1
|
Biasi A, Marino V, Dal Cortivo G, Dell'Orco D. Supramolecular complexes of GCAP1: implications for inherited retinal dystrophies. Int J Biol Macromol 2024; 279:135068. [PMID: 39187109 DOI: 10.1016/j.ijbiomac.2024.135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Guanylate Cyclase Activating Protein 1 (GCAP1) is a calcium sensor that regulates the enzymatic activity of retinal Guanylate Cyclase 1 (GC1) in photoreceptors in a Ca2+/Mg2+ dependent manner. While point mutations in GCAP1 have been associated with inherited retinal dystrophies (IRDs), their impact on protein dimerization or on the possible interaction with the potent GC1 inhibitor RD3 (retinal degeneration protein 3) has never been investigated. Here, we integrate exhaustive in silico investigations with biochemical assays to evaluate the effects of the p.(E111V) substitution, associated with a severe form of IRD, on GCAP1 homo- and hetero-dimerization, and demonstrate that wild type (WT) GCAP1 directly interacts with RD3. Although inducing constitutive activation in GC1, the E111V substitution only slightly affects the dimerization of GCAP1. Both WT- and E111V-GCAP1 are predominantly monomeric in the absence of the GC1 target, however E111V-GCAP1 shows a stronger tendency to be monomeric in the Ca2+-bound form, corresponding to GC1 inhibiting state. Reconstitution experiments performed in the co-presence of WT-GCAP1, E111V-GCAP1 and RD3 restored nearly physiological regulation of the GC1 enzymatic activity in terms of cGMP synthesis and Ca2+-sensitivity, suggesting new scenarios for biologics-mediated treatment of GCAP1-associated IRDs.
Collapse
Affiliation(s)
- Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
2
|
Asteriti S, Marino V, Avesani A, Biasi A, Dal Cortivo G, Cangiano L, Dell'Orco D. Recombinant protein delivery enables modulation of the phototransduction cascade in mouse retina. Cell Mol Life Sci 2023; 80:371. [PMID: 38001384 PMCID: PMC10673981 DOI: 10.1007/s00018-023-05022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
3
|
Martínez-Gil N, Maneu V, Kutsyr O, Fernández-Sánchez L, Sánchez-Sáez X, Sánchez-Castillo C, Campello L, Lax P, Pinilla I, Cuenca N. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration. Front Neuroanat 2022; 16:984052. [PMID: 36225228 PMCID: PMC9548552 DOI: 10.3389/fnana.2022.984052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.
Collapse
Affiliation(s)
- Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Isabel Pinilla
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, Spain
- Isabel Pinilla,
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- *Correspondence: Nicolás Cuenca,
| |
Collapse
|
4
|
Avesani A, Bielefeld L, Weisschuh N, Marino V, Mazzola P, Stingl K, Haack TB, Koch KW, Dell’Orco D. Molecular Properties of Human Guanylate Cyclase-Activating Protein 3 (GCAP3) and Its Possible Association with Retinitis Pigmentosa. Int J Mol Sci 2022; 23:ijms23063240. [PMID: 35328663 PMCID: PMC8948881 DOI: 10.3390/ijms23063240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.
Collapse
Affiliation(s)
- Anna Avesani
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Laura Bielefeld
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
- Correspondence: ; Tel.: +39-045-802-7637
| |
Collapse
|
5
|
Biasi A, Marino V, Dal Cortivo G, Maltese PE, Modarelli AM, Bertelli M, Colombo L, Dell’Orco D. A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase. Int J Mol Sci 2021; 22:ijms221910809. [PMID: 34639157 PMCID: PMC8509414 DOI: 10.3390/ijms221910809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 μs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.
Collapse
Affiliation(s)
- Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | | | - Antonio Mattia Modarelli
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
| | - Matteo Bertelli
- MAGI’S Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy
| | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| |
Collapse
|
6
|
Marino V, Dal Cortivo G, Maltese PE, Placidi G, De Siena E, Falsini B, Bertelli M, Dell’Orco D. Impaired Ca 2+ Sensitivity of a Novel GCAP1 Variant Causes Cone Dystrophy and Leads to Abnormal Synaptic Transmission Between Photoreceptors and Bipolar Cells. Int J Mol Sci 2021; 22:ijms22084030. [PMID: 33919796 PMCID: PMC8070792 DOI: 10.3390/ijms22084030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/23/2023] Open
Abstract
Guanylate cyclase-activating protein 1 (GCAP1) is involved in the shutdown of the phototransduction cascade by regulating the enzymatic activity of retinal guanylate cyclase via a Ca2+/cGMP negative feedback. While the phototransduction-associated role of GCAP1 in the photoreceptor outer segment is widely established, its implication in synaptic transmission to downstream neurons remains to be clarified. Here, we present clinical and biochemical data on a novel isolate GCAP1 variant leading to a double amino acid substitution (p.N104K and p.G105R) and associated with cone dystrophy (COD) with an unusual phenotype. Severe alterations of the electroretinogram were observed under both scotopic and photopic conditions, with a negative pattern and abnormally attenuated b-wave component. The biochemical and biophysical analysis of the heterologously expressed N104K-G105R variant corroborated by molecular dynamics simulations highlighted a severely compromised Ca2+-sensitivity, accompanied by minor structural and stability alterations. Such differences reflected on the dysregulation of both guanylate cyclase isoforms (RetGC1 and RetGC2), resulting in the constitutive activation of both enzymes at physiological levels of Ca2+. As observed with other GCAP1-associated COD, perturbation of the homeostasis of Ca2+ and cGMP may lead to the toxic accumulation of second messengers, ultimately triggering cell death. However, the abnormal electroretinogram recorded in this patient also suggested that the dysregulation of the GCAP1–cyclase complex further propagates to the synaptic terminal, thereby altering the ON-pathway related to the b-wave generation. In conclusion, the pathological phenotype may rise from a combination of second messengers’ accumulation and dysfunctional synaptic communication with bipolar cells, whose molecular mechanisms remain to be clarified.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
| | | | - Giorgio Placidi
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elisa De Siena
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benedetto Falsini
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (B.F.); (D.D.); Tel.: +39-06-3015-6344 (B.F.); +39-045-802-7637 (D.D.)
| | - Matteo Bertelli
- MAGI’S Lab S.R.L., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
- Correspondence: (B.F.); (D.D.); Tel.: +39-06-3015-6344 (B.F.); +39-045-802-7637 (D.D.)
| |
Collapse
|
7
|
Avesani A, Marino V, Zanzoni S, Koch KW, Dell'Orco D. Molecular properties of human guanylate cyclase-activating protein 2 (GCAP2) and its retinal dystrophy-associated variant G157R. J Biol Chem 2021; 296:100619. [PMID: 33812995 PMCID: PMC8113879 DOI: 10.1016/j.jbc.2021.100619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
In murine and bovine photoreceptors, guanylate cyclase-activating protein 2 (GCAP2) activates retinal guanylate cyclases (GCs) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog guanylate cyclase-activating protein 1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to 3 Mg2+ with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, nonmyristoylated GCAP2 does not bind Mg2+ over the physiological range and remains as a monomer in the absence of Ca2+. Both myristoylated and nonmyristoylated GCAP2 bind Ca2+ with high affinity. At odds with guanylate cyclase-activating protein 1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations and prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 might be mostly implicated in processes other than phototransduction in human photoreceptors and suggest a possible molecular mechanism for G157R-associated IRD.
