induced mice. Bleomycin stimulation upregulated the expression of NMDAR1, nNOS, and IRP1 in mouse lung tissues, which ultimately led to iron deposition via regulation of the expression of various iron metabolism-related genes. NMDAR activation initiated the pulmonary fibrosis process by inducing iron deposition in lung tissues and ferroptosis of alveolar type II cells. Our data suggest that NMDAR activation regulates the expression of iron metabolism-related genes by promoting calcium influx, increasing nNOS and IRP1 expression, and increasing iron deposition by affecting cellular iron homeostasis, ultimately leading to mitochondrial damage, mitochondrial dysfunction, and ferroptosis. NMDAR activation-induced ferroptosis of alveolar type II cells might be a key event to the initiation of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hai-Peng Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan-Dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li-Hua Gao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Jia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xing-Yue Liang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pu Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yun-Na Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan-Fen Chang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jia-Feng Fu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan-Hong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China.
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Xue X, Zeng X, Wu X, Mu K, Dai Y, Wei Z. SIRT4 protects against intestinal fibrosis by facilitating GLS1 degradation. Matrix Biol 2023; 122:33-45. [PMID: 37541633 DOI: 10.1016/j.matbio.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Intestinal fibrosis is a prevalent complication of Crohn's disease (CD), characterized by excessive deposition of extracellular matrix (ECM), and no approved drugs are currently available for its treatment. Sirtuin 4 (SIRT4), a potent anti-fibrosis factor in mitochondria, has an unclear role in intestinal fibrosis. In this study, fibroblasts isolated from biopsies of stenotic ileal mucosa in CD patients were analyzed to identify the most down-regulated protein among SIRT1-7, and SIRT4 was found to be the most affected. Moreover, in vivo and in vitro models of intestinal fibrosis, SIRT4 expression was significantly decreased in a TGF-β dependent manner, and its decrease was negatively associated with disease severity. SIRT4 impeded ECM deposition by inhibiting glutaminolysis, but not glycolysis, and α-ketoglutarate (α-KG) was identified as the key metabolite. Specifically, SIRT4 hinders SIRT5's stabilizing interaction with glutaminase 1 (GLS1), thereby facilitating the degradation of GLS1. KDM6, rather than KDM4, is a potential mediator for α-KG-induced transcription of ECM components, and SIRT4 enhances the enrichment of H3K27me3 on their promotors and enhancers. These findings indicate that the activation of TGF-β signals decreases the expression of SIRT4 in intestinal fibrosis, and SIRT4 can facilitate GLS1 degradation, thereby resisting glutaminolysis and alleviating intestinal fibrosis, providing a novel therapeutic target for intestinal fibrosis.
Collapse
Affiliation(s)
- Xinru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xiaoqian Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Kexin Mu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
46
|
Habibi M, Ferguson D, Eichler SJ, Chan MM, LaPoint A, Shew TM, He M, Lutkewitte AJ, Schilling JD, Cho KY, Patti GJ, Finck BN. Mitochondrial Pyruvate Carrier Inhibition Attenuates Hepatic Stellate Cell Activation and Liver Injury in a Mouse Model of Metabolic Dysfunction-associated Steatotic Liver Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528384. [PMID: 36824926 PMCID: PMC9949033 DOI: 10.1101/2023.02.13.528384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hepatic stellate cells (HSC) are non-parenchymal liver cells that produce extracellular matrix comprising fibrotic lesions in chronic liver diseases. Prior work demonstrated that mitochondrial pyruvate carrier (MPC) inhibitors suppress HSC activation and fibrosis in a mouse model of metabolic dysfunction-associated steatohepatitis (MASH). In the present study, pharmacologic or genetic inhibition of the MPC in HSC decreased expression of markers of activation in vitro. MPC knockdown also reduced the abundance of several intermediates of the TCA cycle, and diminished α-ketoglutarate played a key role in attenuating HSC activation by suppressing hypoxia inducible factor-1α signaling. On high fat diets, mice with HSC-specific MPC deletion exhibited reduced circulating transaminases, numbers of HSC, and hepatic expression of markers of HSC activation and inflammation compared to wild-type mice. These data suggest that MPC inhibition modulates HSC metabolism to attenuate activation and illuminate mechanisms by which MPC inhibitors could prove therapeutically beneficial for treating MASH.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Sophie J. Eichler
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Mandy M. Chan
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Andrew LaPoint
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Trevor M. Shew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Joel D. Schilling
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Kevin Y. Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Gary J. Patti
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| |
Collapse
|
47
|
Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, Cala MP, Acosta-Ampudia Y, Ramírez-Santana C. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci 2023; 10:1215039. [PMID: 37614441 PMCID: PMC10442829 DOI: 10.3389/fmolb.2023.1215039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms. Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria. Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism. Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.
