1
|
Liu M, Wang R, Hoi MPM, Wang Y, Wang S, Li G, Vong CT, Chong CM. Nano-Based Drug Delivery Systems for Managing Diabetes: Recent Advances and Future Prospects. Int J Nanomedicine 2025; 20:6221-6252. [PMID: 40395654 PMCID: PMC12091710 DOI: 10.2147/ijn.s508875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/05/2025] [Indexed: 05/22/2025] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder, which is characterized by high blood glucose levels, and this can lead to serious diabetic complications. According to the World Health Organization, approximately 830 million adults worldwide are living with diabetes in 2024, with its prevalence continuing to rise steadily over the years. To treat this disease, researchers have developed a variety of first-line drugs, such as sulfonylureas and thiazolidinediones. Despite their long clinical use, there are still many drawbacks and limitations. One of the main drawbacks is low bioavailability, this causes the diabetic patients to take the drugs frequently to lower the blood glucose levels continuously. Some patients may have to take multiple drugs to increase the effectiveness of lowering blood glucose levels. To address these limitations, nano-based drug delivery systems have emerged to overcome these problems. It has emerged as a promising approach for diabetes management, which offers controlled and localized release of anti-diabetic drugs, thus enhancing therapeutic efficacy. This review discusses recent advances in the field of nano-based drug delivery systems for diabetes management, safety and toxicity profiles of anti-diabetic drugs, and future perspectives for the development of nanomedicine in diabetic treatment. Literature search was conducted using electronic databases, and only English literatures were used and published between 2014 and 2024. Recent advancements in nanotechnology have facilitated the development of various nanocarriers, such as polymeric carrier nanoparticles, nanoliposomes, nanocrystals, nanosuspension and inorganic nanoparticles, which enhance drug stability, bioavailability, and efficacy. These systems can deliver anti-diabetic drugs and natural compounds more effectively, thereby minimizing side effects and improving patient compliance. As the field continues to evolve, the successful clinical implementation of nanodrugs could revolutionize the management of diabetes and improve the quality of life for millions of diabetic patients worldwide.
Collapse
Affiliation(s)
- Meihan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, People’s Republic of China
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, People’s Republic of China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, People’s Republic of China
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, People’s Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| |
Collapse
|
2
|
Beheshtkhoo N, Jadidi Kouhbanani MA, Daghighi SM, Shakouri Nikjeh M, Esmaeili Z, Khosravani M, Adabi M. Effect of oral resveratrol-loaded nanoliposomes on hyperlipidemia via toll-like receptor 3 and TIR domain-containing adaptor inducing interferon-β protein expression in an animal model. J Liposome Res 2025:1-27. [PMID: 40098438 DOI: 10.1080/08982104.2025.2476529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Abstract
Hyperlipidemia, a critical risk factor for various health conditions, necessitates innovative therapeutic strategies. Investigating the effectiveness of liposomal formulations in managing hyperlipidemia is essential. Resveratrol (RES)-loaded nanoliposomes present a promising new approach for hyperlipidemia treatment. In this study, we investigated the anti-hyperlipidemic potential of RES-loaded nanoliposomes in high-fat diet (HFD)-fed rats. The nanoliposomes were prepared using a thin-film hydration method. According to transmission electron microscopy (TEM) and dynamic light scattering (DLS) results, the mean size of prepared RES-loaded nanoliposomes were about 42 nm and 68 nm, respectively, with a zeta potential of -65.6 mV. The entrapment efficiency and loading content were 83.78% and 14.25%, respectively. Additionally, the RES-loaded nanoliposomes exhibited controlled release kinetics compared to the free RES form. Moreover, in a hyperlipidemic rat model induced by an HFD, orally administered RES-loaded nanoliposomes significantly reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), and triglycerides (TG), while concurrently increasing high-density lipoprotein cholesterol (HDL-C) levels. Additionally, liver damage induced by HFD was alleviated by RES-loaded nanoliposomes. The expression levels of Toll-like receptor 3 (TLR3) and TIR domain-containing adaptor-inducing interferon-β (TRIF) were assessed using fluorescence immunohistochemistry. Notably, RES-loaded nanoliposomes significantly reduced the expression of these protein. The effect of RES-loaded nanoliposomes was measured on body weight of HFD rats, demonstrting RES-loaded nanoliposomes hold promise for weight management. These findings underscore the potential of RES-loaded nanoliposomes as a safe and effective therapeutic option for hyperlipidemia.