Collapse
Affiliation(s)
- Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
8
|
Abbas S, Marino V, Weisschuh N, Kieninger S, Solaki M, Dell’Orco D, Koch KW. Neuronal Calcium Sensor GCAP1 Encoded by GUCA1A Exhibits Heterogeneous Functional Properties in Two Cases of Retinitis Pigmentosa. ACS Chem Neurosci 2020; 11:1458-1470. [PMID: 32298085 DOI: 10.1021/acschemneuro.0c00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic heterogeneity leading to retinal disorders impairs biological processes by causing, for example, severe disorder of signal transduction in photoreceptor outer segments. A normal balance of the second messenger homeostasis in photoreceptor cells seems to be a crucial factor for healthy and normal photoreceptor function. Genes like GUCY2D coding for guanylate cyclase GC-E and GUCA1A coding for the Ca2+-sensor guanylate cyclase-activating protein GCAP1 are critical for a precisely controlled synthesis of the second messenger cGMP. Mutations in GUCA1A frequently correlate in patients with cone dystrophy and cone-rod dystrophy. Here, we report two mutations in the GUCA1A gene that were found in patients diagnosed with retinitis pigmentosa, a phenotype that was rarely detected among previous cases of GUCA1A related retinopathies. One patient was heterozygous for the missense variant c.55C > T (p.H19Y), while the other patient was heterozygous for the missense variant c.479T > G (p.V160G). Using heterologous expression and cell culture systems, we examined the functional and molecular consequences of these point mutations. Both variants showed a dysregulation of guanylate cyclase activity, either a profound shift in Ca2+-sensitivity (H19Y) or a nearly complete loss of activating potency (V160G). Functional heterogeneity became also apparent in Ca2+/Mg2+-binding properties and protein conformational dynamics. A faster progression of retinal dystrophy in the patient carrying the V160G mutation seems to correlate with the more severe impairment of this variant.
Collapse
Affiliation(s)
- Seher Abbas
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Maria Solaki
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
9
|
Constitutive Activation of Guanylate Cyclase by the G86R GCAP1 Variant Is Due to "Locking" Cation-π Interactions that Impair the Activator-to-Inhibitor Structural Transition. Int J Mol Sci 2020; 21:ijms21030752. [PMID: 31979372 PMCID: PMC7037459 DOI: 10.3390/ijms21030752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Guanylate Cyclase activating protein 1 (GCAP1) mediates the Ca2+-dependent regulation of the retinal Guanylate Cyclase (GC) in photoreceptors, acting as a target inhibitor at high [Ca2+] and as an activator at low [Ca2+]. Recently, a novel missense mutation (G86R) was found in GUCA1A, the gene encoding for GCAP1, in patients diagnosed with cone-rod dystrophy. The G86R substitution was found to affect the flexibility of the hinge region connecting the N- and C-domains of GCAP1, resulting in decreased Ca2+-sensitivity and abnormally enhanced affinity for GC. Based on a structural model of GCAP1, here, we tested the hypothesis of a cation-π interaction between the positively charged R86 and the aromatic W94 as the main mechanism underlying the impaired activator-to-inhibitor conformational change. W94 was mutated to F or L, thus, resulting in the double mutants G86R+W94L/F. The double mutants showed minor structural and stability changes with respect to the single G86R mutant, as well as lower affinity for both Mg2+ and Ca2+, moreover, substitutions of W94 abolished "phase II" in Ca2+-titrations followed by intrinsic fluorescence. Interestingly, the presence of an aromatic residue in position 94 significantly increased the aggregation propensity of Ca2+-loaded GCAP1 variants. Finally, atomistic simulations of all GCAP1 variants in the presence of Ca2+ supported the presence of two cation-π interactions involving R86, which was found to act as a bridge between W94 and W21, thus, locking the hinge region in an activator-like conformation and resulting in the constitutive activation of the target under physiological conditions.
Collapse
|
10
|
Tang S, Xia Y, Dai Y, Liu Y, Li J, Pan X, Chen P. Functional characterization of a novel GUCA1A missense mutation (D144G) in autosomal dominant cone dystrophy: A novel pathogenic GUCA1A variant in COD. Mol Vis 2019; 25:921-xxx. [PMID: 32025184 PMCID: PMC6982429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 10/26/2022] Open
Abstract
Purpose To elucidate the clinical phenotypes and pathogenesis of a novel missense mutation in guanylate cyclase activator A1A (GUCA1A) associated with autosomal dominant cone dystrophy (adCOD). Methods The members of a family with adCOD were clinically evaluated. Relevant genes were captured before being sequenced with targeted next-generation sequencing and confirmed with Sanger sequencing. Sequence analysis was made of the conservativeness of mutant residues. An enzyme-linked immunosorbent assay (ELISA) was implemented to detect the cyclic guanosine monophosphate (cGMP) concentration. Then limited protein hydrolysis and an electrophoresis shift were used to assess possible changes in the structure. Coimmunoprecipitation was employed to analyze the interaction between GCAP1 and retGC1. Immunofluorescence staining was performed to observe the colocalization of GCAP1 and retGC1 in human embryonic kidney (HEK)-293 cells. Results A pathogenic mutation in GUCA1A (c.431A>G, p.D144G, exon 5) was revealed in four generations of a family with adCOD. GUCA1A encodes guanylate cyclase activating protein 1 (GCAP1). D144, located in the EF4 loop involving calcium binding, was highly conserved in the species. GCAP1-D144G was more susceptible to hydrolysis, and the mobility of the D144G band became slower in the presence of Ca2+. At high Ca2+ concentrations, GCAP1-D144G stimulated retGC1 in the HEK-293 membrane to significantly increase intracellular cGMP protein concentrations. Compared with wild-type (WT) GCAP1, GCAP1-D144G had an increased interaction with retGC1, as detected in the coimmunoprecipitation assay. Conclusions The newly discovered missense mutation in GUCA1A (p.D144G) might lead to an imbalance of Ca2+ and cGMP homeostasis and eventually, cause a significant variation in adCOD.
Collapse
Affiliation(s)
- Suzhen Tang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yaning Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Jingshuo Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| |
Collapse
|
11
|
Mizobuchi K, Hayashi T, Katagiri S, Yoshitake K, Fujinami K, Yang L, Kuniyoshi K, Shinoda K, Machida S, Kondo M, Ueno S, Terasaki H, Matsuura T, Tsunoda K, Iwata T, Nakano T. Characterization of GUCA1A-associated dominant cone/cone-rod dystrophy: low prevalence among Japanese patients with inherited retinal dystrophies. Sci Rep 2019; 9:16851. [PMID: 31728034 PMCID: PMC6856191 DOI: 10.1038/s41598-019-52660-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
GUCA1A gene variants are associated with autosomal dominant (AD) cone dystrophy (COD) and cone-rod dystrophy (CORD). GUCA1A-associated AD-COD/CORD has never been reported in the Japanese population. The purpose of this study was to investigate clinical and genetic features of GUCA1A-associated AD-COD/CORD from a large Japanese cohort. We identified 8 variants [c.C50_80del (p.E17VfsX22), c.T124A (p.F42I), c.C204G (p.D68E), c.C238A (p.L80I), c.T295A (p.Y99N), c.A296C (p.Y99S), c.C451T (p.L151F), and c.A551G (p.Q184R)] in 14 families from our whole exome sequencing database composed of 1385 patients with inherited retinal diseases (IRDs) from 1192 families. Three variants (p.Y99N, p.Y99S, and p.L151F), which are located on/around EF-hand domains 3 and 4, were confirmed as "pathogenic", whereas the other five variants, which did not co-segregate with IRDs, were considered "non-pathogenic". Ophthalmic findings of 9 patients from 3 families with the pathogenic variants showed central visual impairment from early to middle-age onset and progressive macular atrophy. Electroretinography revealed severely decreased or non-recordable cone responses, whereas rod responses were highly variable, ranging from nearly normal to non-recordable. Our results indicate that the three pathogenic variants, two of which were novel, underlie AD-COD/CORD with progressive retinal atrophy, and the prevalence (0.25%, 3/1192 families) of GUCA1A-associated IRDs may be low among Japanese patients.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan. .,Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan.
