1
|
Sun H, Wang X, Guo Z, Hu Z, Yin Y, Duan S, Jia W, Lu W, Hu J. Fe 3O 4 Nanoparticles That Modulate the Polarisation of Tumor-Associated Macrophages Synergize with Photothermal Therapy and Immunotherapy (PD-1/PD-L1 Inhibitors) to Enhance Anti-Tumor Therapy. Int J Nanomedicine 2024; 19:7185-7200. [PMID: 39050876 PMCID: PMC11268759 DOI: 10.2147/ijn.s459400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Traditional surgical resection, radiotherapy, and chemotherapy have been the treatment options for patients with head and neck squamous cell carcinoma (HNSCC) over the past few decades. Nevertheless, the five-year survival rate for patients has remained essentially unchanged, and research into treatments has been relatively stagnant. The combined application of photothermal therapy (PTT) and immunotherapy for treating HNSCC has considerable potential. Methods Live-dead cell staining and CCK-8 assays proved that Fe3O4 nanoparticles are biocompatible in vitro. In vitro, cellular experiments utilized flow cytometry and immunofluorescence staining to verify the effect of Fe3O4 nanoparticles on the polarisation of tumor-associated macrophages. In vivo, animal experiments were conducted to assess the inhibitory effect of Fe3O4 nanoparticles on tumor proliferation under the photothermal effect in conjunction with BMS-1. Tumour tissue sections were stained to observe the effects of apoptosis and the inhibition of tumor cell proliferation. The histological damage to animal organs was analyzed by hematoxylin and eosin (H&E) staining. Results The stable photothermal properties of Fe3O4 nanoparticles were validated by in vitro cellular and in vivo animal experiments. Fe3O4 photothermal action not only directly triggered immunogenic cell death (ICD) and enhanced the immunogenicity of the tumor microenvironment but also regulated the expression of tumor-associated macrophages (TAMs), up-regulating CD86 and down-regulating CD206 to inhibit tumor growth. The PD-1/PD-L1 inhibitor promoted tumor suppression, and reduced tumor recurrence and metastasis. In vivo studies demonstrated that the photothermal action exhibited a synergistic effect when combined with immunotherapy, resulting in significant suppression of primary tumors and an extension of survival. Conclusion In this study, we applied Fe3O4 photothermolysis in a biomedical context, combining photothermolysis with immunotherapy, exploring a novel pathway for treating HNSCC and providing a new strategy for effectively treating HNSCC.
Collapse
Affiliation(s)
- Haishui Sun
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
| | - Xiao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of D&A for Metal Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, People’s Republic of China
| | - Zhaoyang Guo
- School of Stomatology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhenrong Hu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yuanchen Yin
- School of Stomatology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Shuhan Duan
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Wei Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of D&A for Metal Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, People’s Republic of China
| | - Jingzhou Hu
- Department of Oral and Maxillofacial - Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People’s Hospital, Danzhou, Hainan, People’s Republic of China
| |
Collapse
|
2
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
3
|
Romaní-Cubells E, Martínez-Erro S, Morales V, Chocarro-Calvo A, García-Martínez JM, Sanz R, García-Jiménez C, García-Muñoz RA. Magnetically modified-mitoxantrone mesoporous organosilica drugs: an emergent multimodal nanochemotherapy for breast cancer. J Nanobiotechnology 2024; 22:249. [PMID: 38745193 PMCID: PMC11092073 DOI: 10.1186/s12951-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Eva Romaní-Cubells
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Samuel Martínez-Erro
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Victoria Morales
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Ana Chocarro-Calvo
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - José M García-Martínez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - Raúl Sanz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain.
| | - Rafael A García-Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain.
| |
Collapse
|
4
|
Arnab MKH, Islam MR, Rahman MS. A comprehensive review on phytochemicals in the treatment and prevention of pancreatic cancer: Focusing on their mechanism of action. Health Sci Rep 2024; 7:e2085. [PMID: 38690008 PMCID: PMC11056788 DOI: 10.1002/hsr2.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background and Aims Pancreatic cancer develops in the normal tissues of the pancreas from malignant cells. The chance of recovery is not good, and the chance of survival 5 years following diagnosis is quite low. Pancreatic cancer treatment strategies such as radiotherapy and chemotherapy had relatively low success rates. Therefore, the present study aims to explore new therapies for treating pancreatic cancer. Methods The present study searched for information about pancreatic cancer pathophysiology, available treatment options; and their comparative benefits and challenges. Aiming to identify potential alternative therapeutics, this comprehensive review analyzed information from renowned databases such as Scopus, PubMed, and Google Scholar. Results In recent years, there has been a rise in interest in the possibility that natural compounds could be used as treatments for cancer. Cannabinoids, curcumin, quercetin, resveratrol, and triptolide are some of the anticancer phytochemicals now used to manage pancreatic cancer. The above compounds are utilized by inhibiting or stimulating biological pathways such as apoptosis, autophagy, cell growth inhibition or reduction, oxidative stress, epithelial-mesenchymal transformation, and increased resistance to chemotherapeutic drugs in the management of pancreatic cancer. Conclusion Right now, surgery is the only therapeutic option for patients with pancreatic cancer. However, most people who get sick have been diagnosed too late to benefit from potentially effective surgery. Alternative medications, like natural compounds and herbal medicines, are promising complementary therapies for pancreatic cancer. Therefore, we recommend large-scale standardized clinical research for the investigation of natural compounds to ensure their consistency and comparability in pancreatic cancer treatment.
Collapse
|
5
|
Alhusaini AM, Alghibiwi HK, Sarawi WS, Alsaab JS, Alshehri SM, Alqahtani QH, Alshanwani AR, Aljassas EA, Alsultan EN, Hasan IH. Resveratrol-Based Liposomes Improve Cardiac Remodeling Induced by Isoproterenol Partially by Modulating MEF2, Cytochrome C and S100A1 Expression. Dose Response 2024; 22:15593258241247980. [PMID: 38645382 PMCID: PMC11027597 DOI: 10.1177/15593258241247980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
Isoproterenol (ISO), a chemically synthesized catecholamine, belongs to β-adrenoceptor agonist used to treat bradycardia. The β-adrenergic agonist is an essential regulator of myocardial metabolism and contractility; however, excessive exposure to ISO can initiate oxidative stress and inflammation. This study aims to investigate the molecular mechanisms underlying ISO-induced cardiac remodeling, the protective efficacy of resveratrol (RSVR), and its liposomal formulation (L-RSVR) against such cardiac change. Wistar albino rats were evenly divided into 4 groups. Control group, ISO group received ISO (50 mg/kg, s.c.) twice a week for 2 weeks, and RSVR- and L-RSVR-treated groups in which rats received either RSVR or L-RSVR (20 mg/kg/day, p.o.) along with ISO for 2 weeks. ISO caused a significant elevation of the expression levels of BAX and MEF2 mRNA, S100A1 and cytochrome C proteins, as well as DNA fragmentation in cardiac tissue compared to the control group. Treatment with either RSVR or L-RSVR for 14 days significantly ameliorated the damage induced by ISO, as evidenced by the improvement of all measured parameters. The present study shows that L-RSVR provides better cardio-protection against ISO-induced cardiac injury in rats, most likely through modulation of cardiac S100A1 protein expression and inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Juman S. Alsaab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samiyah M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Qamraa H. Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aliah R. Alshanwani
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam A. Aljassas
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam N. Alsultan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Misra R, Sivaranjani A, Saleem S, Dash BR. Copper Nanoclusters as Novel Podium for Cancer Detection, Imaging, and Therapy Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:51-80. [PMID: 37938190 DOI: 10.1615/critrevtherdrugcarriersyst.2023044994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Nanoclusters (NCs) are meticulously small, kinetically stable, crystalline materials which hold immense potential as multifaceted catalysts for a broad range of biomedical applications. Metal NCs are atomically precise and exist within the range of Fermi wavelength of electrons. They are highly advantageous as functional materials as their physicochemical properties can be customized to meet specific requirements. Copper NCs (CuNCs) are emerging as an efficient substitute to the other existing metal NCs. The synthesis of CuNCs is highly methodical, fast, cost effective and does not involve any complicated manipulation. On the contrary to gold and silver NCs, copper is a vital trace element for humans that can be excreted easily out the body. Further, the relatively inexpensiveness and easy availability of copper aids in potential nanotechnological applications in large quantity. As such, CuNCs have attracted great interest among the research community recently. The modern developments in the strategy, synthesis, surface modifications, and use of CuNCs in diagnosis of disease, imaging and treatment have been discussed in the present review. Approaches to regulate and augment the emission of CuNCs, challenges and drawbacks have also been considered. This review brings to light the multifarious applications of CuNCs and their potential as emerging theranostic agents. It is anticipated that the visions and directions for translating existing developments in CuNCs from the laboratory to the clinic can be further improved and enhanced.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, School of Sciences, Jain University, Bangalore, Karnataka, India
| | - A Sivaranjani
- Advanced Institute for Wildlife Conservation, Chennai, Tamil Nadu, India
| | - Suraiya Saleem
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, Tamil Nadu, India
| | - Bignya Rani Dash
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
7
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
8
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
9
|
Tsou MH, Wu ZY, Chen GW, Lee CC, Lee ZH, Yuan WT, Lin SM, Lin HM. Diatom-derived mesoporous silica nanoparticles loaded with fucoidan for enhanced chemo-photodynamic therapy. Int J Biol Macromol 2023; 253:127078. [PMID: 37769769 DOI: 10.1016/j.ijbiomac.2023.127078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Combination therapy merges chemical photodynamic therapy (CPDT) to improve cancer treatment. It synergizes chemotherapy with photodynamic therapy (PDT), using photosensitizers to produce reactive oxygen species (ROS) when exposed to light, effectively killing drug-resistant cancer cells. It is not affected by drug resistance, making it an attractive option for combination with chemotherapy. In this study, the focus was on the design of a combination therapy of chemotherapy and PDT. They synthesized diatomaceous earth mesoporous silica nanoparticles (dMSN) containing lanthanide metal ions in a PDT composition. These nanoparticles can generate ROS under near-infrared light irradiation and have MRI and fluorescence imaging capabilities, confirming their phototherapeutic effect on HCT116 cancer cells at a 200 μg/mL concentration. Fucoidan, derived from brown algae, was used as the chemotherapy component. The fucoidan extracted from Sargassum oligocystum in Pingtung Haikou showed the highest anticancer activity, with cell viability of 57.4 % at 200 μg/mL on HCT116 cancer cells. For combination therapy, fucoidan was loaded into nanoparticles (dMSN-EuGd@fucoidan). Cell viability experiments revealed that at 200 μg/mL, the cell survival rate of dMSN-EuGd@Fucoidan on HCT116 cancer cells was 47.7 %. Combination therapy demonstrated superior anticancer efficacy compared to PDT or chemotherapy alone, successfully synthesizing nanoparticles for combined chemotherapy and photodynamic therapy.
