1
|
Zhang Q, An N, Liu Y, Zhu Y, Pan W, Gu P, Zhao J, Pu Q, Zhu W. Alveolar type 2 cells marker gene SFTPC inhibits epithelial-to-mesenchymal transition by upregulating SOX7 and suppressing WNT/β-catenin pathway in non-small cell lung cancer. Front Oncol 2024; 14:1448379. [PMID: 39346732 PMCID: PMC11427448 DOI: 10.3389/fonc.2024.1448379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Surfactant Protein C gene (SFTPC) is a marker gene of alveolar type 2 cells (AT2), which are the key structures of alveoli. Mutations or deletions in SFTPC cause idiopathic pulmonary fibrosis (IPF). Importantly, IPF is an independent risk factor for non-small cell lung cancer (NSCLC). It suggests that abnormal expression of SFTPC may be relevant to development of NSCLC. However, the function and mechanism of SFTPC in NSCLC are still poor understood until now. Methods The expression of SFTPC and the relationship between SFTPC and prognosis of NSCLC were analyzed in TCGA database and our collected clinical NSCLC tissues. Subsequently, the function and mechanism of SFTPC in NSCLC were explored by RNA-sequence, qRT-PCR, Western blot, Immunohistochemical, Wound-healing, Millicell, Transwell assays and mouse tumor xenograft model. Results SFTPC was dramatically downregulated in NSCLC tissues from TCGA database and 40 out of 46 collected clinical LUAD tissues compared with adjacent non-tumor tissues. Low expression of SFTPC was associated with poor prognosis of LUAD by TCGA database. Importantly, we confirmed that overexpression of SFTPC significantly inhibited Epithelial-to-Mesenchymal Transition (EMT) process of NSCLC cells by upregulating SOX7 and then inactivating WNT/β-catenin pathway in vitro and in vivo. Particularly, we discovered that low expression of SFTPC was associated with EMT process and low expression of SOX7 in NSCLC tissues. Conclusion Our study revealed a novel mechanism of SFTPC in NSCLC development. Meanwhile, it also might provide a new clue for exploring the molecular mechanism about NSCLC development in patients with IPF in the future.
Collapse
Affiliation(s)
- Qiongyin Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning An
- Cancer Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wuliang Pan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiling Gu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinzhu Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Le NT, Dunleavy MW, Kumar RD, Zhou W, Bhatia SS, El-Hashash AH. Cellular therapies for idiopathic pulmonary fibrosis: current progress and future prospects. AMERICAN JOURNAL OF STEM CELLS 2024; 13:191-211. [PMID: 39308764 PMCID: PMC11411253 DOI: 10.62347/daks5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial, fibrotic lung disease characterized by progressive damage. Lung tissues with IPF are replaced by fibrotic tissues with increased collagen deposition, modified extracellular matrix, all which overall damages the alveoli. These changes eventually impede the gas exchange function of the alveoli, and eventually leads to fatal respiratory failure of the lung. Investigations have been conducted to further understand IPF's pathogenesis, and significant progress in understanding its development has been made. Additionally, two therapeutic treatments, Nintedanib and Pirfenidone, have been approved and are currently used in medical applications. Moreover, cell-based treatments have recently come to the forefront of developing disease therapeutics and are the focus of many current studies. Furthermore, a sizable body of research encompassing basic, pre-clinical, and even clinical trials have all been amassed in recent years and hold a great potential for more widespread applications in patient care. Herein, this article reviews the progress in understanding the pathogenesis and pathophysiology of IPF. Additionally, different cell types used in IPF therapy were reviewed, including alveolar epithelial cells (AECs), circulating endothelial progenitors (EPCs), mixed lung epithelial cells, different types of stem cells, and endogenous lung tissue-specific stem cells. Finally, we discussed the contemporary trials that employ or explore cell-based therapy for IPF.