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,UCL Institute of Ophthalmology associated with Moorfields Eye Hospital, London, UK
| | - Lizhu Yang
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeki Machida
- Department of Ophthalmology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan.,Department of Ophthalmology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP. Prog Retin Eye Res 2019; 74:100772. [PMID: 31374251 DOI: 10.1016/j.preteyeres.2019.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Collapse
Affiliation(s)
- Michael Power
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | | | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.
| |
Collapse
|
13
|
Marino V, Dal Cortivo G, Oppici E, Maltese PE, D'Esposito F, Manara E, Ziccardi L, Falsini B, Magli A, Bertelli M, Dell'Orco D. A novel p.(Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors. Hum Mol Genet 2019; 27:4204-4217. [PMID: 30184081 DOI: 10.1093/hmg/ddy311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Guanylate Cyclase-Activating Protein 1 (GCAP1) regulates the enzymatic activity of the photoreceptor guanylate cyclases (GC), leading to inhibition or activation of the cyclic guanosine monophosphate (cGMP) synthesis depending on its Ca2+- or Mg2+-loaded state. By genetically screening a family of patients diagnosed with cone-rod dystrophy, we identified a novel missense mutation with autosomal dominant inheritance pattern (c.332A>T; p.(Glu111Val); E111V from now on) in the GUCA1A gene coding for GCAP1. We performed a thorough biochemical and biophysical investigation of wild type (WT) and E111V human GCAP1 by heterologous expression and purification of the recombinant proteins. The E111V substitution disrupts the coordination of the Ca2+ ion in the high-affinity site (EF-hand 3, EF3), thus significantly decreasing the ability of GCAP1 to sense Ca2+ (∼80-fold higher Kdapp compared to WT). Both WT and E111V GCAP1 form dimers independently on the presence of cations, but the E111V Mg2+-bound form is prone to severe aggregation over time. Molecular dynamics simulations suggest a significantly increased flexibility of both the EF3 and EF4 cation binding loops for the Ca2+-bound form of E111V GCAP1, in line with the decreased affinity for Ca2+. In contrast, a more rigid backbone conformation is observed in the Mg2+-bound state compared to the WT, which results in higher thermal stability. Functional assays confirm that E111V GCAP1 interacts with the target GC with a similar apparent affinity (EC50); however, the mutant shifts the GC inhibition out of the physiological [Ca2+] (IC50E111V ∼10 μM), thereby leading to the aberrant constitutive synthesis of cGMP under conditions of dark-adapted photoreceptors.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.,MAGI Euregio, Bolzano, Italy.,Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
| | | | | | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Adriano Magli
- Department of Pediatric Ophthalmology, University of Salerno, Fisciano (SA), Italy
| | - Matteo Bertelli
- MAGI'S Lab s.r.l., Rovereto, Italy.,MAGI Euregio, Bolzano, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Marino V, Dell'Orco D. Evolutionary-Conserved Allosteric Properties of Three Neuronal Calcium Sensor Proteins. Front Mol Neurosci 2019; 12:50. [PMID: 30899213 PMCID: PMC6417375 DOI: 10.3389/fnmol.2019.00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Neuronal Calcium Sensors (NCS) are highly conserved proteins specifically expressed in neurons. Calcium (Ca2+)-binding to their EF-hand motifs results in a conformational change, which is crucial for the recognition of a specific target and the downstream biological process. Here we present a comprehensive analysis of the allosteric communication between Ca2+-binding sites and the target interfaces of three NCS, namely NCS1, recoverin (Rec), and GCAP1. In particular, Rec was investigated in different Ca2+-loading states and in complex with a peptide from the Rhodopsin Kinase (GRK1) while NCS1 was studied in a Ca2+-loaded state in complex with either the same GRK1 target or a peptide from the D2 Dopamine receptor. A Protein Structure Network (PSN) accounting for persistent non-covalent interactions between amino acids was built for each protein state based on exhaustive Molecular Dynamics simulations. Structural network analysis helped unveiling the role of key amino acids in allosteric mechanisms and their evolutionary conservation among homologous proteins. Results for NCS1 highlighted allosteric inter-domain interactions between Ca2+-binding motifs and residues involved in target recognition. Robust long range, allosteric protein-target interactions were found also in Rec, in particular originating from the EF3 motif. Interestingly, Tyr 86, involved the hydrophobic packing of the N-terminal domain, was found to be a key residue for both intra- and inter-molecular communication with EF3, regardless of the presence of target or Ca2+ ions. Finally, based on a comprehensive topological PSN analysis for Rec, NCS1, and GCAP1 and multiple sequence alignments with homolog proteins, we propose that an evolution-driven correlation may exist between the amino acids mediating the highest number of persistent interactions (high-degree hubs) and their conservation. Such conservation is apparently fundamental for the specific structural dynamics required in signaling events.
Collapse
Affiliation(s)
- Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniele Dell'Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Peshenko IV, Cideciyan AV, Sumaroka A, Olshevskaya EV, Scholten A, Abbas S, Koch KW, Jacobson SG, Dizhoor AM. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration. J Biol Chem 2019; 294:3476-3488. [PMID: 30622141 DOI: 10.1074/jbc.ra118.006180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Artur V Cideciyan
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander Sumaroka
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander Scholten
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Seher Abbas
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Samuel G Jacobson
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027,
| |
Collapse
|
16
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
17
|
Vinberg F, Peshenko IV, Chen J, Dizhoor AM, Kefalov VJ. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors. J Biol Chem 2018; 293:7457-7465. [PMID: 29549122 DOI: 10.1074/jbc.ra117.001574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
18
|
Sharon D, Wimberg H, Kinarty Y, Koch KW. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retin Eye Res 2018; 63:69-91. [DOI: 10.1016/j.preteyeres.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
|
19
|
López-Begines S, Plana-Bonamaisó A, Méndez A. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina. Sci Rep 2018; 8:2903. [PMID: 29440717 PMCID: PMC5811540 DOI: 10.1038/s41598-018-20893-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/26/2018] [Indexed: 11/10/2022] Open
Abstract
Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.
Collapse
Affiliation(s)
- Santiago López-Begines
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain
| | - Anna Plana-Bonamaisó
- Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain
| | - Ana Méndez
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain.
| |
Collapse
|
20
|
Song H, Rossi EA, Stone E, Latchney L, Williams D, Dubra A, Chung M. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging. Br J Ophthalmol 2017; 102:136-141. [PMID: 29074494 PMCID: PMC5754866 DOI: 10.1136/bjophthalmol-2017-310498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/01/2017] [Accepted: 08/14/2017] [Indexed: 01/25/2023]
Abstract
PURPOSE Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. METHODS Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. RESULTS Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. CONCLUSIONS AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A. This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes.