Collapse
Affiliation(s)
- Min-Hsuan Tsou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Zhi-Yuan Wu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Wei Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Cheng-Chang Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Zui-Harng Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei Ting Yuan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Showe-Mei Lin
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
10
|
Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, Fan Z, Li J. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics 2023; 15:2233. [PMID: 37765202 PMCID: PMC10534854 DOI: 10.3390/pharmaceutics15092233] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Targeted drug delivery is a precise and effective strategy in oncotherapy that can accurately deliver drugs to tumor cells or tissues to enhance their therapeutic effect and, meanwhile, weaken their undesirable side effects on normal cells or tissues. In this research field, a large number of researchers have achieved significant breakthroughs and advances in oncotherapy. Typically, nanocarriers as a promising drug delivery strategy can effectively deliver drugs to the tumor site through enhanced permeability and retention (EPR) effect-mediated passive targeting and various types of receptor-mediated active targeting, respectively. Herein, we review recent targeted drug delivery strategies and technologies for enhancing oncotherapy. In addition, we also review two mainstream drug delivery strategies, passive and active targeting, based on various nanocarriers for enhancing tumor therapy. Meanwhile, a comparison and combination of passive and active targeting are also carried out. Furthermore, we discuss the associated challenges of passive and active targeted drug delivery strategies and the prospects for further study.
Collapse
Affiliation(s)
- Jianmin Li
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Qingluo Wang
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Guoyu Xia
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Nigela Adilijiang
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen 361002, China;
| | - Zhongxiong Fan
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| | - Jinyao Li
- College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (J.L.); (Q.W.); (G.X.); (N.A.)
| |
Collapse
|
11
|
Asemi R, Rajabpoor Nikoo N, Asemi Z, Shafabakhsh R, Hajijafari M, Sharifi M, Homayoonfal M, Davoodvandi A, Hakamifard A. Modulation of long non-coding RNAs by resveratrol as a potential therapeutic approach in cancer: A comprehensive review. Pathol Res Pract 2023; 246:154507. [PMID: 37196467 DOI: 10.1016/j.prp.2023.154507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
LncRNAs, or long non-coding RNAs, are a subset of RNAs that play a regulatory role in a wide range of biological functions, including RNA processing, epigenetic regulation, and signal transduction. Recent research indicates that lncRNAs play a key role in the development and spread of cancer by being dysregulated in the disease. In addition, lncRNAs have been linked to the overexpression of certain proteins that are involved in tumor development and progression. Resveratrol has anti-inflammatory and anti-cancer properties that it exerts through regulating different lncRNAs. By the regulation of tumor-supportive and tumor-suppressive lncRNAs, resveratrol acts as an anti-cancer agent. By downregulating the tumor-supportive lncRNAs DANCR, MALAT1, CCAT1, CRNDE, HOTAIR, PCAT1, PVT1, SNHG16, AK001796, DIO3OS, GAS5 and H19, and upregulating MEG3, PTTG3P, BISPR, PCAT29, GAS5, LOC146880, HOTAIR, PCA3, NBR2, this herbal remedy causes apoptosis and cytotoxicity. For the purpose of using polyphenols in cancer therapy, it would be helpful to have more in-depth knowledge about lncRNA modulation via resveratrol. Here, we discuss the current knowledge and future promise of resveratrol as modulators of lncRNAs in different cancers.
Collapse
Affiliation(s)
- Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| | - Nesa Rajabpoor Nikoo
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Islamic Republic of Iran.
| | - Atousa Hakamifard
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
12
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
13
|
Rottlerin promotes anti-metastatic events by ameliorating pharmacological parameters of paclitaxel: An in-vivo investigation in the orthotopic mouse model of breast cancer. Chem Biol Interact 2022; 366:110109. [PMID: 35995259 DOI: 10.1016/j.cbi.2022.110109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Despite substantial breakthroughs in cancer research, there is hardly any specific therapy available to date that can alleviate triple-negative breast cancer (TNBC). Paclitaxel is the first-line chemotherapy option, but its treatment is often associated with early discontinuation of therapy due to the development of resistance and/or precipitation of severe side effects. In the quest to establish a suitable combination therapy with a low dose of paclitaxel, we explored rottlerin (a pure and characterized phytoconstituent from Mallotus philippensis) because of its multifaceted pharmacological actions against cancer. The study was performed to assess the therapeutic effects of rottlerin (5-20 mg/kg) with a low dose of paclitaxel (5 mg/kg) using a highly aggressive mouse mammary carcinoma model. Rottlerin augmented the paclitaxel effect by reducing tumor burden as well as metastatic lung nodules formation. Rottlerin in combination with paclitaxel remarkably altered the expression of vital epithelial-mesenchymal transition (EMT) markers such as E-cadherin, Snail 1, & Vimentin and thus improved the anti-metastatic efficacy of paclitaxel. Significant attenuation of anti-apoptotic protein (Bcl-2) along with amplification of pro-apoptotic (cleaved PARP) marker confers that rottlerin could ameliorate the pro-apoptotic potential of paclitaxel. In this study, a rational combination of rottlerin and paclitaxel treatment curtailed CYP2J2 expression and epoxyeicosatrienoic acids (EETs) levels, responsible for restrain tumor growth and metastasis. Additionally, rottlerin lessened paclitaxel treatment-mediated hematological alterations and prevented paclitaxel treatment-linked key serum biochemical changes related to organ toxicities. These rottlerin treatment-mediated protective changes are closely associated with the lower paclitaxel accumulation in the corresponding tissues. Rottlerin caused significant pharmacokinetic interaction with paclitaxel to boost the plasma level of paclitaxel in a typical mouse model and possibly helpful towards the use of a low dose of paclitaxel in combination. Overall, it can be stated that rottlerin has significant potential to augment the anti-metastatic efficacy of paclitaxel via impeding EMT activation along with attenuating its treatment-associated toxicological alterations. Hence, rottlerin has significant potential to explore further as a suitable neoadjuvant therapy with paclitaxel against TNBC.
Collapse
|
14
|
Application of Dendrimers in Anticancer Diagnostics and Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103237. [PMID: 35630713 PMCID: PMC9144149 DOI: 10.3390/molecules27103237] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
The application of dendrimeric constructs in medical diagnostics and therapeutics is increasing. Dendrimers have attracted attention due to their compact, spherical three-dimensional structures with surfaces that can be modified by the attachment of various drugs, hydrophilic or hydrophobic groups, or reporter molecules. In the literature, many modified dendrimer systems with various applications have been reported, including drug and gene delivery systems, biosensors, bioimaging contrast agents, tissue engineering, and therapeutic agents. Dendrimers are used for the delivery of macromolecules, miRNAs, siRNAs, and many other various biomedical applications, and they are ideal carriers for bioactive molecules. In addition, the conjugation of dendrimers with antibodies, proteins, and peptides allows for the design of vaccines with highly specific and predictable properties, and the role of dendrimers as carrier systems for vaccine antigens is increasing. In this work, we will focus on a review of the use of dendrimers in cancer diagnostics and therapy. Dendrimer-based nanosystems for drug delivery are commonly based on polyamidoamine dendrimers (PAMAM) that can be modified with drugs and contrast agents. Moreover, dendrimers can be successfully used as conjugates that deliver several substances simultaneously. The potential to develop dendrimers with multifunctional abilities has served as an impetus for the design of new molecular platforms for medical diagnostics and therapeutics.