Collapse
Affiliation(s)
- Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shakouri Nikjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Alanazi AZ, Alqinyah M, Alhamed AS, Mohammed H, Raish M, Aljerian K, Alsabhan JF, Alhazzani K. Cardioprotective effects of liposomal resveratrol in diabetic rats: unveiling antioxidant and anti-inflammatory benefits. Redox Rep 2024; 29:2416835. [PMID: 39496097 PMCID: PMC11536670 DOI: 10.1080/13510002.2024.2416835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
As a consequence of chronic hyperglycemia, diabetes complications and tissue damage are exacerbated. There is evidence that natural phytochemicals, including resveratrol, a bioactive polyphenol, may be able to reduce oxidative stress and improve insulin sensitivity. However, resveratrol's limited bioavailability hampers its therapeutic effectiveness. By using liposomes, resveratrol may be better delivered into the body and be more bioavailable. The objective of this study was to assess the cardioprotective potential of liposome-encapsulated resveratrol (LR) in a streptozotocin-induced (STZ) diabetic rat model. Adult male Wistar rats were categorized into five groups: control, diabetic, resveratrol-treated (40 mg/kg), liposomal resveratrol (LR)-treated (20 mg/kg) and liposomal resveratrol (LR)-treated (40 mg/kg) for a five-week study period. We compared the effects of LR to those of resveratrol (40 mg/kg) on various parameters, including serum levels of cardiac markers, tissue levels of pro-inflammatory cytokines, nuclear transcription factor, oxidative stress markers, and apoptotic markers. LR treatment in STZ-diabetic rats resulted in notable physiological improvements, including blood glucose regulation, inflammation reduction, oxidative stress mitigation, and apoptosis inhibition. LR effectively lowered oxidative stress and enhanced cardiovascular function. It also demonstrated a remarkable ability to suppress NF-kB-mediated inflammation by inhibiting the pro-inflammatory cytokines TNF-α and IL-6. Additionally, LR restored the antioxidant enzymes, catalase and glutathione peroxidase, thereby effectively counteracting oxidative stress. Notably, LR modulated apoptotic regulators, including caspase, Bcl2, and Bax, suggesting a role in regulating programmed cell death. These biochemical alterations were consistent with improved structural integrity of cardiac tissue as revealed by histological examination. In comparison, resveratrol exhibited lower efficacy at an equivalent dosage. Liposomal resveratrol shows promise in alleviating hyperglycemia-induced cardiac damage in diabetes. Further research is warranted to explore its potential as a therapeutic agent for diabetic cardiovascular complications and possible cardioprotective effects.
Collapse
Affiliation(s)
- Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jawza F. Alsabhan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
6
|
Wang L, Gong C, Wang R, Wang J, Yang Z, Wang X. A pilot study on the characterization and correlation of oropharyngeal and intestinal microbiota in children with type 1 diabetes mellitus. Front Pediatr 2024; 12:1382466. [PMID: 38938502 PMCID: PMC11208633 DOI: 10.3389/fped.2024.1382466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Background Type 1 Diabetes Mellitus (T1DM) is one of the most common endocrine disorders of childhood and adolescence, showing a rapidly increasing prevalence worldwide. A study indicated that the composition of the oropharyngeal and gut microbiota changed in T1DM. However, no studies have yet associated the changes between the microbiomes of the oropharyngeal and intestinal sites, nor between the flora and clinical indicators. In this study, we examined the composition and characteristics of oropharyngeal and intestinal flora in patients with T1DM in compared to healthy children. We identified correlations between oropharyngeal and intestinal flora and evaluated their association with clinical laboratory tests in patients with T1DM. Methods The oropharyngeal and fecal samples from 13 T1DM and 20 healthy children were analyzed by high-throughput sequencing of the V3-V4 region of 16S rRNA. The associations between microbes and microorganisms in oropharyngeal and fecal ecological niches, as well as the correlation between these and clinical indicators were further analyzed. Results It was revealed that T1DM children had distinct microbiological characteristics, and the dominant oropharyngeal microbiota genus included Streptococcus, Prevotella, Leptotrichia, and Neisseria; that of intestinal microbiota included Blautia, Fusicatenibacter, Bacteroides, and Eubacterium_hallii_group. Furthermore, oropharyngeal Staphylococcus was significantly positively correlated with intestinal norank_f__Ruminococcaceae and Ruminococcus_torques_group in TIDM children. Moreover, in these children, differential genes in oropharyngeal and intestinal samples were enriched in metabolic pathways such as amino acid generation, fatty acid metabolism, and nucleotide sugar biosynthesis. Additionally, correlation analysis between the oropharyngeal/intestinal microbiome with laboratory tests showed significant correlations between several bacterial taxa in the oropharynx and intestines and glycated hemoglobin and C-peptide. Conclusion Unique microbial characteristics were found in the oropharynx and intestine in children with T1DM compared to healthy children. Positive correlations were found between changes in the relative abundance of oropharyngeal and gut microbiota in children with T1DM. Associations between the oropharyngeal/intestinal microbiota and laboratory investigations in children with T1DM suggest that the composition of the oropharyngeal and intestinal flora in children with T1DM may have some impact on glycemic control.