Collapse
Affiliation(s)
- Hongxin Song
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual SciencesNational Engineering Research Center for Ophthalmic Equipment, Beijing, China.,University of Rochester, Center for Visual Science, Rochester, New York, USA
| | - Ethan A Rossi
- Department of Ophthalmology, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin Stone
- Department of Ophthalmology andVisual Sciences, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Lisa Latchney
- University of Rochester, Flaum Eye Institute, Rochester, New York, USA
| | - David Williams
- University of Rochester, Center for Visual Science, Rochester, New York, USA.,University of Rochester, Institute of Optics, Rochester, New York, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California, USA
| | - Mina Chung
- University of Rochester, Flaum Eye Institute, Rochester, New York, USA
| |
Collapse
|
21
|
Vocke F, Weisschuh N, Marino V, Malfatti S, Jacobson SG, Reiff CM, Dell'Orco D, Koch KW. Dysfunction of cGMP signalling in photoreceptors by a macular dystrophy-related mutation in the calcium sensor GCAP1. Hum Mol Genet 2017; 26:133-144. [PMID: 28025326 DOI: 10.1093/hmg/ddw374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Macular dystrophy leads to progressive loss of central vision and shows symptoms similar to age-related macular degeneration. Genetic screening of patients diagnosed with macular dystrophy disclosed a novel mutation in the GUCA1A gene, namely a c.526C > T substitution leading to the amino acid substitution p.L176F in the guanylate cyclase-activating protein 1 (GCAP1). The same variant was found in three families showing an autosomal dominant mode of inheritance. For a full functional characterization of the L176F mutant we expressed and purified the mutant protein and measured key parameters of its activating properties, its Ca2+/Mg2+-binding, and its Ca2+-induced conformational changes in comparison to the wildtype protein. The mutant was less sensitive to changes in free Ca2+, resulting in a constitutively active form under physiological Ca2+-concentration, showed significantly higher activation rates than the wildtype (90-fold versus 20-fold) and interacted with an higher apparent affinity with its target guanylate cyclase. However, direct Ca2+-binding of the mutant was nearly similar to the wildtype; binding of Mg2+ occurred with higher affinity. We performed molecular dynamics simulations for comparing the Ca2+-saturated inhibiting state of GCAP1 with the Mg2+-bound activating states. The L176F mutant exhibited significantly lower flexibility, when three Ca2+ or two Mg2+ were bound forming probably the structural basis for the modified GCAP1 function.
Collapse
Affiliation(s)
- Farina Vocke
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy and
| | - Silvia Malfatti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy and
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charlotte M Reiff
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy and
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
22
|
Manes G, Mamouni S, Hérald E, Richard AC, Sénéchal A, Aouad K, Bocquet B, Meunier I, Hamel CP. Cone dystrophy or macular dystrophy associated with novel autosomal dominant GUCA1A mutations. Mol Vis 2017; 23:198-209. [PMID: 28442884 PMCID: PMC5389339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/31/2017] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Sixteen different mutations in the guanylate cyclase activator 1A gene (GUCA1A), have been previously identified to cause autosomal dominant cone dystrophy (adCOD), cone-rod dystrophy (adCORD), macular dystrophy (adMD), and in an isolated patient, retinitis pigmentosa (RP). The purpose of this study is to report on two novel mutations and the patients' clinical features. METHODS Clinical investigations included visual acuity and visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and full-field and multifocal electroretinogram (ERG) recordings. GUCA1A was screened by Sanger sequencing in a cohort of 12 French families with adCOD, adCORD, and adMD. RESULTS We found two novel GUCA1A mutations-one amino acid deletion, c.302_304delTAG (p.Val101del), and one missense mutation, c.444T>A (p.Asp148Glu)-each of which was found in one family. The p.Asp148Glu mutation affected one of the Ca2+-binding amino acids of the EF4 hand, while the p.Val101del mutation resulted in the in-frame deletion of Valine-101, localized between two Ca2+-binding aspartic acid residues at positions 100 and 102 of the EF3 hand. Both families complained of visual acuity loss worsening with age. However, the p.Asp148Glu mutation was present in one family with adCOD involving abnormal cone function and an absence of macular atrophy, whereas p.Val101del mutation was encountered in another family with adMD without a generalized cone defect. CONCLUSIONS The two novel mutations described in this study are associated with distinct phenotypes, MD for p.Val101del and COD for p.Asp148Glu, with no intrafamilial phenotypic heterogeneity.
Collapse
Affiliation(s)
- Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France
| | - Sonia Mamouni
- CHRU, Genetics of Sensory Diseases, Montpellier, France
| | | | | | - Audrey Sénéchal
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Karim Aouad
- Aravis Medical Center, Ophthalmology Department, Argonay, France
| | - Béatrice Bocquet
- University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| | - Isabelle Meunier
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| |
Collapse
|
23
|
Peinado Allina G, Fortenbach C, Naarendorp F, Gross OP, Pugh EN, Burns ME. Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9. J Gen Physiol 2017; 149:443-454. [PMID: 28302678 PMCID: PMC5379920 DOI: 10.1085/jgp.201611692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/08/2017] [Indexed: 11/20/2022] Open
Abstract
Peinado Allina et al. measure rod responses in living mice across a wide range of flash strengths and find that responses are much faster in vivo than ex vivo, though the biochemical mechanisms underlying the kinetics appear to be the same in both cases. Although RGS9 overexpression sped recovery from bright flashes, faster rod recovery did not improve the temporal resolution of scotopic vision. The temporal resolution of scotopic vision is thought to be constrained by the signaling kinetics of retinal rods, which use a highly amplified G-protein cascade to transduce absorbed photons into changes in membrane potential. Much is known about the biochemical mechanisms that determine the kinetics of rod responses ex vivo, but the rate-limiting mechanisms in vivo are unknown. Using paired flash electroretinograms with improved signal-to-noise, we have recorded the amplitude and kinetics of rod responses to a wide range of flash strengths from living mice. Bright rod responses in vivo recovered nearly twice as fast as all previous recordings, although the kinetic consequences of genetic perturbations previously studied ex vivo were qualitatively similar. In vivo, the dominant time constant of recovery from bright flashes was dramatically reduced by overexpression of the RGS9 complex, revealing G-protein deactivation to be rate limiting for recovery. However, unlike previous ex vivo recordings, dim flash responses in vivo were relatively unaffected by RGS9 overexpression, suggesting that other mechanisms, such as calcium feedback dynamics that are strongly regulated by the restricted subretinal microenvironment, act to determine rod dim flash kinetics. To assess the consequences for scotopic vision, we used a nocturnal wheel-running assay to measure the ability of wild-type and RGS9-overexpressing mice to detect dim flickering stimuli and found no improvement when rod recovery was speeded by RGS9 overexpression. These results are important for understanding retinal circuitry, in particular as modeled in the large literature that addresses the relationship between the kinetics and sensitivity of retinal responses and visual perception.