Collapse
|
15
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
16
|
Wang Q, Yen YT, Xie C, Liu F, Liu Q, Wei J, Yu L, Wang L, Meng F, Li R, Liu B. Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Deliv 2021; 28:510-519. [PMID: 33657950 PMCID: PMC7935125 DOI: 10.1080/10717544.2021.1886378] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
Intra-tumor heterogeneity is widely accepted as one of the key factors, which hinders cancer patients from achieving full recovery. Especially, cancer stem cells (CSCs) may exhibit self-renewal capacity, which makes it harder for complete elimination of tumor. Therefore, simultaneously inhibiting CSCs and non-CSCs in tumors becomes a promising strategy to obtain sustainable anticancer efficacy. Salinomycin (Sal) was reported to be critical to inhibit CSCs. However, the poor bioavailability and catastrophic side effects brought about limitations to clinical practice. To solve this problem, we previously constructed gelatinase-stimuli nanoparticles composed of nontoxic, biocompatible polyethylene glycol-polycaprolactone (PEG-PCL) copolymer with a gelatinase-cleavable peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG) inserted between the two blocks of the copolymer. By applying our "smart" gelatinase-responsive nanoparticles for Sal delivery, we have demonstrated specific accumulation in tumor, anti-CSCs ability and reduced toxicity of Sal-NPs in our previous study. In the present study, we synthesized Sal-Docetaxel-loaded gelatinase-stimuli nanoparticles (Sal-Doc NP) and confirmed single emulsion as the optimal method of producing Sal-Doc NPs (Sal-Doc SE-NP) in comparison with nanoprecipitation. Sal-Doc SE-NPs inhibited both CSCs and non-CSCs in mice transplanted with cervical cancer, and might be associated with enhanced restriction of epithelial-mesenchymal transition (EMT) pathway. Besides, the tumorigenic capacity and growing speed were obviously suppressed in Sal-Doc-SE-NPs-treated group in rechallenge experiment. Our results suggest that Sal-Doc-loaded gelatinase-stimuli nanoparticles could be a promising strategy to enhance antitumor efficacy and reduce side effects by simultaneously suppressing CSCs and non-CSCs.
Collapse
Affiliation(s)
- Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ying-Tzu Yen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Fangcen Liu
- Department of pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
De K. Decapeptide Modified Doxorubicin Loaded Solid Lipid Nanoparticles as Targeted Drug Delivery System against Prostate Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13194-13207. [PMID: 34723562 DOI: 10.1021/acs.langmuir.1c01370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Growing instances of prostate cancer with poor prognosis have become a challenging task in cancer therapy. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in prostate cancer cells. Polyethylene glycol (PEG) conjugated lipids exhibit superiority in terms of retention/circulation in biological systems. PEGylated dipalmitoylphosphatedylethanolamine (DPPE-PEG), covalently linked with 6-hydrazinopyridine-3-carboxylic-acid, was conjugated with new LHRH-receptor positive peptide analog (DPPE-PEG-HYNIC-d-Glu-His-Trp-Ser-Tyr-d-Asn-Leu-d-Gln-Pro-Gly-NH2). Surface modified doxorubicin (DOX) loaded solid lipid nanoparticle (SLN) was prepared using soylecithin, stearic acid and Poloxamer-188 by solvent emulsification/evaporation method for targeted delivery of DOX into prostate cancer cells. SLN, DOX loaded SLN (DSLN) and surface modified DSLN (M-DSLN) were characterized by means of their size, zeta potential, morphology, storage time, drug payload, and subsequent release kinetics studies. Homogeneity of surface morphology, upon modification of SLN, was revealed from the dynamic light scattering, atomic force microscopy, and scanning electron microscopic studies. Homogeneous adsolubilization of DOX throughout the hydrophobic moiety of SLN was established by the differential scanning calorimetric studies. Release of DOX were sustained in DSLN and M-DSLN. Cellular uptake and in vitro activities of formulations against LHRH positive PC3/SKBR3 cancer cell lines revealed higher cellular internalization, cytotoxicity that followed the sequence DOX < DSLN < M-DSLN. Dye staining and flow cytometry studies revealed higher apoptosis in cancer cells. Such receptor specific drug delivery systems are considered to have substantial potential in prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal India
| |
Collapse
|
18
|
Jabalera Y, Montalban-Lopez M, Vinuesa-Rodriguez JJ, Iglesias GR, Maqueda M, Jimenez-Lopez C. Antibacterial directed chemotherapy using AS-48 peptide immobilized on biomimetic magnetic nanoparticles combined with magnetic hyperthermia. Int J Biol Macromol 2021; 189:206-213. [PMID: 34419547 DOI: 10.1016/j.ijbiomac.2021.08.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 12/01/2022]
Abstract
The design of new strategies to increase the effectiveness of the antibacterial treatments is a main goal in public health. So, the aim of the study was to achieve a local antibacterial directed therapy as novel alternative allowing both, the delivery of the drug at the target, while minimizing undesirable side effects, thus anticipating an enhanced effectiveness. Hence, we have developed an innovative nanoformulation composed by biomimetic magnetic nanoparticles functionalized with the antimicrobial peptide AS-48 and its potential against Gram-positive and Gram-negative bacteria, either by itself or combined with magnetic hyperthermia has been investigated. Besides, the physical properties, binding efficiency, stability and mechanism of action of this nanoassembly are analyzed. Remarkably, the nanoassembly has a strong bactericidal effect on Gram-positive bacteria, but surprisingly also on E. coli and, finally, when combined with magnetic hyperthermia, on P. aeruginosa and K. pneumoniae. The results obtained represent a breakthrough since it allows a local treatment of infections, reducing and concentrating the dose of antimicrobial compounds, avoiding secondary effects, including the resistance generation and particularly because the combination with magnetic hyperthermia helps sensitizing resistant bacteria to the bactericidal effect of AS-48. Thus, this new formulation should be considered a promising tool in the antibacterial fight.
Collapse
Affiliation(s)
- Y Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - M Montalban-Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - J J Vinuesa-Rodriguez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - G R Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - M Maqueda
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - C Jimenez-Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
19
|
Jabalera Y, Sola-Leyva A, Gaglio SC, Carrasco-Jiménez MP, Iglesias GR, Perduca M, Jimenez-Lopez C. Enhanced Cytotoxic Effect of TAT-PLGA-Embedded DOXO Carried by Biomimetic Magnetic Nanoparticles upon Combination with Magnetic Hyperthermia and Photothermia. Pharmaceutics 2021; 13:1168. [PMID: 34452129 PMCID: PMC8398382 DOI: 10.3390/pharmaceutics13081168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022] Open
Abstract
The synergy between directed chemotherapy and thermal therapy (both magnetic hyperthermia and photothermia) mediated by a nanoassembly composed of functionalized biomimetic magnetic nanoparticles (BMNPs) with the chemotherapeutic drug doxorubicin (DOXO) covered by the polymer poly(lactic-co-glycolic acid) (PLGA), decorated with TAT peptide (here referred to as TAT-PLGA(DOXO-BMNPs)) is explored in the present study. The rationale behind this nanoassembly lies in an optimization of the nanoformulation DOXO-BMNPs, already demonstrated to be more efficient against tumor cells, both in vitro and in vivo, than systemic traditional therapies. By embedding DOXO-BMNPs into PLGA, which is further functionalized with the cell-penetrating TAT peptide, the resulting nanoassembly is able to mediate drug transport (using DOXO as a drug model) and behaves as a hyperthermic agent (induced by an alternating magnetic field (AMF) or by laser irradiation with a laser power density of 2 W/cm2). Our results obtained using the HepG2 cell line show that there is a synergy between chemotherapy and thermal therapy that results in a stronger cytotoxic effect when compared to that caused by the soluble DOXO. This is probably due to the enhanced DOXO release occurring upon the application of the thermal therapy, as well as the induced local temperature rise mediated by BMNPs in the nanoassembly following exposition to AMF or to near-infrared (NIR) laser irradiation. These results represent a proof of concept demonstrating that TAT-PLGA(DOXO-BMNPs) can be used to efficiently combine therapies against tumor cells, which is a step forward in the transition from systemic to local treatments.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain
| | | | | | - Guillermo R. Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | | |
Collapse
|
20
|
Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, Eyvazi S. Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines. Biol Proced Online 2021; 23:13. [PMID: 34193050 PMCID: PMC8245152 DOI: 10.1186/s12575-021-00147-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient. One of the compelling immunotherapy approaches to increase the efficiency of CRC therapy is the deployment of therapeutic mAbs, nanobodies, bi-specific antibodies and cancer vaccines, which improve clinical outcomes in patients. Also, among the possible therapeutic approaches for CRC patients, gene vaccines in combination with antibodies are recently introduced as a new perspective. Here, we aimed to present the current progress in CRC immunotherapy, especially using Bi-specific antibodies and dendritic cells mRNA vaccines. For this aim, all data were extracted from Google Scholar, PubMed, Scopus, and Elsevier, using keywords cancer vaccines; CRC immunotherapy and CRC mRNA vaccines. About 97 articles were selected and investigated completely based on the latest developments and novelties on bi-specific antibodies, mRNA vaccines, nanobodies, and MGD007.