Collapse
Affiliation(s)
- Victoria Morales-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Galeano-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Jaime Enrique Covaleda-Vargas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
48
|
Chen M, Zhang Y, Adams T, Ji D, Jiang W, Wain LV, Cho M, Kaminski N, Zhao H. Integrative analyses for the identification of idiopathic pulmonary fibrosis-associated genes and shared loci with other diseases. Thorax 2023; 78:792-798. [PMID: 36216496 PMCID: PMC10083187 DOI: 10.1136/thorax-2021-217703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Although genome-wide association studies (GWAS) have identified many genomic regions associated with idiopathic pulmonary fibrosis (IPF), the causal genes and functions remain largely unknown. Many single-cell expression data have become available for IPF, and there is increasing evidence suggesting a shared genetic basis between IPF and other diseases. METHODS We conducted integrative analyses to improve the power of GWAS. First, we calculated global and local genetic correlations to identify IPF genetically associated traits and local regions. Then, we prioritised candidate genes contributing to local genetic correlation. Second, we performed transcriptome-wide association analysis (TWAS) of 44 tissues to identify candidate genes whose genetically predicted expression level is associated with IPF. To replicate our findings and investigate the regulatory role of the transcription factors (TF) in identified candidate genes, we first conducted the heritability enrichment analysis in TF binding sites. Then, we examined the enrichment of the TF target genes in cell-type-specific differentially expressed genes (DEGs) identified from single-cell expression data of IPF and healthy lung samples. FINDINGS We identified 12 candidate genes across 13 genomic regions using local genetic correlation, including the POT1 locus (p value=0.00041), which contained variants with protective effects on lung cancer but increasing IPF risk. We identified another 13 novel genes using TWAS. Two TFs, MAFK and SMAD2, showed significant enrichment in both partitioned heritability and cell-type-specific DEGs. INTERPRETATION Our integrative analysis identified new genes for IPF susceptibility and expanded the understanding of the complex genetic architecture and disease mechanism of IPF.
Collapse
Affiliation(s)
- Ming Chen
- Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Yiliang Zhang
- Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Taylor Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dingjue Ji
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Wei Jiang
- Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Louise V Wain
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
49
|
Chen YH, Xu YC, Lin TT, Chen H, Dong RN, Cai FP, Ke ZB, Chen JY, Wei Y, Zheng QS, Xue XY, Xu N. Exosomal MiR-381 from M2-polarized macrophages attenuates urethral fibroblasts activation through YAP/GLS1-regulated glutaminolysis. Inflamm Res 2023:10.1007/s00011-023-01735-x. [PMID: 37340070 DOI: 10.1007/s00011-023-01735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE AND DESIGN Post-traumatic urethral stricture is a clinical challenge for both patients and clinicians. Targeting glutamine metabolism to suppress excessive activation of urethral fibroblasts (UFBs) is assumed to be a potent and attractive strategy for preventing urethral scarring and stricture. MATERIAL OR SUBJECTS In cellular experiments, we explored whether glutaminolysis meets the bioenergetic and biosynthetic demands of quiescent UFBs converted into myofibroblasts. At the same time, we examined the specific effects of M2-polarized macrophages on glutaminolysis and activation of UFBs, as well as the mechanism of intercellular signaling. In addition, findings were further verified in vivo in New Zealand rabbits. RESULTS It revealed that glutamine deprivation or knockdown of glutaminase 1 (GLS1) significantly inhibited UFB activation, proliferation, biosynthesis, and energy metabolism; however, these effects were rescued by cell-permeable dimethyl α-ketoglutarate. Moreover, we found that exosomal miR-381 derived from M2-polarized macrophages could be ingested by UFBs and inhibited GLS1-dependent glutaminolysis, thereby preventing excessive activation of UFBs. Mechanistically, miR-381 directly targets the 3'UTR of Yes-associated protein (YAP) mRNA to reduce its stability at the transcriptional level, ultimately downregulating expression of YAP, and GLS1. In vivo experiments revealed that treatment with either verteporfin or exosomes derived from M2-polarized macrophages significantly reduced urethral stricture in New Zealand rabbits after urethral trauma. CONCLUSION Collectively, this study demonstrates that exosomal miR-381 from M2-polarized macrophages reduces myofibroblast formation of UFBs and urethral scarring and stricture by inhibiting YAP/GLS1-dependent glutaminolysis.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yi-Cheng Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ting-Ting Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ru-Nan Dong
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Feng-Ping Cai
- Department of Ultrasonography, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
50
|
Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol Ther 2023; 246:108436. [PMID: 37150402 DOI: 10.1016/j.pharmthera.2023.108436] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.
Collapse
Affiliation(s)
- Rishi Rajesh
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|