Collapse
Affiliation(s)
| | | | | | - Owen P Gross
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Edward N Pugh
- Center for Neuroscience, University of California, Davis, Davis, CA 95618.,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95618.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618
| | - Marie E Burns
- Center for Neuroscience, University of California, Davis, Davis, CA 95618 .,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95618.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618
| |
Collapse
|
24
|
Wang X, Feng Y, Li J, Zhang W, Wang J, Lewis RA, Wong LJ. Retinal Diseases Caused by Mutations in Genes Not Specifically Associated with the Clinical Diagnosis. PLoS One 2016; 11:e0165405. [PMID: 27788217 PMCID: PMC5082937 DOI: 10.1371/journal.pone.0165405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
Purpose When seeking a confirmed molecular diagnosis in the research setting, patients with one descriptive diagnosis of retinal disease could carry pathogenic variants in genes not specifically associated with that description. However, this event has not been evaluated systematically in clinical diagnostic laboratories that validate fully all target genes to minimize false negatives/positives. Methods We performed targeted next-generation sequencing analysis on 207 ocular disease-related genes for 42 patients whose DNA had been tested negative for disease-specific panels of genes known to be associated with retinitis pigmentosa, Leber congenital amaurosis, or exudative vitreoretinopathy. Results Pathogenic variants, including single nucleotide variations and copy number variations, were identified in 9 patients, including 6 with variants in syndromic retinal disease genes and 3 whose molecular diagnosis could not be distinguished easily from their submitted clinical diagnosis, accounting for 21% (9/42) of the unsolved cases. Conclusion Our study underscores the clinical and genetic heterogeneity of retinal disorders and provides valuable reference to estimate the fraction of clinical samples whose retinal disorders could be explained by genes not specifically associated with the corresponding clinical diagnosis. Our data suggest that sequencing a larger set of retinal disorder related genes can increase the molecular diagnostic yield, especially for clinically hard-to-distinguish cases.
Collapse
Affiliation(s)
- Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yanming Feng
- Baylor Genetics, Houston, Texas, United States of America
| | - Jianli Li
- Baylor Genetics, Houston, Texas, United States of America
| | - Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Boye SL, Peterson JJ, Choudhury S, Min SH, Ruan Q, McCullough KT, Zhang Z, Olshevskaya EV, Peshenko IV, Hauswirth WW, Ding XQ, Dizhoor AM, Boye SE. Gene Therapy Fully Restores Vision to the All-Cone Nrl(-/-) Gucy2e(-/-) Mouse Model of Leber Congenital Amaurosis-1. Hum Gene Ther 2015; 26:575-92. [PMID: 26247368 DOI: 10.1089/hum.2015.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in GUCY2D are the cause of Leber congenital amaurosis type 1 (LCA1). GUCY2D encodes retinal guanylate cyclase-1 (retGC1), a protein expressed exclusively in outer segments of photoreceptors and essential for timely recovery from photoexcitation. Recent clinical data show that, despite a high degree of visual disturbance stemming from a loss of cone function, LCA1 patients retain normal photoreceptor architecture, except for foveal cone outer segment abnormalities and, in some patients, foveal cone loss. These results point to the cone-rich central retina as a target for GUCY2D replacement. LCA1 gene replacement studies thus far have been conducted in rod-dominant models (mouse) or with vectors and organisms lacking clinical translatability. Here we investigate gene replacement in the Nrl(-/-) Gucy2e(-/-) mouse, an all-cone model deficient in retGC1. We show that AAV-retGC1 treatment fully restores cone function, cone-mediated visual behavior, and guanylate cyclase activity, and preserves cones in treated Nrl(-/-) Gucy2e(-/-) mice over the long-term. A novel finding was that retinal function could be restored to levels above that in Nrl(-/-) controls, contrasting results in other models of retGC1 deficiency. We attribute this to increased cyclase activity in treated Nrl(-/-) Gucy2e(-/-) mice relative to Nrl(-/-) controls. Thus, Nrl(-/-) Gucy2e(-/-) mice possess an expanded dynamic range in ERG response to gene replacement relative to other models. Lastly, we show that a candidate clinical vector, AAV5-GRK1-GUCY2D, when delivered to adult Nrl(-/-) Gucy2e(-/-) mice, restores retinal function that persists for at least 6 months. Our results provide strong support for clinical application of a gene therapy targeted to the cone-rich, central retina of LCA1 patients.
Collapse
Affiliation(s)
- Sanford L Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - James J Peterson
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Shreyasi Choudhury
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Seok Hong Min
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Qing Ruan
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - K Tyler McCullough
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Zhonghong Zhang
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Elena V Olshevskaya
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - Igor V Peshenko
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - William W Hauswirth
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Xi-Qin Ding
- 3 Department of Cell Biology, College of Medicine, University of Oklahoma , Oklahoma City, Oklahoma
| | - Alexander M Dizhoor
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - Shannon E Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
26
|
Vihinen M. Types and effects of protein variations. Hum Genet 2015; 134:405-21. [DOI: 10.1007/s00439-015-1529-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
|
27
|
Denessiouk K, Permyakov S, Denesyuk A, Permyakov E, Johnson MS. Two structural motifs within canonical EF-hand calcium-binding domains identify five different classes of calcium buffers and sensors. PLoS One 2014; 9:e109287. [PMID: 25313560 PMCID: PMC4196763 DOI: 10.1371/journal.pone.0109287] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Proteins with EF-hand calcium-binding motifs are essential for many cellular processes, but are also associated with cancer, autism, cardiac arrhythmias, and Alzheimer's, skeletal muscle and neuronal diseases. Functionally, all EF-hand proteins are divided into two groups: (1) calcium sensors, which function to translate the signal to various responses; and (2) calcium buffers, which control the level of free Ca2+ ions in the cytoplasm. The borderline between the two groups is not clear, and many proteins cannot be described as definitive buffers or sensors. Here, we describe two highly-conserved structural motifs found in all known different families of the EF-hand proteins. The two motifs provide a supporting scaffold for the DxDxDG calcium binding loop and contribute to the hydrophobic core of the EF hand domain. The motifs allow more precise identification of calcium buffers and calcium sensors. Based on the characteristics of the two motifs, we could classify individual EF-hand domains into five groups: (1) Open static; (2) Closed static; (3) Local dynamic; (4) Dynamic; and (5) Local static EF-hand domains.
Collapse
Affiliation(s)
- Konstantin Denessiouk
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
- * E-mail:
| | - Sergei Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Alexander Denesyuk
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Eugene Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Mark S. Johnson
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| |
Collapse
|
28
|
Hoyo NLD, López-Begines S, Rosa JL, Chen J, Méndez A. Functional EF-hands in neuronal calcium sensor GCAP2 determine its phosphorylation state and subcellular distribution in vivo, and are essential for photoreceptor cell integrity. PLoS Genet 2014; 10:e1004480. [PMID: 25058152 PMCID: PMC4109901 DOI: 10.1371/journal.pgen.1004480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 05/17/2014] [Indexed: 11/18/2022] Open
Abstract
The neuronal calcium sensor proteins GCAPs (guanylate cyclase activating proteins) switch between Ca2+-free and Ca2+-bound conformational states and confer calcium sensitivity to guanylate cyclase at retinal photoreceptor cells. They play a fundamental role in light adaptation by coupling the rate of cGMP synthesis to the intracellular concentration of calcium. Mutations in GCAPs lead to blindness. The importance of functional EF-hands in GCAP1 for photoreceptor cell integrity has been well established. Mutations in GCAP1 that diminish its Ca2+ binding affinity lead to cell damage by causing unabated cGMP synthesis and accumulation of toxic levels of free cGMP and Ca2+. We here investigate the relevance of GCAP2 functional EF-hands for photoreceptor cell integrity. By characterizing transgenic mice expressing a mutant form of GCAP2 with all EF-hands inactivated (EF−GCAP2), we show that GCAP2 locked in its Ca2+-free conformation leads to a rapid retinal degeneration that is not due to unabated cGMP synthesis. We unveil that when locked in its Ca2+-free conformation in vivo, GCAP2 is phosphorylated at Ser201 and results in phospho-dependent binding to the chaperone 14-3-3 and retention at the inner segment and proximal cell compartments. Accumulation of phosphorylated EF−GCAP2 at the inner segment results in severe toxicity. We show that in wildtype mice under physiological conditions, 50% of GCAP2 is phosphorylated correlating with the 50% of the protein being retained at the inner segment. Raising mice under constant light exposure, however, drastically increases the retention of GCAP2 in its Ca2+-free form at the inner segment. This study identifies a new mechanism governing GCAP2 subcellular distribution in vivo, closely related to disease. It also identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in “equivalent-light” scenarios. Visual perception is initiated at retinal photoreceptor cells, where light activates an enzymatic cascade that reduces free cGMP. As cGMP drops, cGMP-channels close and reduce the inward current –including Ca2+ influx– so that photoreceptors hyperpolarize and emit a signal. As the light extinguishes, cGMP levels are restored to reestablish sensitivity. cGMP synthesis relies on guanylate cyclase/guanylate cyclase activating protein (RetGC/GCAP) complexes. GCAPs link the rate of cGMP synthesis to intracellular Ca2+ levels, by switching between a Ca2+-free state that activates cGMP synthesis during light exposure, and a Ca2+-bound state that arrests cGMP synthesis in the dark. It is established that GCAP1 mutations linked to adCORD disrupt this tight Ca2+ control of the cGMP levels. We here show that a GCAP2 functional transition from the Ca2+-free to the Ca2+-loaded form is essential for photoreceptor cell integrity, by a non-related mechanism. We show that GCAP2 locked in its Ca2+-free form is retained by phosphorylation and 14-3-3 binding to the proximal rod compartments, causing severe cell damage. This study identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in “equivalent-light” scenarios.