Collapse
Affiliation(s)
- Nicholas T Le
- Biology Department, Texas A&M University College Station, TX, USA
| | | | - Rebecca D Kumar
- Biology Department, Texas A&M University College Station, TX, USA
| | - William Zhou
- The University of Texas at Austin Austin, TX, USA
| | | | | |
Collapse
|
3
|
Murthy A, Rodriguez LR, Dimopoulos T, Bui S, Iyer S, Chavez K, Tomer Y, Abraham V, Cooper C, Renner DM, Katzen JB, Bentley ID, Ghadiali SN, Englert JA, Weiss SR, Beers MF. Activation of alveolar epithelial ER stress by β-coronavirus infection disrupts surfactant homeostasis in mice: implications for COVID-19 respiratory failure. Am J Physiol Lung Cell Mol Physiol 2024; 327:L232-L249. [PMID: 38860845 PMCID: PMC11444511 DOI: 10.1152/ajplung.00324.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the β-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood. To study this, two murine models of coronavirus infection were used-mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse-adapted SARS-CoV-2 strain. MHV-1-infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased inositol-requiring enzyme 1α (IRE1α) signaling and a biphasic response in PKR-like ER kinase (PERK) signaling accompanied by marked reductions in AT2 and BALF surfactant protein (SP-B and SP-C) content, increases in surfactant surface tension, and emergence of a reprogrammed epithelial cell population (Krt8+ and Cldn4+). The loss of a homeostatic AT2 cell state was attenuated by treatment with the IRE1α inhibitor OPK-711. As a proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from β-coronavirus infection results from an aberrant host response, activating multiple AT2 UPR stress pathways, altering surfactant metabolism/function, and changing AT2 cell state, offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure.NEW & NOTEWORTHY COVID-19 syndrome is characterized by hypoxemic respiratory failure and high mortality. In this report, we use two murine models to show that β-coronavirus infection produces acute lung injury, which results from an aberrant host response, activating multiple epithelial endoplasmic reticular stress pathways, disrupting pulmonary surfactant metabolism and function, and forcing emergence of an aberrant epithelial transition state. Our results offer a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and respiratory failure.
Collapse
Affiliation(s)
- Aditi Murthy
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Luis R Rodriguez
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Thalia Dimopoulos
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sarah Bui
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Swati Iyer
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Katrina Chavez
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yaniv Tomer
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Valsamma Abraham
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Charlotte Cooper
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David M Renner
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Penn Center for Research on Coronaviruses and Emerging Pathogens, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jeremy B Katzen
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ian D Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Samir N Ghadiali
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Penn Center for Research on Coronaviruses and Emerging Pathogens, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Michael F Beers
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Bush A. Learning from cystic fibrosis: How can we start to personalise treatment of Children's Interstitial Lung Disease (chILD)? Paediatr Respir Rev 2024; 50:46-53. [PMID: 37996258 DOI: 10.1016/j.prrv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Cystic fibrosis (CF) is a monogenic disorder cause by mutations in the CF Transmembrane Regulator (CFTR) gene. The prognosis of cystic fibrosis has been transformed by the discovery of highly effective modulator therapies (HEMT). Treatment has changed from reactive therapy dealing with complications of the disease to pro-active correction of the underlying molecular functional abnormality. This has come about by discovering the detailed biology of the different CF molecular sub-endotypes; the development of biomarkers to assess response even in mild disease or young children; the performance of definitive large randomised controlled trials in patients with a common mutation and the development of in vitro testing systems to test efficacy in those patients with rare CFTR mutations. As a result, CF is now an umbrella term, rather than a specific diagnostic label; we have moved from clinical phenotypes to molecular subendotypes. Children's Interstitial Lung Diseases (chILDs) comprise more than 200 entities, and are a diverse group of diseases, for an increasing number of which an underlying gene mutation has been discovered. Many of these entities are umbrella terms, such as pulmonary alveolar proteinosis or hypersensitivity pneumonitis, for each of which there are multiple and very different endotypes. Even those chILDs for which a specific gene mutation has been discovered comprise, as with CF, different molecular subendotypes likely mandating different therapies. For most chILDs, current treatment is non-specific (corticosteroids, azithromycin, hydroxychloroquine). The variability of the different entities means that there is little evidence for the efficacy of any treatment. This review considers how some of the lessons of the success story of CF are being applied to chILD, thus opening the opportunities for truly personalised medicine in these conditions. Advances in knowledge in the molecular biology of surfactant protein C and Adenosine triphosphate binding cassette subfamily A member 3 (ABCA3), and the possibilities of discovering novel therapies by in vitro studies will especially be highlighted.