Collapse
Affiliation(s)
- Limin Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Chao Gong
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Ruiye Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Jinxue Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Zhanshuang Yang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| | - Xianhe Wang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| |
Collapse
|
7
|
Stoleru OA, Burlec AF, Mircea C, Felea MG, Macovei I, Hăncianu M, Corciovă A. Multiple nanotechnological approaches using natural compounds for diabetes management. J Diabetes Metab Disord 2024; 23:267-287. [PMID: 38932892 PMCID: PMC11196251 DOI: 10.1007/s40200-023-01376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus (DM) is a long-standing and non-transmissible endocrine disease that generates significant clinical issues and currently affects approximately 400 million people worldwide. The aim of the present review was to analyze the most relevant and recent studies that focused on the potential application of plant extracts and phytocompounds in nanotechnology for the treatment of T2DM. Methods Various databases were examined, including Springer Link, Google Scholar, PubMed, Wiley Online Library, and Science Direct. The search focused on discovering the potential application of nanoparticulate technologies in enhancing drug delivery of phytocompounds for the mentioned condition. Results Several drug delivery systems have been considered, that aimed to reduce adverse effects, while enhancing the efficiency of oral antidiabetic medications. Plant-based nanoformulations have been highlighted as an innovative approach for DM treatment due to their eco-friendly and cost-effective synthesis methods. Their benefits include targeted action, enhanced availability, stability, and reduced dosage frequency. Conclusions Nanomedicine has opened new opportunities for the diagnosis, treatment, and prevention of DM. The use of nanomaterials has demonstrated improved outcomes for both T1DM and T2DM. Notably, flavonoids, including substances such as quercetin, naringenin and myricitrin, have been recognized for their enhanced efficacy when delivered through novel nanotechnologies in preventing T2DM onset and associated complications. The perspectives on the addressed subject point to the development of more nanostructured phytocompounds with improved bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Ozana Andreea Stoleru
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maura Gabriela Felea
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
8
|
Şeker Karatoprak G, Başkal G, Yücel Ç. Melissa officinalis L. nanoethosomal formulation: evaluation of antioxidant, enzyme inhibitory activities and in vitro toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1112-1121. [PMID: 35607255 DOI: 10.1080/09603123.2022.2075834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
This work aimed to create an extract of Melissa officinalis L. with strong antiradical efficacy, characterize it, and enhance its long-term efficacy by developing an ethosomal formulation. DPPH and ABTS assays were used to test the antiradical activity of extracts with different ethanol ratios obtained from the aerial part. Phytochemical characterization of the extract with the highest activity, ethyl acetate fraction of 60% ethanol extract, was analyzed by HPLC. The active ethyl acetate fraction was loaded into ethosomes, and characterization and release studies of the formulation were performed. The released extract from the formulation exhibited substantial antiradical action as well as inhibition of collagenase (71.5%) and elastase (75.5%) enzymes. The toxicity of the active extract and the formulation was determined in the mouse fibroblast cell line. This study successfully developed a long-term antioxidant and enzyme inhibitor formulation containing M. officinalis, which stands out for its medicinal properties.