Collapse
Affiliation(s)
- Ali Azadi
- Department of Medicine, De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Alireza Golchini
- Cancer surgery Department; Shiraz Medical School, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
21
|
Li H, Zhuo H, Yin D, Li W, Zhang Y, Li P, Zou L. Intra-Articular Injection of a Nanosuspension of Tetramethylpyrazine Dihydroxynaphthalenate for Stronger and Longer-Lasting Effects Against Osteoarthritis. J Biomed Nanotechnol 2021; 17:1199-1207. [PMID: 34167632 DOI: 10.1166/jbn.2021.3094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tetramethylpyrazine (TMP), isolated from the rhizome of the traditional Chinese medicinal plant Chuanxiong (Ligusticum wallichii Franchat) shows therapeutic efficacy against osteoarthritis. After intra-articular injection, the retention time of TMP in the joint cavity is short, which limits its treatment effect. To avoid this problem, the present study explored the preparation of a TMP nanosuspension (TMP-NS) based on hydrophobic ion pairing. TMP-NS showed a particle size of approximately 588 nm and, after intra-articular injection in rats, it had longer retention in the articular cavity, higher TMP concentrations in joints, and greater anti-osteoarthritic efficacy than TMP solution. TMP-NS didn't cause significant inflammation at the joint. These results suggest that TMP-NS may strengthen and prolong the therapeutic efficacy of TMP against osteoarthritis without systemic toxicity.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hongyi Zhuo
- Zigong First People's Hospital, Zigong, 643000, China
| | - Dan Yin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clnical Medical College of Chengdu University, Chengdu, 610081, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, Peoples Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
22
|
Cano-Garrido O, Álamo P, Sánchez-García L, Falgàs A, Sánchez-Chardi A, Serna N, Parladé E, Unzueta U, Roldán M, Voltà-Durán E, Casanova I, Villaverde A, Mangues R, Vázquez E. Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4 + Cancers. Cancers (Basel) 2021; 13:2929. [PMID: 34208189 PMCID: PMC8230831 DOI: 10.3390/cancers13122929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
The accumulated molecular knowledge about human cancer enables the identification of multiple cell surface markers as highly specific therapeutic targets. A proper tumor targeting could significantly avoid drug exposure of healthy cells, minimizing side effects, but it is also expected to increase the therapeutic index. Specifically, colorectal cancer has a particularly poor prognosis in late stages, being drug targeting an appropriate strategy to substantially improve the therapeutic efficacy. In this study, we have explored the potential of the human albumin-derived peptide, EPI-X4, as a suitable ligand to target colorectal cancer via the cell surface protein CXCR4, a chemokine receptor overexpressed in cancer stem cells. To explore the potential use of this ligand, self-assembling protein nanoparticles have been generated displaying an engineered EPI-X4 version, which conferred a modest CXCR4 targeting and fast and high level of cell apoptosis in tumor CXCR4+ cells, in vitro and in vivo. In addition, when EPI-X4-based building blocks are combined with biologically inert polypeptides containing the CXCR4 ligand T22, the resulting biparatopic nanoparticles show a dramatically improved biodistribution in mouse models of CXCR4+ human cancer, faster cell internalization and enhanced target cell death when compared to the version based on a single ligand. The generation of biparatopic materials opens exciting possibilities in oncotherapies based on high precision drug delivery based on the receptor CXCR4.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
23
|
Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, Akbarzadeh A, Marjani A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Vurro F, Jabalera Y, Mannucci S, Glorani G, Sola-Leyva A, Gerosa M, Romeo A, Romanelli MG, Malatesta M, Calderan L, Iglesias GR, Carrasco-Jiménez MP, Jimenez-Lopez C, Perduca M. Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles. NANOMATERIALS 2021; 11:nano11030766. [PMID: 33803544 PMCID: PMC8002967 DOI: 10.3390/nano11030766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lactic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Internalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanoformulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here.
Collapse
Affiliation(s)
- Federica Vurro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Giulia Glorani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Marco Gerosa
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Alessandro Romeo
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Guillermo R. Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - María P. Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
- Correspondence: (C.J.-L.); (M.P.); Tel.: +34-958-249-833 (C.J.-L.); +39-045-802-7984 (M.P.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
- Correspondence: (C.J.-L.); (M.P.); Tel.: +34-958-249-833 (C.J.-L.); +39-045-802-7984 (M.P.)
| |
Collapse
|
25
|
Sudri S, Duadi H, Altman F, Allon I, Ashkenazy A, Chakraborty R, Novikov I, Fixler D, Hirshberg A. Diffusion Reflection Method for Early Detection of Oral Squamous Cell Carcinoma Specifically Targeted by Circulating Gold-Nanorods Bio-Conjugated to Anti-Epidermal Growth Factor Receptor. Int J Nanomedicine 2021; 16:2237-2246. [PMID: 33762823 PMCID: PMC7982793 DOI: 10.2147/ijn.s300125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Translation of nanomedical developments into clinical application is receiving an increasing interest. However, its use for oral squamous cell carcinoma (OSCC) diagnosis remains limited. We present an advanced nanophotonic method for oral cancer detection, based on diffusion reflection (DR) measurements of gold-nanorods bio-conjugated to anti-epidermal growth factor receptor (C-GNRs) specifically attached to OSCC cells. OBJECTIVE To investigate in a rat model of oral carcinogenesis the targeting potential of C-GNRs to OSCC by using the DR optical method. MATERIALS AND METHODS OSCC was induced by the carcinogen 4-nitroquinoline-N-oxide (4NQO). C-GNRs were introduced locally and systemically and DR measurements were recorded from the surface of the rat tongue following illumination with red laser beam. Rats were divided into experimental and control groups. The results were compared with the histologic diagnosis. RESULTS A total of 75 Wistar-derived rats were enrolled in the study. Local application did not reveal any statistical results. DR measurements following intravenous injection of C-GNRs revealed a significant increase in light absorption in rats with OSCC compare with rats without cancer (p<0.02, sensitivity 100%, specificity 89%). In addition, absorption of light increased significantly in cases of severe dysplasia and cancer (high risk) compared to rats without cancer and rats with mild dysplasia (low risk) (86% sensitivity and 89% specificity, AUC=0.79). CONCLUSION Combining nanotechnology and nanophotonics for in vivo diagnosis of OSCC serves as additional tier in the translation of advanced nanomedical developments into clinical applications. The presented method shows a promising potential of nanophotonics for oral cancer identification, and provides support for the use of C-GNRs as a selective drug delivery.
Collapse
Affiliation(s)
- Shiran Sudri
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Florin Altman
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Allon
- Institute of Pathology, Barzilai Medical Center, Ben Gurion University of the Negev, Beer Sheba, Israel
| | - Ariel Ashkenazy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Ruchira Chakraborty
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Ilya Novikov
- Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Liu Y, Jiang J, Liu C, Zhao W, Ma Y, Zheng Z, Zhou Q, Zhao Y. Synergistic anti-tumor effect of anti-PD-L1 antibody cationic microbubbles for delivery of the miR-34a gene combined with ultrasound on cervical carcinoma. Am J Transl Res 2021; 13:988-1005. [PMID: 33841635 PMCID: PMC8014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
This study explored the synergistic effect of anti-PD-L1 antibody cationic microbubbles (MBs) for delivery of the miR-34a gene combined with ultrasound in inhibiting the cervical cancer. H&E stain, TUNEL, immunohistochemistry and RT-PCR were used to detect the change of apoptosis regulatory factors, and immunofluorescence, Flow cytometry and LDH assays were applied to evaluate the changing of immunomodulatory. In this experiment the PD-L1 Ab/miR-34a-MBs were prepared successfully. The cell targeting assay showed that U14 cells were surrounded by the PD-L1 Ab/miR-34a-MBs and microbubbles had well contrast imaging capability in vivo. With the irradiation power was 1 W/cm2 and the irradiation time was 25 s, the gene transfection efficiency was the highest using EGFP plasmid lorded microbubbles. In vivo anti-tumor assays, the PD-L1 Ab/miR-34a-MBs showed a great potential in inhibiting tumor growth with a TGI of >50%. PD-L1 Ab/miR-34a-MBs treatment enhanced the anti-tumor effect compared with that induced by PD-L1 Ab or miR-34a alone. Firstly, PD-L1 Ab/miR-34a-MBs could gather miR-34a with high-concentration aggregation and releasing around the cervical cancer, which takes a significant role in promoting apoptosis by downregulated Bcl-2 and upregulated Bax. Furthermore, combination therapy was found to augment the activation of T lymphocytes proliferation and increase CD8+ T cells infiltration, to enhance antitumor immune killing effect. The anti-PD-L1 antibody microbubbles for delivery miR-34a gene with ultrasound were considered to be a promising combination therapy regimen via initiating apoptotic mechanism of the tumor and anti-tumor immune regulation.