Collapse
Affiliation(s)
- Andrew Bush
- National Heart and Lung Institute, Imperial College, and Imperial Centre for Paediatrics and Child Health, Consultant Paediatric Chest Physician, Royal Brompton Hospital, UK.
| |
Collapse
|
5
|
Hurley K, Ozaki M, Philippot Q, Galvin L, Crosby D, Kirwan M, Gill DR, Alysandratos KD, Jenkins G, Griese M, Nathan N, Borie R. A roadmap to precision treatments for familial pulmonary fibrosis. EBioMedicine 2024; 104:105135. [PMID: 38718684 PMCID: PMC11096859 DOI: 10.1016/j.ebiom.2024.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Interstitial lung diseases (ILDs) in adults and children (chILD) are a heterogeneous group of lung disorders leading to inflammation, abnormal tissue repair and scarring of the lung parenchyma often resulting in respiratory failure and death. Inherited factors directly cause, or contribute significantly to the risk of developing ILD, so called familial pulmonary fibrosis (FPF), and monogenic forms may have a poor prognosis and respond poorly to current treatments. Specific, variant-targeted or precision treatments are lacking. Clinical trials of repurposed drugs, anti-fibrotic medications and specific treatments are emerging but for many patients no interventions exist. We convened an expert working group to develop an overarching framework to address the existing research gaps in basic, translational, and clinical research and identified areas for future development of preclinical models, candidate medications and innovative clinical trials. In this Position Paper, we summarise working group discussions, recommendations, and unresolved questions concerning precision treatments for FPF.
Collapse
Affiliation(s)
- Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Mari Ozaki
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Quentin Philippot
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France; Physiopathology and Epidemiology of Respiratory Diseases, Inserm U1152, UFR de Médecine, Université Paris Cité, 75018, Paris, France
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Overijse, Belgium
| | | | - Mary Kirwan
- Department of General Practice, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, United Kingdom; Gene Medicine Research Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Gisli Jenkins
- Imperial College London, 4615, National Heart & Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Matthias Griese
- Department of Pediatric Pneumology, German Center for Lung Research (DZL), Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Nadia Nathan
- Sorbonne Université, Pediatric Pulmonology and Reference Center for Rare Lung Diseases RespiRare, Inserm U933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, APHP, Paris, France
| | - Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| |
Collapse
|
6
|
Deng J, Liu J, Chen W, Liang Q, He Y, Sun G. Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis. Drug Des Devel Ther 2024; 18:1627-1650. [PMID: 38774483 PMCID: PMC11108075 DOI: 10.2147/dddt.s388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.