Collapse
Affiliation(s)
| | - Gamze Başkal
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Wickramasinghe ASD, Attanayake AP, Kalansuriya P. Herbal Extracts Encapsulated Nanoliposomes as Potential Glucose-lowering Agents: An in Vitro and in Vivo Approach Using Three Herbal Extracts. J Pharm Sci 2023; 112:2538-2551. [PMID: 37399889 DOI: 10.1016/j.xphs.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Encapsulation of polyphenol-rich herbal extracts into nanoliposomes is a promising strategy for the development of novel therapeutic agents against type 2 diabetes mellitus. An attempt was made to encapsulate aqueous, ethanol, and aqueous ethanol (70% v/v) extracts of Senna auriculata (L.) Roxb., Murraya koenigii (L.) Spreng,. and Coccinia grandis (L.) Voigt into nanoliposomes and to screen acute bioactivities in vitro and in vivo. A wide spectrum of bioactivity was observed of which aqueous extracts encapsulated nanoliposomes of all three plants showed high bioactivity in terms of in vivo glucose-lowering activity in high-fat diet-fed streptozotocin induced Wistar rats, compared to respective free extracts. The particle size, polydispersity index, and zeta potential of the aforementioned nanoliposomes ranged from 179-494 nm, 0.362-0.483, and (-22) to (-17) mV, respectively. The atomic force microscopy (AFM) imaging reflected that the nanoparticles have desired morphological characteristics and Fourier-transform infrared (FTIR) spectroscopy analysis revealed successful encapsulation of plant extracts into nanoparticles. However, only the S. auriculata aqueous extract encapsulated nanoliposome, despite the slow release (9% by 30 hours), showed significant (p < 0.05) in vitro α-glucosidase inhibitory activity and in vivo glucose-lowering activity compared to free extract, proving worthy for future investigations.
Collapse
Affiliation(s)
| | | | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Sri Lanka
| |
Collapse
|
10
|
Jadhav S, Yadav A. Phytoconstituents Based Nanomedicines for the Management of Diabetes: A Review. Pharm Nanotechnol 2023; 11:217-237. [PMID: 36654462 DOI: 10.2174/2211738511666230118095936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus (DM) is a life-threatening multifactorial metabolic syndrome that is still one of the most difficult unsolved health concerns. Different herbal drugs have been proposed to be useful in treating diabetes and its associated complications. Two major obstacles in plant extracts are their limited solubility and bioavailability of lipophilic bioactive components. Applying nanotechnology has opened new avenues to improve solubility, bioavailability, compliance, and efficacy by overcoming the pharmacokinetic and biopharmaceutical obstacles associated with herbal extracts and phytochemicals. Herbal nanomedicines can overcome the drawbacks of conventional therapy of DM, its complications like delayed wound healing, and also decrease the side effects of synthetic drugs. The targeted delivery of herbal nanoparticles employing nano-pumps, nanorobots, smart cells, and nanosized herbal medications is recognized today as one of the most far-reaching discoveries in the therapy of DM. This paper focuses on using nanotechnology and herbal therapies to manage diabetes effectively. The review provides a detailed and up-to-date overview of phytonanoformulations in treating diabetes and its consequences.
Collapse
Affiliation(s)
- Shailaja Jadhav
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Karad, 415004, India
| | - Adhikarao Yadav
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Karad, 415004, India
| |
Collapse
|
11
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
12
|
Bahloul B, Castillo-Henríquez L, Jenhani L, Aroua N, Ftouh M, Kalboussi N, Vega-Baudrit J, Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Modulating Inflammation-Mediated Diseases via Natural Phenolic Compounds Loaded in Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15020699. [PMID: 36840021 PMCID: PMC9964760 DOI: 10.3390/pharmaceutics15020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The global increase and prevalence of inflammatory-mediated diseases have been a great menace to human welfare. Several works have demonstrated the anti-inflammatory potentials of natural polyphenolic compounds, including flavonoid derivatives (EGCG, rutin, apigenin, naringenin) and phenolic acids (GA, CA, etc.), among others (resveratrol, curcumin, etc.). In order to improve the stability and bioavailability of these natural polyphenolic compounds, their recent loading applications in both organic (liposomes, micelles, dendrimers, etc.) and inorganic (mesoporous silica, heavy metals, etc.) nanocarrier technologies are being employed. A great number of studies have highlighted that, apart from improving their stability and bioavailability, nanocarrier systems also enhance their target delivery, while reducing drug toxicity and adverse effects. This review article, therefore, covers the recent advances in the drug delivery of anti-inflammatory agents loaded with natural polyphenolics by the application of both organic and inorganic nanocarriers. Even though nanocarrier technology offers a variety of possible anti-inflammatory advantages to naturally occurring polyphenols, the complexes' inherent properties and mechanisms of action have not yet been fully investigated. Thus, expanding the quest on novel natural polyphenolic-loaded delivery systems, together with the optimization of complexes' activity toward inflammation, will be a new direction of future efforts.