Collapse
Affiliation(s)
| | | | - Jose Luis Rosa
- Department of Physiological Sciences II, University of Barcelona-Bellvitge Health Science Campus, Barcelona, Spain
| | - Jeannie Chen
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ana Méndez
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona-Bellvitge Health Science Campus, Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Jiang L, Frederick JM, Baehr W. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations. Front Mol Neurosci 2014; 7:25. [PMID: 24778606 PMCID: PMC3985072 DOI: 10.3389/fnmol.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/19/2014] [Indexed: 12/26/2022] Open
Abstract
RNA interference (RNAi) knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc) AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C) establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F) producing a slowly progressing cone-rod dystrophy (CORD). The late onset GCAP1(L151F)-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse guanylate cyclase-activating protein 1 (GCAP1) showed strong expression at 1 week post-injection. In both allele-specific [GCAP1(Y99C)-RP] and nonallele-specific [GCAP1(L151F)-CORD] models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a "proof of concept" toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.
Collapse
Affiliation(s)
- Li Jiang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Health Science Center Salt Lake City, UT, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Health Science Center Salt Lake City, UT, USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Health Science Center Salt Lake City, UT, USA ; Department of Biology, University of Utah Salt Lake City, UT, USA ; Department of Neurobiology and Anatomy, University of Utah Health Science Center Salt Lake City, UT, USA
| |
Collapse
|
30
|
Nong E, Lee W, Merriam JE, Allikmets R, Tsang SH. Disease progression in autosomal dominant cone-rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene. Doc Ophthalmol 2013; 128:59-67. [PMID: 24352742 DOI: 10.1007/s10633-013-9420-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE To document longitudinal fundus autofluorescence (FAF) and electroretinogram (ERG) findings in a family with cone-rod dystrophy (CRD) caused by a novel missense mutation (D100G) in the GUCA1A gene. METHODS Observational case series. RESULTS Three family members 26-49 years old underwent complete clinical examinations. In all patients, funduscopic findings showed intraretinal pigment migration, loss of neurosensory retinal pigment epithelium, and macular atrophy. FAF imaging revealed the presence of a progressive hyperautofluorescent ring around a hypoautofluorescent center corresponding to macular atrophy. Full-field ERGs showed a more severe loss of cone than rod function in each patient. Thirty-hertz flicker responses fell far below normal limits. Longitudinal FAF and ERG findings in one patient suggested progressive CRD. Two more advanced patients exhibited reduced rod response consistent with disease stage. Direct sequencing of the GUCA1A gene revealed a new missense mutation, p.Asp100Gly (D100G), in each patient. CONCLUSION Patients with autosomal dominant CRD caused by a D100G mutation in GUCA1A exhibit progressive vision loss early within the first decade of life identifiable by distinct ERG characteristics and subsequent genetic testing.
Collapse
Affiliation(s)
- Eva Nong
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
31
|
Novel GUCA1A mutations suggesting possible mechanisms of pathogenesis in cone, cone-rod, and macular dystrophy patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:517570. [PMID: 24024198 PMCID: PMC3759255 DOI: 10.1155/2013/517570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/19/2013] [Indexed: 01/06/2023]
Abstract
Here, we report two novel GUCA1A (the gene for guanylate cyclase activating protein 1) mutations identified in unrelated Spanish families affected by autosomal dominant retinal degeneration (adRD) with cone and rod involvement. All patients from a three-generation adRD pedigree underwent detailed ophthalmic evaluation. Total genome scan using single-nucleotide polymorphisms and then the linkage analysis were undertaken on the pedigree. Haplotype analysis revealed a 55.37 Mb genomic interval cosegregating with the disease phenotype on chromosome 6p21.31-q15. Mutation screening of positional candidate genes found a heterozygous transition c.250C>T in exon 4 of GUCA1A, corresponding to a novel mutation p.L84F. A second missense mutation, c.320T>C (p.I107T), was detected by screening of the gene in a Spanish patients cohort. Using bioinformatics approach, we predicted that either haploinsufficiency or dominant-negative effect accompanied by creation of a novel function for the mutant protein is a possible mechanism of the disease due to c.250C>T and c.320T>C. Although additional functional studies are required, our data in relation to the c.250C>T mutation open the possibility that transacting factors binding to de novo created recognition site resulting in formation of aberrant splicing variant is a disease model which may be more widespread than previously recognized as a mechanism causing inherited RD.
Collapse
|
32
|
Koch KW, Dell’Orco D. A calcium-relay mechanism in vertebrate phototransduction. ACS Chem Neurosci 2013; 4:909-17. [PMID: 23472635 DOI: 10.1021/cn400027z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Calcium-signaling in cells requires a fine-tuned system of calcium-transport proteins involving ion channels, exchangers, and ion-pumps but also calcium-sensor proteins and their targets. Thus, control of physiological responses very often depends on incremental changes of the cytoplasmic calcium concentration, which are sensed by calcium-binding proteins and are further transmitted to specific target proteins. This Review will focus on calcium-signaling in vertebrate photoreceptor cells, where recent physiological and biochemical data indicate that a subset of neuronal calcium sensor proteins named guanylate cyclase-activating proteins (GCAPs) operate in a calcium-relay system, namely, to make gradual responses to small changes in calcium. We will further integrate this mechanism in an existing computational model of phototransduction showing that it is consistent and compatible with the dynamics that are characteristic for the precise operation of the phototransduction pathways.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neurosciences,
Biochemistry Group, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg, Germany
| | - Daniele Dell’Orco
- Department of Life Sciences
and Reproduction, Section of Biological Chemistry and Center for BioMedical
Computing (CBMC), University of Verona,
Strada le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
33
|
Novel GUCA1A mutation identified in a Chinese family with cone-rod dystrophy. Neurosci Lett 2013; 541:179-83. [DOI: 10.1016/j.neulet.2013.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 11/22/2022]
|
34
|
Jiang L, Li TZ, Boye SE, Hauswirth WW, Frederick JM, Baehr W. RNAi-mediated gene suppression in a GCAP1(L151F) cone-rod dystrophy mouse model. PLoS One 2013; 8:e57676. [PMID: 23472098 PMCID: PMC3589431 DOI: 10.1371/journal.pone.0057676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022] Open
Abstract
Dominant mutations occurring in the high-affinity Ca(2+)-binding sites (EF-hands) of the GUCA1A gene encoding guanylate cyclase-activating protein 1 (GCAP1) cause slowly progressing cone-rod dystrophy (CORD) in a dozen families worldwide. We developed a nonallele-specific adeno-associated virus (AAV)-based RNAi knockdown strategy to rescue the retina degeneration caused by GCAP1 mutations. We generated three genomic transgenic mouse lines expressing wildtype (WT) and L151F mutant mouse GCAP1 with or without a C-terminal GFP fusion. Under control of endogenous regulatory elements, the transgenes were expressed specifically in mouse photoreceptors. GCAP1(L151F) and GCAP1(L151F)-GFP transgenic mice presented with a late onset and slowly progressive photoreceptor degeneration, similar to that observed in human GCAP1-CORD patients. Transgenic expression of WT GCAP1-EGFP in photoreceptors had no adverse effect. Toward therapy development, a highly effective anti-mGCAP1 shRNA, mG1hp4, was selected from four candidate shRNAs using an in-vitro screening assay. Subsequently a self-complementary (sc) AAV serotype 2/8 expressing mG1hp4 was delivered subretinally to GCAP1(L151F)-GFP transgenic mice. Knockdown of the GCAP1(L151F)-GFP transgene product was visualized by fluorescence live imaging in the scAAV2/8-mG1hp4-treated retinas. Concomitant with the mutant GCAP1-GFP fusion protein, endogenous GCAP1 decreased as well in treated retinas. We propose nonallele-specific RNAi knockdown of GCAP1 as a general therapeutic strategy to rescue any GCAP1-based dominant cone-rod dystrophy in human patients.