Collapse
Affiliation(s)
- JiuLing Deng
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - YuQiong He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
7
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
8
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
9
|
Rodriguez LR, Tang SY, Roque Barboza W, Murthy A, Tomer Y, Cai TQ, Iyer S, Chavez K, Das US, Ghosh S, Cooper CH, Dimopoulos TT, Babu A, Connelly C, FitzGerald GA, Beers MF. PGF2α signaling drives fibrotic remodeling and fibroblast population dynamics in mice. JCI Insight 2023; 8:e172977. [PMID: 37934604 PMCID: PMC10807712 DOI: 10.1172/jci.insight.172977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2α, and its cognate receptor FPr (Ptgfr) are implicated as a TGF-β1-independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (IER-SftpcI73T) expressing a disease-associated missense mutation in the surfactant protein C (Sftpc) gene. Tamoxifen-treated IER-SftpcI73T mice developed an early multiphasic alveolitis and transition to spontaneous fibrotic remodeling by 28 days. IER-SftpcI73T mice crossed to a Ptgfr-null (FPr-/-) line showed attenuated weight loss and gene dosage-dependent rescue of mortality compared with FPr+/+ cohorts. IER-SftpcI73T/FPr-/- mice also showed reductions in multiple fibrotic endpoints for which administration of nintedanib was not additive. Single-cell RNA-Seq, pseudotime analysis, and in vitro assays demonstrated Ptgfr expression predominantly within adventitial fibroblasts, which were reprogrammed to an "inflammatory/transitional" cell state in a PGF2α /FPr-dependent manner. Collectively, the findings provide evidence for a role for PGF2α signaling in IPF, mechanistically identify a susceptible fibroblast subpopulation, and establish a benchmark effect size for disruption of this pathway in mitigating fibrotic lung remodeling.
Collapse
Affiliation(s)
- Luis R. Rodriguez
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | - Soon Yew Tang
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Willy Roque Barboza
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | - Aditi Murthy
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | - Tian-Quan Cai
- Calico Life Sciences LLC, South San Francisco, California, USA
| | - Swati Iyer
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | - Katrina Chavez
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | - Ujjalkumar Subhash Das
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Soumita Ghosh
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charlotte H. Cooper
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | - Thalia T. Dimopoulos
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| | | | | | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine
- PENN-CHOP Lung Biology Institute, and
| |
Collapse
|
10
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
11
|
Tlatelpa-Romero B, Contreras-Cruz DA, Guerrero-Luna G, Hernández-Linares MG, Ruiz-Salgado S, Mendoza-Milla C, Romero Y, de-la-Rosa Paredes R, Oyarzábal LF, Mendoza-Sámano DA, Galván-León JA, Vázquez-de-Lara LG. Organic synthesis of 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine and its effect on the induction of apoptosis in normal human lung fibroblasts. Chem Phys Lipids 2023; 257:105349. [PMID: 37838345 DOI: 10.1016/j.chemphyslip.2023.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND /OBJECTIVE The phospholipid 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) comprises two fatty acid chains: glycerol, phosphate, and ethanolamine. PE participates in critical cellular processes such as apoptosis and autophagy, which places it as a target for designing new therapeutic alternatives in diseases such as pulmonary fibrosis. Therefore, this study aimed obtain PE through a six-step organic synthesis pathway and determine its biological effect on apoptosis induction in normal human lung fibroblasts (NHLF). METHODOLOGY The first step of the organic synthesis route began with protected glycerol that was benzylated at sn-3; later, it was deprotected to react with palmitic acid at sn-1, sn-2. To remove the benzyl group, hydrogenation was performed with palladium on carbon (Pd/C); subsequently, the molecule was phosphorylated in sn-3 with phosphorus oxychloride and triethylamine, and the intermediate was hydrolyzed in an acid medium to obtain the final compound. After PE synthesis, apoptosis assessment was performed: apoptosis was induced using exposure to annexin V-FITC/propidium iodide-ECD (PI) and quantified using flow cytometry. The experiments were performed in three NHLF cell lines with different concentrations of PE 10, 100 and 1000 µg/mL for 24 and 48 h. RESULTS The PE obtained by organic synthesis presented a melting point of 190-192 °C, a purity of 95%, and a global yield of 8%. The evaluation of apoptosis with flow cytometry showed that at 24 h, exposure to PE 10, 100, and 1000 µg/mL induces early apoptosis in 19.42%- 25.54%, while late apoptosis was only significant P < 0.05 in cells challenged with 100 µg/mL PE. At 48 h, NHLF exposed to PE 10, 100, and 1000 µg/mL showed decreasing early apoptosis: 28.69-32.16%, 12.59-18.84%, and 10.91-12.61%, respectively. The rest of the NHLF exposed to PE showed late apoptosis: 12.03-16-42%, 11.04-15.94%, and 49.23-51.28%. Statistical analysis showed a significance P < 0.05 compared to the control. CONCLUSION The organic synthesis route of PE allows obtaining rac-1,2-O-Dipalmitoyl-glycero-3-phosphoethanolamine (1), which showed an apoptotic effect on NHLF.