Collapse
|
14
|
Bakrim S, Aboulaghras S, El Menyiy N, El Omari N, Assaggaf H, Lee LH, Montesano D, Gallo M, Zengin G, AlDhaheri Y, Bouyahya A. Phytochemical Compounds and Nanoparticles as Phytochemical Delivery Systems for Alzheimer's Disease Management. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249043. [PMID: 36558176 PMCID: PMC9781052 DOI: 10.3390/molecules27249043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| | - Yusra AlDhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| |
Collapse
|
15
|
Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Antioxidants (Basel) 2022; 11:antiox11122447. [PMID: 36552655 PMCID: PMC9774148 DOI: 10.3390/antiox11122447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Due to the confirmed therapeutic potential of resveratrol (Rv) for eye diseases, namely its powerful anti-angiogenic and antioxidant effects, this molecule must be studied more deeply. Nowadays, the pharmaceutic and pharmacokinetic available studies offer a troubling picture because of its low stability and bioavailability. To overcome this problem, researchers started to design and create different delivery systems that could improve the delivery amount of Rv. Therefore, this review aims to shed light on the proper and efficient techniques to isolate, purify and quantify the Rv molecule, and how this therapeutic molecule can be a part of a delivery system. The Rv great impact on aspects regarding its stability, bioavailability and absorption are also debated here, based on the existent literature on in vitro and in vivo human and animal studies. Moreover, after its absorption the Rv influence at the molecular level in ocular pathologies is described. In addition, the present review summarizes the available literature about Rv, hoping that Rv will gain more attention to investigate its unexplored side.
Collapse
|
16
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | | | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Park Avenue Bronx, NY, United States
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Beegum F, P V A, George KT, K P D, Begum F, Krishnadas N, Shenoy RR. Sirtuins as therapeutic targets for improving delayed wound healing in diabetes. J Drug Target 2022; 30:911-926. [PMID: 35787722 DOI: 10.1080/1061186x.2022.2085729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sirtuins are a vast family of histone deacetylases, which are NAD+ dependent enzymes, consisting of seven members, namely SIRT 1, SIRT 6 and SIRT 7 located within the nucleus, SIRT 2 in the cytoplasm and SIRT 3, SIRT 4, and SIRT 5 in the mitochondria. They have vital roles in regulating various biological functions such as age-related metabolic disorders, inflammation, stress response, cardiovascular and neuronal functions. Delayed wound healing is one of the complication of diabetes, which can lead to lower limb amputation if not treated timely. SIRT 1, 3 and 6 are potent targets for diabetic wound healing. SIRT 1 deficiency reduces recruitment of fibroblasts, macrophages, mast cells, neutrophils to wound site and delays wound healing; negatively expressing MMP-9. The SIRT 1 mediated signalling pathway in diabetic wound healing is the SIRT 1-foxo-C-Myc pathway. On the contrary SIRT 3 deficiency, impairs proliferation and migration of fibroblasts and SIRT 6 deficiency impairs wound closure rate and interrupts the vascular remodelling. This review focuses on the role of sirtuins in improving delayed wound healing in diabetes and its natural modulators with their specific functions towards healing diabetic wounds.