Collapse
Affiliation(s)
- Li Jiang
- Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Tansy Z. Li
- Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Shannon E. Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - William W. Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jeanne M. Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City Utah, United States of America
| |
Collapse
|
35
|
Nevet MJ, Vekslin S, Dizhoor AM, Olshevskaya EV, Tidhar R, Futerman AH, Ben-Yosef T. Ceramide kinase-like (CERKL) interacts with neuronal calcium sensor proteins in the retina in a cation-dependent manner. Invest Ophthalmol Vis Sci 2012; 53:4565-74. [PMID: 22678504 DOI: 10.1167/iovs.12-9770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE CERKL encodes for a ceramide kinase (CERK)-like protein. CERKL mutations are associated with severe retinal degeneration. Several studies have been conducted to prove a biochemical similarity between CERK and CERKL enzymatic activities. However, so far there has been no evidence that CERKL phosphorylates ceramide or any other lipid substrate in vitro or in vivo. The purpose of this work was to characterize CERKL's function by identification of CERKL-interacting proteins in the mammalian retina. METHODS CERKL-interacting proteins were identified implementing the Ras-recruitment system (RRS) on a bovine retina cDNA library. Co-immunoprecipitation (co-IP) in transfected cells and in photoreceptor outer segments was used to verify the identified interactions. Serial deletion constructs were used to map the interacting sites. CERKL's kinase activity was tested by a CERK activity assay. RESULTS We identified an interaction between CERKL and several neuronal calcium sensor (NCS) proteins, including guanylate cyclase activating protein 1 (GCAP1), GCAP2, and recoverin. These interactions were confirmed by co-IP experiments in transfected mammalian cells. Moreover, the interaction between endogenous CERKL and GCAP2 was confirmed by co-IP in photoreceptor outer segments. We found that CERKL-GCAP interaction is cation dependent and is mediated by CERKL's N-terminal region and by GCAPs cation-binding domains (EF-hands 2-4). CONCLUSIONS This study, which is the first to describe the interactions of CERKL with other retinal proteins, links CERKL to proteins involved in the photoresponse and Ca(2+) signaling, providing important clues for future research required in this direction.
Collapse
Affiliation(s)
- Mariela J Nevet
- Department of Genetics and The Rappaport Family Institute for Research in the Medical Sciences, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Kirk SR, Andrade AL, Melich K, Jackson EP, Cuellar E, Karpen JW. Halogen substituents on the aromatic moiety of the tetracaine scaffold improve potency of cyclic nucleotide-gated channel block. Bioorg Med Chem Lett 2011; 21:6417-9. [DOI: 10.1016/j.bmcl.2011.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/19/2011] [Indexed: 11/28/2022]
|
37
|
Biophysical investigation of retinal calcium sensor function. Biochim Biophys Acta Gen Subj 2011; 1820:1228-33. [PMID: 22020050 DOI: 10.1016/j.bbagen.2011.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuronal calcium sensor proteins represent a subgroup of the family of EF-hand calcium binding proteins. Members of this subgroup are the guanylate cyclase-activating proteins and recoverin, which operate as important calcium sensors in retinal photoreceptor cells. Physiological and biochemical data indicate that these proteins participate in shaping the photoreceptor light response. SCOPE OF REVIEW Biophysical methods have been widely applied to investigate the molecular properties of retinal calcium binding proteins like the guanylate cyclase-activating proteins and recoverin. Properties include the determination of calcium affinities by isotope techniques and spectroscopical approaches. Conformational changes are investigated for example by tryptophan fluorescence emission. A special focus of this review is laid on a new experimental approach to study conformational changes in calcium binding proteins by surface plasmon resonance spectroscopy. In addition this technique has been employed for measuring the calcium-dependent binding of calcium sensors to membranes. MAJOR CONCLUSIONS Biophysical approaches provide valuable information about key properties of calcium sensor proteins involved in intracellular signalling. Parameters of their molecular properties like calcium binding and conformational changes help to define their physiological role derived from cellular, genetic or physiological studies. GENERAL SIGNIFICANCE Calcium is an important second messenger in intracellular signaling. Calcium signals are propagated via calcium binding proteins that are able to discriminate between incremental differences in intracellular calcium and that regulate their targets with high precision and specificity. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
|
38
|
Andrade AL, Melich K, Whatley GG, Kirk SR, Karpen JW. Cyclic nucleotide-gated channel block by hydrolysis-resistant tetracaine derivatives. J Med Chem 2011; 54:4904-12. [PMID: 21634421 DOI: 10.1021/jm200495g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To meet a pressing need for better cyclic nucleotide-gated (CNG) channel antagonists, we have increased the biological stability of tetracaine-based blockers by synthesizing amide and thioamide linkage substitutions of tetracaine (1) and a higher affinity octyl tail derivative (5). We report the apparent K(D) values, the mechanism of block, and the in vitro hydrolysis rates for these compounds. The ester linkage substitutions did not adversely affect CNG channel block; unexpectedly, thioamide substitution in 1 (compound 8) improved block significantly. Furthermore, the ester linkage substitutions did not appear to affect the mechanism of block in terms of the strong state preference for closed channels. All ester substituted compounds, especially the thioamide substitutions, were more resistant to hydrolysis by serum cholinesterase than their ester counterparts. These findings have implications for dissecting the physiological roles of CNG channels, treating certain forms of retinal degeneration, and possibly the current clinical uses of compound 1.
Collapse
Affiliation(s)
- Adriana L Andrade
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | | | | | | |
Collapse
|
39
|
Buch PK, Mihelec M, Cottrill P, Wilkie SE, Pearson RA, Duran Y, West EL, Michaelides M, Ali RR, Hunt DM. Dominant cone-rod dystrophy: a mouse model generated by gene targeting of the GCAP1/Guca1a gene. PLoS One 2011; 6:e18089. [PMID: 21464903 PMCID: PMC3065489 DOI: 10.1371/journal.pone.0018089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/20/2011] [Indexed: 11/30/2022] Open
Abstract
Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG), retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions.