Collapse
Affiliation(s)
- Beatriz Tlatelpa-Romero
- Programa de Maestría y Doctorado en Ciencias Médicas, Ondotológicas y de la Salud, División de Estudios de Posgrado e Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico
| | | | - Gabriel Guerrero-Luna
- Centro de Química, Instituto de Ciencias. Herbario y Jardín Botánico Universitario. Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - María Guadalupe Hernández-Linares
- Centro de Química, Instituto de Ciencias. Herbario y Jardín Botánico Universitario. Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - Sinuhé Ruiz-Salgado
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Mexico
| | - Criselda Mendoza-Milla
- Laboratorio de Transducción de Señales, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Luis F Oyarzábal
- Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico
| | | | - Jiovani Alfredo Galván-León
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Luis G Vázquez-de-Lara
- Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico.
| |
Collapse
|
12
|
Rodriguez LR, Tang SY, Barboza WR, Murthy A, Tomer Y, Cai TQ, Iyer S, Chavez K, Das US, Ghosh S, Dimopoulos T, Babu A, Connelly C, FitzGerald GA, Beers MF. Disruption of Prostaglandin F 2α Receptor Signaling Attenuates Fibrotic Remodeling and Alters Fibroblast Population Dynamics in A Preclinical Murine Model of Idiopathic Pulmonary Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543956. [PMID: 37333249 PMCID: PMC10274762 DOI: 10.1101/2023.06.07.543956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2α, and its cognate receptor FPr (Ptfgr) are implicated as a TGFβ1 independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (IER - SftpcI73T) expressing a disease-associated missense mutation in the surfactant protein C (Sftpc) gene. Tamoxifen treated IER-SftpcI73T mice develop an early multiphasic alveolitis and transition to spontaneous fibrotic remodeling by 28 days. IER-SftpcI73T mice crossed to a Ptgfr null (FPr-/-) line showed attenuated weight loss and gene dosage dependent rescue of mortality compared to FPr+/+ cohorts. IER-SftpcI73T/FPr-/- mice also showed reductions in multiple fibrotic endpoints for which administration of nintedanib was not additive. Single cell RNA sequencing, pseudotime analysis, and in vitro assays demonstrated Ptgfr expression predominantly within adventitial fibroblasts which were reprogrammed to an "inflammatory/transitional" cell state in a PGF2α/FPr dependent manner. Collectively, the findings provide evidence for a role for PGF2α signaling in IPF, mechanistically identify a susceptible fibroblast subpopulation, and establish a benchmark effect size for disruption of this pathway in mitigating fibrotic lung remodeling.
Collapse
Affiliation(s)
- Luis R Rodriguez
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Soon Yew Tang
- Institute for Translational Medicine and Therapeutics; Department of Systems Pharmacology and Translational Therapeutics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Willy Roque Barboza
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Aditi Murthy
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Tian-Quan Cai
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | - Swati Iyer
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Katrina Chavez
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Ujjalkumar Subhash Das
- Institute for Translational Medicine and Therapeutics; Department of Systems Pharmacology and Translational Therapeutics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Soumita Ghosh
- Institute for Translational Medicine and Therapeutics; Department of Systems Pharmacology and Translational Therapeutics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Thalia Dimopoulos
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Apoorva Babu
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | | | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics; Department of Systems Pharmacology and Translational Therapeutics; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division Department of Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
- PENN-CHOP Lung Biology Institute; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA 19104
| |
Collapse
|