Collapse
Affiliation(s)
- Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anuranjana P V
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Divya K P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
18
|
Islam F, Khadija JF, Islam MR, Shohag S, Mitra S, Alghamdi S, Babalghith AO, Theyab A, Rahman MT, Akter A, Al Mamun A, Alhumaydhi FA, Emran TB. Investigating Polyphenol Nanoformulations for Therapeutic Targets against Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5649156. [PMID: 35832521 PMCID: PMC9273389 DOI: 10.1155/2022/5649156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Theyab
- Deputy Manager of Laboratory & Blood Bank, Security Forces Hospital, Makkah, Saudi Arabia
| | | | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
19
|
Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021; 26:molecules26154621. [PMID: 34361774 PMCID: PMC8347607 DOI: 10.3390/molecules26154621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.
Collapse
|
20
|
Elkordy AA, Haj-Ahmad RR, Awaad AS, Zaki RM. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
22
|
Rocha S, Lucas M, Ribeiro D, Corvo ML, Fernandes E, Freitas M. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res 2021; 169:105604. [PMID: 33845125 DOI: 10.1016/j.phrs.2021.105604] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is one of the biggest health emergencies of the 21st century worldwide, characterized by deficiency in insulin secretion and/or action, leading to hyperglycemia. Despite the currently available antidiabetic therapeutic options, 4.2 million people died in 2019 due to diabetes. Thus, new effective interventions are required. Polyphenols are plant secondary metabolites and have been recognized for their vast number of biological activities, including potential antidiabetic effects. However, the poor bioavailability and high metabolization of polyphenols restrict their biological effects in vivo. Nanotechnology is a promising area of research to improve the therapeutic effect of several compounds. Therefore, this review provides an overview of the literature about the utility of nano-based drug delivery systems as vehicles of polyphenols in diabetes treatment. It was possible to conclude that, in general, nano-based drug delivery systems can potentiate the beneficial antidiabetic properties of polyphenols, when compared with the free compounds, opening a new field of research in diabetology.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Mariana Lucas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Engineered resveratrol-loaded fibrous scaffolds promotes functional cardiac repair and regeneration through Thioredoxin-1 mediated VEGF pathway. Int J Pharm 2021; 597:120236. [PMID: 33539996 DOI: 10.1016/j.ijpharm.2021.120236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Despite recent advancements, mortality due to coronary heart disease (CHD) remains high. Recently, the use of tissue-engineered grafts and scaffolds has emerged as a candidate for supporting the myocardium after an ischemic event. Resveratrol is a naturally occurring plant-based non-flavonoid polyphenolic compound found in many natural foods, including grapes and red wine. We embedded resveratrol in a polycaprolactone (PCL) scaffold and evaluated the cardio-therapeutic effects in a murine model of myocardial infarction (MI), with animals being grouped into Sham (S), Myocardial Infarction (MI), MI + PCL, and MI + PCL-Resveratrol (MI + PCL-R). After 4 and 8 weeks, echocardiography was performed to assess ejection fraction (EF) and fractional shortening (FS), which was followed by immunohistochemistry and immunofluorescence analysis at 8 weeks. The MI + PCL-R group showed a significant improvement in EF and FS compared with the MI + PCL group at 4 and 8-weeks post-surgery. PCL-R scaffolds treated hearts revealed decreased inflammatory cell infiltration, improved collagen extracellular matrix (ECM) secretion and blood vessel network formation following MI. The immunofluorescence analysis revealed resveratrol-loaded scaffolds promote increased expression of cTnT, Cx-43, Trx-1, and VEGF proteins. This study reports resveratrol-mediated rescue of ischemic myocardium when delivered through a biodegradable polymeric scaffold system after MI.
Collapse
|
24
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|
25
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
26
|
Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food Chem Toxicol 2020; 139:111248. [PMID: 32156568 DOI: 10.1016/j.fct.2020.111248] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Polyphenols are secondary metabolites widely distributed in many plant foods, such a tea, coffee, chocolate and fruits. The consumption of these compounds is related to the improvement or amelioration of many diseases, including diabetes. Nevertheless, the great barrier to the therapeutic use of polyphenols is the low bioavailability of these compounds once ingested. For that reason, the encapsulation of polyphenols in different matrices may protect them from digestion and improve their release and subsequent absorption to obtain target-specific health effects. Some studies have reported the beneficial effect of encapsulation to increase both bioavailability and bioaccessibility. However, these works have mostly been carried out in vitro and few studies are specifically addressed at improving diabetes. In the current work, an overview of the knowledge related to nanoparticles and their use in the diabetic condition has been reviewed.