Collapse
Affiliation(s)
- Yun Liu
- Echo Laboratory, Department of Ultrasound Imaging, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Jinjun Jiang
- Medical College of China Three Gorges UniversityYichang, China
| | - Chaoqi Liu
- Medical College of China Three Gorges UniversityYichang, China
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyYichang, China
| | - Wensi Zhao
- Cancer Center, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Yao Ma
- Medical College of China Three Gorges UniversityYichang, China
| | - Zhiwei Zheng
- Medical College of China Three Gorges UniversityYichang, China
| | - Qing Zhou
- Echo Laboratory, Department of Ultrasound Imaging, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Yun Zhao
- Medical College of China Three Gorges UniversityYichang, China
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyYichang, China
| |
Collapse
|
27
|
Wang X, Li S, Liu H. Co-delivery of chitosan nanoparticles of 5-aminolevulinic acid and shGBAS for improving photodynamic therapy efficacy in oral squamous cell carcinomas. Photodiagnosis Photodyn Ther 2021; 34:102218. [PMID: 33592329 DOI: 10.1016/j.pdpdt.2021.102218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The improvement of gene therapy provides hope for the treatment of cancer. However, malignant tumor is a multifactorial disease, which remains difficult to be cured with a single therapy. Our previous study reported that mitochondrial genes glioblastoma-amplified sequence (GBAS) plays a role in the development and treatment of oral squamous cell carcinoma (OSCC). The current study focused on building a mitochondrial-targeting drug co-delivery system for combined photodynamic therapy (PDT) and gene therapy. METHODS 5-aminolevulinic acid (ALA) photosensitizer loaded chitosan (CS) nanoparticles were prepared using ionic crosslinking method, and further synthesized with the GBAS gene plasmid DNA (shGBAS) by electrostatic attraction. We detected the effects of PDT using the co-delivery system (CS-ALA-shGBAS) on cell proliferation and mitochondrial injury by MTT and reactive oxygen species (ROS) assays, respectively. Additionally, a oral cancer Xenograft model of nude mice was built to test its inhibitive effect on the cancerous growth in vivo. RESULTS A novel nanocomposite, CS-ALA-shGBAS, was found to be spherical structures and had good dispersion, stability and hypotoxicity. Gel retardation assay showed that CS-ALA nanoparticle could synthesize shGBAS at and above Nanoparticle/Plasmid ratios of 1/2. Excitingly, the co-delivery system was suitable for transfected cells and displayed a superior mitochondrially targeted killing effect on OSCC in vitro and in vivo. CONCLUSION Our study provides evidence that the chitosan-based co-delivery system of ALA-induced protoporphyrin IX (PpIX) photosensitizer and GBAS gene may be a novel mode of combined therapy for OSCC.
Collapse
Affiliation(s)
- Xing Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China; Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Shufang Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
28
|
Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Murugesan K, Srinivasan P, Mahadeva R, Gupta CM, Haq W. Tuftsin-Bearing Liposomes Co-Encapsulated with Doxorubicin and Curcumin Efficiently Inhibit EAC Tumor Growth in Mice. Int J Nanomedicine 2020; 15:10547-10559. [PMID: 33414637 PMCID: PMC7783201 DOI: 10.2147/ijn.s276336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Targeted multidrug-loaded delivery systems have emerged as an advanced strategy for cancer treatment. In this context, antibodies, hormones, and small peptides have been coupled to the surface of drug carriers, such as liposomes, polymeric and metallic nanoparticles loaded with drugs, as tumor-specific ligands. In the present study, we have grafted a natural macrophage stimulating peptide, tuftsin, on the surface of the liposomes (LPs) that were loaded with doxorubicin (DOX) and/or curcumin (CUR), by attaching to its C-terminus a palmitoyl residue (Thr-Lys-Pro-Arg-CO-NH-(CH2)2-NH-COC15H31, P.Tuft) to enable its grafting within the liposome’s bilayer. Methods The prepared drug-loaded liposomes (DOX LPs, CUR LPs, DOX-CUR LPs, P.Tuft-LPs, P.Tuft-DOX LPs, P.Tuft-CUR LPs, P.Tuft-DOX-CUR LPs) were thoroughly characterised in terms of particle size, drug content, encapsulation efficiency and structural properties using UV–visible spectroscopy, dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). The anti-cancer activity and drug toxicity of the liposomal formulations were examined on Ehrlich ascites carcinoma (EAC) tumor-induced mice model. Results A significant reduction in the tumor weight and volume was observed upon treating the tumor-bearing mice with palmitoyl tuftsin-grafted dual drug-loaded liposomes (P.Tuft-DOX-CUR LPs), as compared to the single drug/peptide-loaded formulation (DOX LPs, CUR LPs, DOX-CUR LPs, P.Tuft- LPs, P.Tuft-DOX LPs, P.Tuft-CUR LPs). Western blot analysis revealed that the tumor inhibition was associated with p53-mediated apoptotic pathway. Further, the biochemical and histological analysis revealed that the various liposomal preparation used in this study were non-toxic to the animals at the specified dose (10mg/kg). Conclusion In conclusion, we have developed a targeted liposomal formulation of P.Tuftsin-bearing liposomes co-encapsulated with effective anti-cancer drugs such as doxorubicin and curcumin. In experimental animals, tumor inhibition by P.Tuft-DOX-CUR LPs indicates the synergistic therapeutic effect of the peptide and the dual drug.
Collapse
Affiliation(s)
| | | | | | - Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - Wahajul Haq
- Central Drug Research Institute (CDRI), Medicinal and Process Chemistry Division, Lucknow, India
| |
Collapse
|
30
|
Therapeutic Potential of the Natural Compound S-Adenosylmethionine as a Chemoprotective Synergistic Agent in Breast, and Head and Neck Cancer Treatment: Current Status of Research. Int J Mol Sci 2020; 21:ijms21228547. [PMID: 33202711 PMCID: PMC7697526 DOI: 10.3390/ijms21228547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
The present review summarizes the most recent studies focusing on the synergistic antitumor effect of the physiological methyl donor S-adenosylmethionine (AdoMet) in association with the main drugs used against breast cancer and head and neck squamous cell carcinoma (HNSCC), two highly aggressive and metastatic malignancies. In these two tumors the chemotherapy approach is recommended as the first choice despite the numerous side effects and recurrence of metastasis, so better tolerated treatments are needed to overcome this problem. In this regard, combination therapy with natural compounds, such as AdoMet, a molecule with pleiotropic effects on multiple cellular processes, is emerging as a suitable strategy to achieve synergistic anticancer efficacy. In this context, the analysis of studies conducted in the literature highlighted AdoMet as one of the most effective and promising chemosensitizing agents to be taken into consideration for inclusion in emerging antitumor therapeutic modalities such as nanotechnologies.
Collapse
|
31
|
Ben Toumia I, Sobeh M, Ponassi M, Banelli B, Dameriha A, Wink M, Chekir Ghedira L, Rosano C. A Methanol Extract of Scabiosa atropurpurea Enhances Doxorubicin Cytotoxicity against Resistant Colorectal Cancer Cells In Vitro. Molecules 2020; 25:molecules25225265. [PMID: 33198146 PMCID: PMC7697796 DOI: 10.3390/molecules25225265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is a malignancy with a high incidence. Currently, the drugs used in chemotherapy are often accompanied by strong side effects. Natural secondary metabolites can interfere with chemotherapeutic drugs and intensify their cytotoxic effects. This study aimed to profile the secondary metabolites from the methanol extract of Scabiosa atropurpurea and investigate their in vitro activities, alone or in combination with the chemotherapeutic agent doxorubicin. MTT assay was used to determine the cytotoxic activities. Annexin-V/PI double-staining analysis was employed to evaluate the apoptotic concentration. Multicaspase assay, quantitative reverse transcription real-time PCR (RT-qPCR), and ABC transporter activities were also performed. LC-MS analysis revealed 31 compounds including phenolic acids, flavonoids, and saponins. S. atropurpurea extract intensified doxorubicin anti-proliferative effects against resistant tumor cells and enhanced the cytotoxic effects towards Caco-2 cells after 48 h. The mRNA expression levels of Bax, caspase-3, and p21 were increased significantly whereas Bcl-2 expression level was decreased. Furthermore, the methanol extract reversed P-glycoprotein or multidrug resistance-associated protein in Caco-2 cells. In conclusion, S. atropurpurea improved chemosensitivity and modulated multidrug resistance in Caco-2 cells which makes it a good candidate for further research in order to develop a new potential cancer treatment.
Collapse
Affiliation(s)
- Imene Ben Toumia
- Unit of Bioactive Natural Substances and Biotechnology UR17ES47, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, 5000 Monastir, Tunisia;
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (M.S.); (A.D.); (M.W.)
- IRCCS Policlinico San Martino, Largo R. Benzi 10, I-16132 Genova, Italy; (M.P.); (B.B.)
- Correspondence: (I.B.T.); (C.R.)
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (M.S.); (A.D.); (M.W.)
- AgroBioSciences Research, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, 43150 Ben-Guerir, Morocco
| | - Marco Ponassi
- IRCCS Policlinico San Martino, Largo R. Benzi 10, I-16132 Genova, Italy; (M.P.); (B.B.)
| | - Barbara Banelli
- IRCCS Policlinico San Martino, Largo R. Benzi 10, I-16132 Genova, Italy; (M.P.); (B.B.)
| | - Anas Dameriha
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (M.S.); (A.D.); (M.W.)
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (M.S.); (A.D.); (M.W.)
| | - Leila Chekir Ghedira
- Unit of Bioactive Natural Substances and Biotechnology UR17ES47, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, 5000 Monastir, Tunisia;
| | - Camillo Rosano
- IRCCS Policlinico San Martino, Largo R. Benzi 10, I-16132 Genova, Italy; (M.P.); (B.B.)
