1
|
Wang J, Wang R, Li Y, Huang J, Liu Y, Wang J, Xian P, Zhang Y, Yang Y, Zhang H, Li J. Lipolysis engages CD36 to promote ZBP1-mediated necroptosis-impairing lung regeneration in COPD. Cell Rep Med 2024; 5:101732. [PMID: 39255796 PMCID: PMC11525022 DOI: 10.1016/j.xcrm.2024.101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Lung parenchyma destruction represents a severe condition commonly found in chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. Promoting lung regeneration is crucial for achieving clinical improvement. However, no therapeutic drugs are approved to improve the regeneration capacity due to incomplete understanding of the underlying pathogenic mechanisms. Here, we identify a positive feedback loop formed between adipose triglyceride lipase (ATGL)-mediated lipolysis and overexpression of CD36 specific to lung epithelial cells, contributing to disease progression. Genetic deletion of CD36 in lung epithelial cells and pharmacological inhibition of either ATGL or CD36 effectively reduce COPD pathogenesis and promote lung regeneration in mice. Mechanistically, disruption of the ATGL-CD36 loop rescues Z-DNA binding protein 1 (ZBP1)-induced cell necroptosis and restores WNT/β-catenin signaling. Thus, we uncover a crosstalk between lipolysis and lung epithelial cells, suggesting the regenerative potential for therapeutic intervention by targeting the ATGL-CD36-ZBP1 axis in COPD.
Collapse
Affiliation(s)
- Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ru Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yicun Li
- Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiayi Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Xian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuanhang Zhang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanmei Yang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
2
|
Toth A, Kannan P, Snowball J, Kofron M, Wayman JA, Bridges JP, Miraldi ER, Swarr D, Zacharias WJ. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat Commun 2023; 14:8452. [PMID: 38114516 PMCID: PMC10775890 DOI: 10.1038/s41467-023-44184-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Lung epithelial regeneration after acute injury requires coordination cellular coordination to pattern the morphologically complex alveolar gas exchange surface. During adult lung regeneration, Wnt-responsive alveolar epithelial progenitor (AEP) cells, a subset of alveolar type 2 (AT2) cells, proliferate and transition to alveolar type 1 (AT1) cells. Here, we report a refined primary murine alveolar organoid, which recapitulates critical aspects of in vivo regeneration. Paired scRNAseq and scATACseq followed by transcriptional regulatory network (TRN) analysis identified two AT1 transition states driven by distinct regulatory networks controlled in part by differential activity of Nkx2-1. Genetic ablation of Nkx2-1 in AEP-derived organoids was sufficient to cause transition to a proliferative stressed Krt8+ state, and AEP-specific deletion of Nkx2-1 in adult mice led to rapid loss of progenitor state and uncontrolled growth of Krt8+ cells. Together, these data implicate dynamic epigenetic maintenance via Nkx2-1 as central to the control of facultative progenitor activity in AEPs.
Collapse
Affiliation(s)
- Andrea Toth
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paranthaman Kannan
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John Snowball
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Bio-Imaging and Analysis Facility, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph A Wayman
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James P Bridges
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - Emily R Miraldi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Swarr
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Zacharias
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Konkimalla A, Elmore Z, Konishi S, Macadlo L, Katsura H, Tata A, Asokan A, Tata PR. Efficient Adeno-associated Virus-mediated Transgenesis in Alveolar Stem Cells and Associated Niches. Am J Respir Cell Mol Biol 2023; 69:255-265. [PMID: 37315312 PMCID: PMC10503306 DOI: 10.1165/rcmb.2022-0424ma] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/13/2023] [Indexed: 06/16/2023] Open
Abstract
Targeted delivery of transgenes to tissue-resident stem cells and related niches offers avenues for interrogating pathways and editing endogenous alleles for therapeutic interventions. Here, we survey multiple adeno-associated virus (AAV) serotypes, administered via intranasal and retroorbital routes in mice, to target lung alveolar stem cell niches. We found that AAV5, AAV4, and AAV8 efficiently and preferentially transduce alveolar type-2 stem cells (AT2s), endothelial cells, and PDGFRA+ fibroblasts, respectively. Notably, some AAVs show different cell tropisms depending on the route of administration. Proof-of-concept experiments reveal the versatility of AAV5-mediated transgenesis for AT2-lineage labeling, clonal cell tracing after cell ablation, and conditional gene inactivation in both postnatal and adult mouse lungs in vivo. AAV6, but not AAV5, efficiently transduces both mouse and human AT2s in alveolar organoid cultures. Furthermore, AAV5 and AAV6 can be used to deliver guide RNAs and transgene cassettes for homologous recombination in vivo and ex vivo, respectively. Using this system coupled with clonal derivation of AT2 organoids, we demonstrate efficient and simultaneous editing of multiple loci, including targeted insertion of a payload cassette in AT2s. Taken together, our studies highlight the powerful utility of AAVs for interrogating alveolar stem cells and other specific cell types both in vivo and ex vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aravind Asokan
- Department of Surgery
- Department of Molecular Genetics and Microbiology
- Department of Biomedical Engineering
- Center for Advanced Genomic Technologies, and
- Duke Regeneration Center, Duke University, Durham, North Carolina
| | - Purushothama Rao Tata
- Department of Cell Biology
- Duke Cancer Institute, and
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Center for Advanced Genomic Technologies, and
- Duke Regeneration Center, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Wu CY, Cilic A, Pak O, Dartsch RC, Wilhelm J, Wujak M, Lo K, Brosien M, Zhang R, Alkoudmani I, Witte B, Pedersen F, Watz H, Voswinckel R, Günther A, Ghofrani HA, Brandes RP, Schermuly RT, Grimminger F, Seeger W, Sommer N, Weissmann N, Hadzic S. CEACAM6 as a Novel Therapeutic Target to Boost HO-1-mediated Antioxidant Defense in COPD. Am J Respir Crit Care Med 2023; 207:1576-1590. [PMID: 37219322 DOI: 10.1164/rccm.202208-1603oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/23/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Anis Cilic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruth Charlotte Dartsch
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kevin Lo
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ruoyu Zhang
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North, DZL, Grosshansdorf, Germany
| | | | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany; and
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|