Collapse
|
27
|
Ma Q, Li Y, Wang J, Li P, Duan Y, Dai H, An Y, Cheng L, Wang T, Wang C, Wang T, Zhao B. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed Pharmacother 2020; 124:109873. [PMID: 31986412 DOI: 10.1016/j.biopha.2020.109873] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of type 1 diabetes mellitus (T1DM) is increasing year by year, gut microbiota is considered to be closely related to the occurrence and development of T1DM in recent years. In this study, Sprague Dawley (SD) rats were intraperitoneally injected with 75mg/kg streptozotocin to establish T1DM model, fecal samples were collected and DNA were extracted, 16S rRNA microbial gene clone library were constructed, and lastly high-throughput sequencing and bioinformatics analysis were performed. The results showed that the abundances of pathogenic bacteria such as Ruminococcaceae, Shigella, Enterococcus, Streptococcus, Rothia and Alistipes associated with infection and inflammation in T1DM rats were up-regulated, while the abundances of beneficial bacteria such as Lactobacillus, Faecalitalea, Butyricicoccus and Allobaculum were reduced. Among them, Butyricicoccus and Allobaculum protect intestinal barrier function by producing short-chain fatty acids. This study suggests that intestinal inflammation and reduction of short chain fatty acids (SCFAs) caused by the imbalance of gut microbiota are crucial to the pathogenesis of T1DM.
Collapse
MESH Headings
- Animals
- Bacteria/isolation & purification
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 1/physiopathology
- Fatty Acids, Volatile/metabolism
- Gastrointestinal Microbiome
- High-Throughput Nucleotide Sequencing
- Inflammation/genetics
- Inflammation/microbiology
- Inflammation/pathology
- Male
- RNA, Ribosomal, 16S
- Rats
- Rats, Sprague-Dawley
- Streptozocin
Collapse
Affiliation(s)
- Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Yongcheng An
- School of Life Sciences, Beijing University of Chinese Medicine, Intersection of Yang-Guang South Street and Bai-Yang East Road, Fang-Shan District, Beijing, 102488, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China.
| |
Collapse
|
28
|
Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med 2019; 8:jcm8091385. [PMID: 31487953 PMCID: PMC6780404 DOI: 10.3390/jcm8091385] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAMs) means that the ROS generated in mitochondria promote ER stress. Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious cycle. The implication of mitochondria in insulin release and the exposure of pancreatic β-cells to hyperglycemia make them especially susceptible to oxidative stress and mitochondrial dysfunction. In fact, crosstalk between both mechanisms is related with alterations in glucose homeostasis and can lead to the diabetes-associated insulin-resistance status. In the present review, we discuss the current knowledge of the relationship between oxidative stress, mitochondria, ER stress, inflammation, and lipotoxicity in T2D.