- Correspondence: (I.B.T.); (C.R.)
| |
Collapse
|
32
|
Albukhaty S, Al-Musawi S, Abdul Mahdi S, Sulaiman GM, Alwahibi MS, Dewir YH, Soliman DA, Rizwana H. Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells. Molecules 2020; 25:molecules25204721. [PMID: 33076247 PMCID: PMC7587551 DOI: 10.3390/molecules25204721] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate the prepared FA-DEX-VBL-SPION, such as field emission scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering (DLS), Zeta Potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM). The delivery system capacity was evaluated by loading and release experiments. Moreover, in vitro biological studies, including a cytotoxicity study, cellular uptake assessment, apoptosis analysis, and real-time PCR, were carried out. The results revealed that the obtained nanocarrier was spherical with a suitable dispersion and without visible aggregation. Its average size, polydispersity, and zeta were 74 ± 13 nm, 0.080, and −45 mV, respectively. This dual functional nanocarrier also exhibited low cytotoxicity and a high apoptosis induction potential for successful VBL co-delivery. Real-time quantitative PCR analysis demonstrated the activation of caspase-3, NF-1, PDL-1, and H-ras inhibition, in PANC-1 cells treated with the FA-VBL-DEX-SPION nanostructure. Close inspection of the obtained data proved that the FA-VBL-DEX-SPION nanostructure possesses a noteworthy chemo-preventive effect on pancreatic cancer cells through the inhibition of cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Salim Albukhaty
- Department of Basic Sciences, College of Nursing, University of Misan, Maysan 62001, Iraq;
| | - Sharafaldin Al-Musawi
- Faculty of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq;
- Correspondence:
| | - Salih Abdul Mahdi
- Faculty of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq;
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq;
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| | - Yaser Hassan Dewir
- College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Dina A. Soliman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| |
Collapse
|
33
|
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020; 63:14119-14150. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early cancer detection and perfect understanding of the disease are imperative toward efficient treatments. It is straightforward that, for choosing a specific cancer treatment methodology, diagnostic agents undertake a critical role. Imaging is an extremely intriguing tool since it assumes a follow up to treatments to survey the accomplishment of the treatment and to recognize any conceivable repeating injuries. It also permits analysis of the disease, as well as to pursue treatment and monitor the possible changes that happen on the tumor. Likewise, it allows screening the adequacy of treatment and visualizing the state of the tumor. Additionally, when the treatment is finished, observing the patient is imperative to evaluate the treatment methodology and adjust the treatment if necessary. The goal of this review is to present an overview of conjugated photosensitizers for imaging and therapy.
Collapse
Affiliation(s)
- João C S Simões
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.,BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | - Sophia Sarpaki
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - George Loudos
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| |
Collapse
|
34
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
35
|
Wei Z, Wang H, Xin G, Zeng Z, Li S, Ming Y, Zhang X, Xing Z, Li L, Li Y, Zhang B, Zhang J, Niu H, Huang W. A pH-Sensitive Prodrug Nanocarrier Based on Diosgenin for Doxorubicin Delivery to Efficiently Inhibit Tumor Metastasis. Int J Nanomedicine 2020; 15:6545-6560. [PMID: 32943867 PMCID: PMC7480473 DOI: 10.2147/ijn.s250549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The metastasis, one of the biggest barriers in cancer therapy, is the leading cause of tumor deterioration and recurrence. The anti.-metastasis has been considered as a feasible strategy for clinical cancer management. It is well known that diosgenin could inhibit tumor metastasis and doxorubicin (DOX) could induce tumor apoptosis. However, their efficient delivery remains challenging. PURPOSE To address these issues, a novel pH-sensitive polymer-prodrug based on diosgenin nanoparticles (NPs) platform was developed to enhance the efficiency of DOX delivery (DOX/NPs) for synergistic therapy of cutaneous melanoma, the most lethal form of skin cancer with high malignancy, early metastasis and high mortality. METHODS AND RESULTS The inhibitory effect of DOX/NPs on tumor proliferation and migration was superior to that of NPs or free DOX. What is more, DOX/NPs could combine mitochondria-associated metastasis and apoptosis with unique internalization pathway of carrier to fight tumors. In addition, biodistribution experiments proved that DOX/NPs could efficiently accumulate in tumor sites through enhancing permeation and retention (EPR) effect compared with free DOX. Importantly, the data from in vivo experiment revealed that DOX/NPs without heart toxicity significantly inhibited tumor metastasis by exerting synergistic therapeutic effect, and reduced tumor volume and weight by inducing apoptosis. CONCLUSION The nanocarrier DOX/NPs with satisfying pharmaceutical characteristics based on the establishment of two different functional agents is a promising strategy for synergistically enhancing effects of cancer therapy.
Collapse
Affiliation(s)
- Zeliang Wei
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Haibo Wang
- Textile Institute, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhi Zeng
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yue Ming
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiaoyu Zhang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Youping Li
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Boli Zhang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Junhua Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- College of Mathematics, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
36
|
Chen E, Han S, Song B, Xu L, Yuan H, Liang M, Sun Y. Mechanism Investigation of Hyaluronidase-Combined Multistage Nanoparticles for Solid Tumor Penetration and Antitumor Effect. Int J Nanomedicine 2020; 15:6311-6324. [PMID: 32922003 PMCID: PMC7458542 DOI: 10.2147/ijn.s257164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) and its over expression in tumor tissues contributes to the increase of interstitial fluid pressure (IFP) and hinders the penetration of nanoparticles into solid tumors. Materials and Methods We here reported a tumoral microenvironment responsive multistage drug delivery system (NPs-EPI/HAase) which was formed layer by layer via electrostatic interaction with epirubicin (EPI)-loaded PEG-b-poly(2-(diisopropylamino)ethyl methacrylate)-b-poly(2-guanidinoethylmethacrylate) (mPEG-PDPA-PG, PEDG) micelles (NPs-EPI) and hyaluronidase (HAase). In this paper, we focused on the hyaluronidase-combined nanoparticles (NPs-EPI/HAase) for tumor penetration in tumor spheroid and solid tumor models in vitro and in vivo. Results Our results showed that NPs-EPI/HAase effectively degrade the HA in ECM and facilitate deep penetration of NPs-EPI into solid tumor. Moreover, NPs-EPI mainly employed clathrin-mediated and macropinocytosis-mediated endocytic pathways for cellular uptake and were subsequently directed to the lysosomes for further drug release triggered by proton sponge effect. Compared with NPs-EPI, the HAase coating group showed an enhanced tumoral drug delivery efficacy and inhibition of tumor growth. Conclusion Overall, our studies demonstrated that coating nanoparticles with HAase can provide a simple but efficient strategy for nano-drug carriers to enhance solid tumor penetration and chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Enrui Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Bo Song
- Department of Neurology, Qingdao Central Hospital, Qingdao, People's Republic of China
| | - Lisa Xu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Haicheng Yuan
- Department of Neurology, Qingdao Central Hospital, Qingdao, People's Republic of China
| | - Mingtao Liang
- Department of Pharmaceutics, School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
37
|
Karuppaiah A, Rajan R, Hariharan S, Balasubramaniam DK, Gregory M, Sankar V. Synthesis and Characterization of Folic Acid Conjugated Gemcitabine Tethered Silver Nanoparticles (FA-GEM-AgNPs) for Targeted Delivery. Curr Pharm Des 2020; 26:3141-3146. [DOI: 10.2174/1381612826666200316143239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
Silver nanoparticles (AgNPs) have attracted considerable interest in the medical industry
due to their physicochemical properties, small size, and surface plasmon behavior. Their smaller particle size and
instability in blood circulation leads to toxicity due to its aggregation as Ag+ ions and accumulation at the deepseated
organ. In the present study, we aimed at reducing the toxicity of AgNPs by conjugation with an anticancer
drug GEM and to improve their internalization through folate receptors-mediated endocytosis by capping the
nanoparticles with folic acid (FA).
Methods:
One-pot facile synthesis of FA capped silver nanoparticles (FA-AgNPs) has been achieved by using FA
as a reducing agent. FA-AgNPs were mixed with Gemcitabine (GEM) to obtain tethered FA-GEM-AgNPs.
Nanoparticles were characterized by Dynamic Light Scattering (DLS), UV-Visible spectroscopy, Transmission
Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX), Selected Area Electron Diffraction
(SAED), and Atomic Absorption Spectroscopy (AAS). The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay was carried out to determine the cytotoxic effect of the prepared nanoformulations. The
apoptotic cell death induced by FA-GEM-AgNPs in breast cancer cells were monitored with Acridine orange
(AO)/Ethidium Bromide (EtBr) staining.
Conclusion:
Compared to GEM and AgNPs, FA-GEM-AgNPs showed enhanced cytotoxic effect and internalization
in MDA-MB-453 breast cancer cell line. FA-GEM-AgNPs could be an ideal candidate for targeting cancer
cells via folate receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Arjunan Karuppaiah
- Department of pharmaceutics, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India, Affiliated to TN Dr. M.G.R Medical University, Guindy, Chennai 600032, Tamil Nadu, India
| | - Ravikumar Rajan
- Department of pharmacology, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India
| | - Sivaram Hariharan
- Department of pharmaceutical chemistry, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India
| | - Dinesh K. Balasubramaniam
- Department of pharmaceutics, St James College of Pharmaceutical sciences, Chalakudi 680 307, Kerala, India
| | - Marslin Gregory
- Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, Tamil Nadu, India
| | - Veintramuthu Sankar
- Department of pharmaceutics, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India, Affiliated to TN Dr. M.G.R Medical University, Guindy, Chennai 600032, Tamil Nadu, India
| |
Collapse
|
38
|
Pisarevsky E, Blau R, Epshtein Y, Ben-Shushan D, Eldar-Boock A, Tiram G, Koshrovski-Michael S, Scomparin A, Pozzi S, Krivitsky A, Shenbach-Koltin G, Yeini E, Fridrich L, White R, Satchi-Fainaro R. Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. ADVANCED THERAPEUTICS 2020; 3:2000028. [PMID: 35754977 PMCID: PMC9223483 DOI: 10.1002/adtp.202000028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 12/17/2022]
Abstract
Targeted therapies against cancer can relieve symptoms and induce remission, however, they often present limited duration of disease control, cause side effects and often induce acquired resistance. Therefore, there is a great motivation to develop a unique delivery system, targeted to the tumor, in which we can combine several active entities, increase the therapeutic index by reducing systemic exposure, and enhance their synergistic activity. To meet these goals, we chose the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) as a nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The RAS/RAF/MEK/ERK pathway when aberrantly activated in melanoma, can lead to uncontrolled cell proliferation, induced invasion, and reduced apoptosis. Here, we selected two drugs targeting this pathway; a MEK1/2 inhibitor (selumetinib; SLM) and a modified BRAF inhibitor (modified dabrafenib; mDBF), that exhibited synergism in vitro. We synthesized and characterized our nanomedicine of PGA conjugated to SLM and mDBF (PGA-SLM-mDBF). PGA-SLM-mDBF inhibited the proliferation of melanoma cells and decreased their migratory and sprouting abilities without inducing a hemolytic effect. Moreover, the polymer-2-drugs conjugate exhibited superior anti-tumor activity in comparison with the two separate polymer-drug conjugates in vitro and with free drugs in a mouse model of primary melanoma and prolonged survival at a lower dose.
Collapse
Affiliation(s)
- Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shenbach-Koltin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidar Fridrich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Richard White
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
39
|
Tuning mPEG-PLA/vitamin E-TPGS-based mixed micelles for combined celecoxib/honokiol therapy for breast cancer. Eur J Pharm Sci 2020; 146:105277. [DOI: 10.1016/j.ejps.2020.105277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/13/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
|
40
|
Lin S, Chang C, Hsu C, Tsai M, Cheng H, Leong MK, Sung P, Chen J, Weng C. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 2020; 177:1409-1423. [PMID: 31368509 PMCID: PMC7056458 DOI: 10.1111/bph.14816] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Traditional chemotherapy is being considered due to hindrances caused by systemic toxicity. Currently, the administration of multiple chemotherapeutic drugs with different biochemical/molecular targets, known as combination chemotherapy, has attained numerous benefits like efficacy enhancement and amelioration of adverse effects that has been broadly applied to various cancer types. Additionally, seeking natural-based alternatives with less toxicity has become more important. Experimental evidence suggests that herbal extracts such as Solanum nigrum and Claviceps purpurea and isolated herbal compounds (e.g., curcumin, resveratrol, and matairesinol) combined with antitumoral drugs have the potential to attenuate resistance against cancer therapy and to exert chemoprotective actions. Plant products are not free of risks: Herb adverse effects, including herb-drug interactions, should be carefully considered. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Shian‐Ren Lin
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Chia‐Hsiang Chang
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Che‐Fang Hsu
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
- Center for Prevention and Therapy of Gynaecological Cancers, Department of ResearchTzu Chi HospitalHualienTaiwan
| | - May‐Jwan Tsai
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Max K. Leong
- Department of ChemistryNational Dong Hwa UniversityHualienTaiwan
| | - Ping‐Jyun Sung
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
| | - Jian‐Chyi Chen
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainan CityTaiwan
| | - Ching‐Feng Weng
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
- Department of Basic Medical Science, Center for Transitional MedicineXiamen Medical CollegeXiamenChina
| |
Collapse
|
41
|
Li K, Zhan W, Jia M, Zhao Y, Liu Y, Jha RK, Zhou L. Dual Loading of Nanoparticles with Doxorubicin and Icotinib for the Synergistic Suppression of Non-Small Cell Lung Cancer. Int J Med Sci 2020; 17:390-402. [PMID: 32132874 PMCID: PMC7053357 DOI: 10.7150/ijms.39172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Combination chemotherapy plays an important role in the clinical therapy of non-small cell lung cancer (NSCLC). However, the pharmacokinetic differences between drugs are an insurmountable barrier in traditional treatment. For the synergistic therapy of NSCLC, synergistic nanoparticles (EDS NPs) loaded with both an EGFR inhibitor and doxorubicin (DOX) were designed and prepared. Methods: Erlotinib, apatinib and icotinib were evaluated for optimal combination with DOX in treatment of NSCLC via CCK-8 assay. Then the cationic amphipathic starch (CSaSt) and hyaluronic acid (HA) were applied to coencapsulate DOX and EGFR inhibitor to form the EDS NPs. EDS NPs were evaluated in NSCLC cell lines (A549, NCI-H1975 and PC9) and NSCLC xenograft mouse models. Results: Icotinib was found to be the optimal synergistic drug in combination with DOX in the tested. Subsequently, icotinib and DOX were coencapsulated in the NPs. EDS NPs were roughly spherical with an average size of 65.7±6.2 nm and possessed stable loading and releasing properties. In the in vitro investigation, EDS NPs could efficiently deliver payloads into cells, exhibited cytotoxicity and produced strong anti-migration properties. In vivo hypotoxicity was confirmed by acute toxicity and hemolytic assays. The in vivo distribution showed that EDS NPs could enhance accumulation in tumors and decrease nonspecific accumulation in normal organs. EDS NPs significantly promoted the in vivo synergistic effects of icotinib and DOX in the mouse model. Conclusions: The study suggests that EDS NPs possess noteworthy potential for development as therapeutics for NSCLC clinical chemotherapy.
Collapse
Affiliation(s)
- Ke Li
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Wenhua Zhan
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia China
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Min Jia
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yufeng Zhao
- Department of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yingguang Liu
- Department of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Rajiv Kumar Jha
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Liansuo Zhou
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| |
Collapse
|
42
|
Ma W, Sun J, Xu J, Luo Z, Diao D, Zhang Z, Oberly PJ, Minnigh MB, Xie W, Poloyac SM, Huang Y, Li S. Sensitizing Triple Negative Breast Cancer to Tamoxifen Chemotherapy via a Redox-Responsive Vorinostat-containing Polymeric Prodrug Nanocarrier. Am J Cancer Res 2020; 10:2463-2478. [PMID: 32194813 PMCID: PMC7052901 DOI: 10.7150/thno.38973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
There is an urgent and unmet need to develop effective therapies for triple negative breast cancers (TNBCs) which are much more aggressive and have poor prognosis due to lack of receptor targets for Her2-targeted and endocrine therapy. In this study we systematically evaluated the effect of Vorinostat (SAHA, a pan-HDAC inhibitor) in reactivating the expression of functional estrogen receptor α (ERα) and synergizing with tamoxifen (TAM, a selective estrogen-receptor modulator) in antitumor activity. In addition, a SAHA prodrug-based dual functional nanocarrier was developed for codelivery of SAHA and TAM for effective combination therapy. Methods: A SAHA-containing polymeric nanocarrier, POEG-co-PVDSAHA was developed via reversible addition-fragmentation transfer (RAFT) polymerization with SAHA incorporated into the polymer through a redox-responsive disulfide linkage. The effect of both free SAHA and POEG-co-PVDSAHA on reactivating the expression of functional ERα was investigated in several human and murine TNBC cell lines via examining the mRNA and protein expression of ERα target genes. The cytotoxicity of free SAHA and TAM combination and TAM-loaded POEG-co-PVDSAHA micelles was examined via MTT assay. The in vivo antitumor activity of TAM-loaded POEG-co-PVDSAHA was investigated in a murine breast cancer model (4T1.2). Results: Both free SAHA and POEG-co-PVDSAHA were effective in inducing the reexpression of functional estrogen receptor α (ERα), which may have helped to sensitize TNBCs to TAM. More importantly, POEG-co-PVDSAHA self-assembled to form small-sized micellar carrier that is effective in formulating and codelivery of TAM. TAM-loaded POEG-co-PVDSAHA micelles exhibited enhanced and synergistic cytotoxicity against TNBC cell lines compared with free SAHA, free TAM and TAM loaded into a pharmacologically inert control carrier (POEG-co-PVMA). In addition, codelivery of TAM via POEG-co-PVDSAHA micelles led to significantly improved antitumor efficacy in 4T1.2 tumor model compared with other groups such as combination of free SAHA and TAM and TAM-loaded POEG-co-PVMA micelles. Conclusion: Our prodrug-based co-delivery system may provide an effective and simple strategy to re-sensitize TNBCs to TAM-based hormone therapy.