Collapse
|
29
|
Taghipour YD, Hajialyani M, Naseri R, Hesari M, Mohammadi P, Stefanucci A, Mollica A, Farzaei MH, Abdollahi M. Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine 2019; 14:5303-5321. [PMID: 31406461 PMCID: PMC6642644 DOI: 10.2147/ijn.s213831] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome is a common metabolic disorder which has become a public health challenge worldwide. There has been growing interest in medications including natural products as complementary or alternative choices for common chemical therapeutics regarding their limited side effects and ease of access. Nanosizing these compounds may help to increase their solubility, bioavailability, and promisingly enhance their efficacy. This study, for the first time, provides a comprehensive overview of the application of natural-products-based nanoformulations in the management of metabolic syndrome. Different phytochemicals including curcumin, berberine, Capsicum oleoresin, naringenin, emodin, gymnemic acid, resveratrol, quercetin, scutellarin, stevioside, silybin, baicalin, and others have been nanosized hitherto, and their nanosizing method and effect in treatment and alleviating metabolic syndrome have been reviewed and discussed in this study. It has been discovered that there are several pathways or molecular targets relevant to metabolic disorders which are affected by these compounds. Various natural-based nanoformulations have shown promising effect in treatment of metabolic syndrome, and therefore can be considered as future candidates instead of or in conjunction with pharmaceutical drugs if they pass clinical trials successfully.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Phytopharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rozita Naseri
- Internal Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d’Annunzio University of Chieti-pescara, Chieti66100, Italy
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-pescara, Chieti66100, Italy
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, the Institute of Pharmaceutical Sciences (TIPS) and Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
30
|
Zhao L, Wang X, Li J, Tan X, Fan L, Zhang Z, Leng J. Effect of Cyclocarya Paliurus on Hypoglycemic Effect in Type 2 Diabetic Mice. Med Sci Monit 2019; 25:2976-2983. [PMID: 31011149 PMCID: PMC6492607 DOI: 10.12659/msm.913368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The aim of this study was to assess the hypoglycemic effect of Cyclocarya paliurus extract (CPE) on diabetes mellitus (DM) mice. Material/Methods A DM mouse model was established to test FBG, TC, and TG. The DM mice were divided into 3 groups: a DM group, a DM+CPE (0.5 g/Kg) group, and a DM+CPE (1.0 g/Kg) group. The FBG and body weight were measured. The glucose tolerance ability was determined by OGTT test. FINS was measured to calculate ISI and IRI. Serum MDA, SOD, and GSH-Px levels were detected. NIT-1 cells were cultured in vitro and divided into 4 groups: a control group, a STZ group, a STZ+CPE (80 μg/mL) group, and a STZ+CPE (160 μg/mL) group. Cell apoptosis and ROS content were assessed by flow cytometry. Cell proliferation was detected by EdU staining. Results Compared with the control group, FBG, TC, and TG were significantly increased in the DM group. CPE gavage obviously reduced FBG level, increased body weight, enhanced glucose tolerance, elevated FINS level and ISI, and reduced IRI, all in a dose-dependent manner. CPE gavage reduced serum MDA content and increased SOD and GSH-Px enzyme activities in DM mice. STZ markedly enhanced ROS production, induced apoptosis, and inhibited proliferation in NIT-1 cells. CPE treatment clearly reduced ROS production and apoptosis, enhanced cell proliferation, and alleviated STZ damage to NIT-1 cells. Conclusions CPE has the effects of decreasing blood glucose and insulin resistance, and enhancing glucose tolerance in DM mice, which may be related to its effects of reducing oxidation and reduced apoptosis, and relieving STZ in pancreatic beta cell injury.
Collapse
Affiliation(s)
- Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Xue Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Junxiu Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Xiaoming Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Lanlan Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Zhenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Jing Leng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China (mainland)
| |
Collapse
|
31
|
Feng Y, He Z, Mao C, Shui X, Cai L. Therapeutic Effects of Resveratrol Liposome on Muscle Injury in Rats. Med Sci Monit 2019; 25:2377-2385. [PMID: 30936416 PMCID: PMC6457134 DOI: 10.12659/msm.913409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In this study we prepared liposome microbubbles loading resveratrol (LMLR) and evaluated its therapeutic effect on injury of gastrocnemius muscle in rats. MATERIAL AND METHODS LMLR was prepared and characterized by particle size, potential, and microscopy, and a rat model of acute blunt injury of gastrocnemius muscle was established. After treatments with resveratrol or LMLR, the therapeutic effects were evaluated by hematoxylin-eosin (HE) staining. The expression of MHCIIB and vimentin in mRNA level was measured by real-time PCR. The expression of desmin and collagen I protein was assessed by immunohistochemistry. RESULTS LMLR showed regular cycle shape in a size of ~1000 nm. LMLR was negatively charged (-30 mV). The in vitro release of LMLR was close to 80% at 10 h and 90% at 48 h. Acute gastrocnemius muscle injury was established in rats and tissue recovery was observed after LMLR treatment as evidenced by HE staining, decreased expression of MHCIIB, and increased expression of vimentin. Moreover, LMLR treatment obviously facilitated desmin expression and reduced collagen I expression. CONCLUSIONS LMLR is effective in treating acute blunt injury of gastrocnemius muscle in rats.
Collapse
Affiliation(s)
- Yongzeng Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Zili He
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Cong Mao
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Xiaolong Shui
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Leyi Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|