Collapse
|
43
|
Patel P, Meghani N, Kansara K, Kumar A. Nanotherapeutics for the Treatment of Cancer and Arthritis. Curr Drug Metab 2020; 20:430-445. [PMID: 30479211 DOI: 10.2174/1389200220666181127102720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nanotechnology is gaining significant attention worldwide for the treatment of complex diseases such as AIDS (acquired immune deficiency syndrome), cancer and rheumatoid arthritis. Nanomedicine is the application of nanotechnology used for diagnosis and treatment for the disease that includes the preservation and improvement of human health by covering an area such as drug delivery using nanocarriers, nanotheranostics and nanovaccinology. The present article provides an insight into several aspects of nanomedicine such as usages of multiple types of nanocarriers, their status, advantages and disadvantages with reference to cancer and rheumatoid arthritis. METHODS An extensive search was performed on the bibliographic database for research article on nanotechnology and nanomedicine along with looking deeply into the aspects of these diseases, and how all of them are co-related. We further combined all the necessary information from various published articles and briefed to provide the current status. RESULTS Nanomedicine confers a unique technology against complex diseases which includes early diagnosis, prevention, and personalized therapy. The most common nanocarriers used globally are liposomes, polymeric nanoparticles, dendrimers, metallic nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, polymeric micelles and nanotubes among others. CONCLUSION Nanocarriers are used to deliver drugs and biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers.
Collapse
Affiliation(s)
- Pal Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Meghani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Krupa Kansara
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
44
|
Emerging Trends in Nanotheranostics. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
45
|
Li K, Zhan W, Chen Y, Jha RK, Chen X. Docetaxel and Doxorubicin Codelivery by Nanocarriers for Synergistic Treatment of Prostate Cancer. Front Pharmacol 2019; 10:1436. [PMID: 31920642 PMCID: PMC6930690 DOI: 10.3389/fphar.2019.01436] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Combination chemotherapy has been proven to be an efficient strategy for the treatment of prostate cancer (PCA). However, the pharmacokinetic distinction between the relevant drugs is an insurmountable barrier to the realization of their synergistic use against cancer. To overcome the disadvantages of combination chemotherapy in the treatment of PCA, targeted nanoparticles (NPs), which can codeliver docetaxel (DOC) and doxorubicin (DOX) at optimal synergistic proportions, have been designed. In this study, the DOC and DOX codelivery nanoparticles (DDC NPs) were constructed by hyaluronic acid (HA) and cationic amphipathic starch (CSaSt) through a self-assembly process. Human PCA cell lines (PC-3, DU-145, and LNCap) and mouse models were then used for evaluation in vitro and in vivo, respectively, of delivery and antitumor effects. The DDC NPs were spherical with rough surfaces, and the size and zeta potential were 68.4 ± 7.1 nm and -22.8 ± 2.2 mV, respectively. The encapsulation efficiencies of DOC and DOX in the NPs were 96.1 ± 2.3% and 91.4 ± 3.7%, respectively, while the total drug loading was 9.1 ± 1.7%. Moreover, the ratio of DOC to DOX in the DDC NPs was approximately 1:400, which aligned with the optimal synergistic proportions of the drugs. The DDC NPs exhibited excellent loading capacities, performed sustained and enzymatic release, and were stable in PBS, medium, and serum. After investigations in vitro, the DDC NPs were as effective as the dual drug combination in terms of cytotoxicity, antimigration, and apoptosis. Internalization results indicated that the DDC NPs could effectively deliver and fully release the payloads into PCA cells, and the process was mediated by the ligand-receptor interaction of HA with the CD44 protein. Low toxicity in vivo was confirmed by acute toxicity and hemolytic assays. The distribution in vivo showed that DDC NPs could enhance the accumulation of drugs in tumors and decrease nonspecific accumulation in normal organs. More importantly, DDC NPs significantly promoted the curative effect of the DOC and DOX combination in the PCA cell xenograft mouse model, indicating that the drugs with NPs did indeed act synergistically. This study suggests that the DDC NPs possess noteworthy potential as prospects for the development of PCA clinical chemotherapy.
Collapse
Affiliation(s)
- Ke Li
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Wenhua Zhan
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yulong Chen
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Rajiv Kumar Jha
- College of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
46
|
Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO, Pessoa C. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 2019; 14:1164-1176. [PMID: 31282279 PMCID: PMC6791710 DOI: 10.1080/15592294.2019.1640546] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of cancer. Unlike genetic mutations, the ability to reprogram the epigenetic landscape in the cancer epigenome is one of the most promising target therapies in both treatment and reversibility of drug resistance. Epigenetic alterations in cancer development and progression may be the basis for the individual variation in drug response. Thus, this review focuses on the emerging area of pharmaco(epi)genomics, specifically highlighting epigenetic reprogramming during tumorigenesis and how epigenetic markers are targeted as a therapy (epidrugs) and the clinical implications of this for cancer treatment.
Collapse
Affiliation(s)
| | | | - Renan Da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | | | - Manoel Odorico Moraes
- Department of Surgery, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
48
|
Multifunctional magnetic-polymeric nanoparticles based ferrofluids for multi-modal in vitro cancer treatment using thermotherapy and chemotherapy. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Chen Y, Li N, Xu B, Wu M, Yan X, Zhong L, Cai H, Wang T, Wang Q, Long F, Jiang G, Xiao H. Polymer-based nanoparticles for chemo/gene-therapy: Evaluation its therapeutic efficacy and toxicity against colorectal carcinoma. Biomed Pharmacother 2019; 118:109257. [PMID: 31377472 DOI: 10.1016/j.biopha.2019.109257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Combination treatment through simultaneous delivery of anticancer drugs and gene with nano-formulation has been demonstrated to be an elegant and efficient approach for colorectal cancer therapy. Recently, sorafenib being studied in combination therapy in colorectal cancer (CRC) attracted attention of researchers. On the basis of our previous study, pigment epithelium-derived factor (PEDF) loaded nanoparticles showed good effect on CRC in vitro and in vivo. Herein, we designed a combination therapy for sorafenib (Sora), a multi-kinase inhibitor and PEDF, a powerful antiangiogenic gene, in a nano-formulation aimed to increase anti-tumor effect on CRC for the first time. Sora and PEDF were simultaneously encapsulated in PEG-PLGA based nanoparticles by a modified double-emulsion solvent evaporation method. The obtained co-encapsulated nanoparticles (Sora@PEDF-NPs) showed high entrapment efficiency of both Sora and PEDF - and exhibited a uniform spherical morphology. The release profiles of Sora and PEDF were in a sustained manner. The most effective tumor growth inhibition in the C26 cells and C26-bearing mice was observed in the Sora@PEDF-NPs in comparison with none-drug nanoparticles, free Sora, mono-drug nanoparticles (Sora-NPs and PEDF-NPs) and the mixture of Sora-NPs and equivalent PEDF-NPs (Mix-NPs). More importantly, Sora@PEDF-NPs showed lower toxicity than free Sora in mice according to the acute toxicity test. The serologic biochemical analysis and mice body weight during therapeutic period revealed that Sora@PEDF-NPs had no obvious toxicity. All the data demonstrated that the simultaneously loaded nanoparticles with multi-kinase inhibitor and anti-angiogenic gene might be one of the most potential formulations in the treatment of colorectal carcinoma in clinic and worthy of further investigation.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - NingXi Li
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Min Wu
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - XiaoYan Yan
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - LiJun Zhong
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Cai
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - QiuJu Wang
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - FangYi Long
- Department of Pharmacy, Key Laboratory of Reproductive Medicine, Sichuan Provincial Hospital for Women and Children, Women and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Gang Jiang
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - HongTao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
50
|
Dasgupta A, Dey D, Ghosh D, Lai TK, Bhuvanesh N, Dolui S, Velayutham R, Acharya K. Astrakurkurone, a sesquiterpenoid from wild edible mushroom, targets liver cancer cells by modulating Bcl-2 family proteins. IUBMB Life 2019; 71:992-1002. [PMID: 30977280 DOI: 10.1002/iub.2047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Induction of apoptosis is the target of choice for modern chemotherapeutic treatment of cancer, where lack of potent "target-specific" drugs has led to extensive research on anticancer compounds from natural sources. In our study, we have used astrakurkurone, a triterpene isolated from wild edible mushroom, Astraeus hygrometricus. We have discussed the structure and stability of astrakurkurone employing single-crystal X-ray crystallography and studied its potential apoptogenicity in hepatocellular carcinoma (HCC) cells. Our experiments reveal that it is cytotoxic against the HCC cell lines (Hep 3B and Hep G2) at significantly low doses. Further investigations indicated that astrakurkurone acts by inducing apoptosis in the cells, disrupting mitochondrial membrane potential and inducing the expression of Bcl-2 family proteins, for example, Bax, and the downstream effector caspases 3 and 9. A molecular docking study also predicted direct interactions of the drug with antiapoptotic proteins Bcl-2 and Bcl-xL. Thus, astrakurkurone could become a valuable addition to the conventional repertoire of future anticancer drugs. © 2019 IUBMB Life, 1-11, 2019.
Collapse
Affiliation(s)
- Adhiraj Dasgupta
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, WB, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, WB, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, WB, India
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Evening College, Kolkata, WB, India
| | | | - Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, WB, India
| | - Ravichandiran Velayutham
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, WB, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, WB, India
| |
Collapse
|