Collapse
Affiliation(s)
- Prateek K. Buch
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Marija Mihelec
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Phillippa Cottrill
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Susan E. Wilkie
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Rachael A. Pearson
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Yanai Duran
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Emma L. West
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Robin R. Ali
- University College London Institute of Ophthalmology, London, United Kingdom
| | - David M. Hunt
- University College London Institute of Ophthalmology, London, United Kingdom
- School of Animal Biology, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
40
|
Kitiratschky VBD, Glöckner CJ, Kohl S. Mutation screening of the GUCA1B gene in patients with autosomal dominant cone and cone rod dystrophy. Ophthalmic Genet 2011; 32:151-5. [PMID: 21405999 DOI: 10.3109/13816810.2011.559650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Heterozygous mutations in GUCA1A (MIM # 600364) have been identified to cause autosomal dominantly inherited cone dystrophy, cone rod dystrophy and macular dystrophy. However, the role of GUCA1B gene mutations in inherited retinal disease has been controversial. We therefore performed a mutation analysis of the GUCA1B gene in a clinically well characterized group of patients of European and North-American geographical origin with autosomal dominantly inherited cone dystrophy and cone rod dystrophy. MATERIAL AND METHODS Twenty-four unrelated patients diagnosed with cone dystrophy or cone rod dystrophy according to standard diagnostic criteria and a family history consistent with an autosomal dominant mode of inheritance were included in the study. Mutation analysis of all coding exons of the GUCA1B gene was performed by polymerase chain reaction amplification of genomic DNA and subsequent DNA sequencing. RESULTS Three different sequence variants, c.-17T>C, c.171T>C, c.465G>T were identified. The sequence variant c.465G>T encodes a conservative amino acid substitution, p.Glu155Asp, located in EF-hand 4, the calcium binding site of GCAP2 protein. All sequence variants were previously reported in healthy subjects. CONCLUSION The absence of clearly pathogenic mutations in the selected patient group suggests that the GUCA1B gene is a minor cause for retinal degenerations in Europeans or North-Americans.
Collapse
Affiliation(s)
- Veronique B D Kitiratschky
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
41
|
Orban T, Bereta G, Miyagi M, Wang B, Chance MR, Sousa MC, Palczewski K. Conformational changes in guanylate cyclase-activating protein 1 induced by Ca2+ and N-terminal fatty acid acylation. Structure 2010; 18:116-26. [PMID: 20152158 DOI: 10.1016/j.str.2009.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/29/2009] [Accepted: 11/08/2009] [Indexed: 11/25/2022]
Abstract
Neuronal Ca(2+) sensors (NCS) are high-affinity Ca(2+)-binding proteins critical for regulating a vast range of physiological processes. Guanylate cyclase-activating proteins (GCAPs) are members of the NCS family responsible for activating retinal guanylate cyclases (GCs) at low Ca(2+) concentrations, triggering synthesis of cGMP and recovery of photoreceptor cells to the dark-adapted state. Here we use amide hydrogen-deuterium exchange and radiolytic labeling, and molecular dynamics simulations to study conformational changes induced by Ca(2+) and modulated by the N-terminal myristoyl group. Our data on the conformational dynamics of GCAP1 in solution suggest that Ca(2+) stabilizes the protein but induces relatively small changes in the domain structure; however, loss of Ca(+2) mediates a significant global relaxation and movement of N- and C-terminal domains. This model and the previously described "calcium-myristoyl switch" proposed for recoverin indicate significant diversity in conformational changes among these highly homologous NCS proteins with distinct functions.
Collapse
Affiliation(s)
- Tivadar Orban
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Comprehensive Analysis of the Achromatopsia Genes CNGA3 and CNGB3 in Progressive Cone Dystrophy. Ophthalmology 2010; 117:825-30.e1. [DOI: 10.1016/j.ophtha.2009.09.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/03/2009] [Accepted: 09/08/2009] [Indexed: 11/21/2022] Open
|
43
|
Dell’Orco D, Behnen P, Linse S, Koch KW. Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy. Cell Mol Life Sci 2010; 67:973-84. [PMID: 20213926 PMCID: PMC11115885 DOI: 10.1007/s00018-009-0243-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/30/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Guanylate cyclase activating protein 1 (GCAP1) is a neuronal Ca(2+) sensor (NCS) that regulates the activation of rod outer segment guanylate cyclases (ROS-GCs) in photoreceptors. In this study, we investigated the Ca(2+)-induced effects on the conformation and the thermal stability of four GCAP1 variants associated with hereditary human cone dystrophies. Ca(2+) binding stabilized the conformation of all the GCAP1 variants independent of myristoylation. The myristoylated wild-type GCAP1 was found to have the highest Ca(2+) affinity and thermal stability, whereas all the mutants showed decreased Ca(2+) affinity and significantly lower thermal stability in both apo and Ca(2+)-loaded forms. No apparent cooperativity of Ca(2+) binding was detected for any variant. Finally, the non-myristoylated mutants were still capable of activating ROS-GC1, but the measured cyclase activity was shifted toward high, nonphysiological Ca(2+) concentrations. Thus, we conclude that distorted Ca(2+)-sensor properties could lead to cone dysfunction.
Collapse
Affiliation(s)
- Daniele Dell’Orco
- Institute of Biology and Environmental Sciences, Biochemistry Group, University of Oldenburg, 26111 Oldenburg, Germany
- Department of Biochemistry, Chemical Centre, Lund University, Lund, Sweden
| | - Petra Behnen
- Institute of Biology and Environmental Sciences, Biochemistry Group, University of Oldenburg, 26111 Oldenburg, Germany
| | - Sara Linse
- Department of Biochemistry, Chemical Centre, Lund University, Lund, Sweden
| | - Karl-Wilhelm Koch
- Institute of Biology and Environmental Sciences, Biochemistry Group, University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
44
|
Jiang L, Baehr W. GCAP1 mutations associated with autosomal dominant cone dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:273-82. [PMID: 20238026 DOI: 10.1007/978-1-4419-1399-9_31] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We discuss the heterogeneity of autosomal dominant cone and cone-rod dystrophies (adCD, and adCORD, respectively). As one of the best characterized adCD genes, we focus on the GUCA1A gene encoding guanylate cyclase activating protein 1 (GCAP1), a protein carrying three high affinity Ca(2+) binding motifs (EF hands). GCAP1 senses changes in cytoplasmic free [Ca(2+)] and communicates these changes to GC1, by either inhibiting it (at high free [Ca(2+)]), or stimulating it (at low free [Ca(2+)]). A number of missense mutations altering the structure and Ca(2+) affinity of EF hands have been discovered. These mutations are associated with a gain of function, producing dominant cone and cone rod dystrophy phenotypes. In this article we review these mutations and describe the consequences of specific mutations on GCAP1 structure and GC stimulation.We discuss the heterogeneity of autosomal dominant cone and cone-rod dystrophies (adCD, and adCORD, respectively). As one of the best characterized adCD genes, we focus on the GUCA1A gene encoding guanylate cyclase activating protein 1 (GCAP1), a protein carrying three high affinity Ca(2+) binding motifs (EF hands). GCAP1 senses changes in cytoplasmic free [Ca(2+)] and communicates these changes to GC1, by either inhibiting it (at high free [Ca(2+)]), or stimulating it (at low free [Ca(2+)]). A number of missense mutations altering the structure and Ca(2+) affinity of EF hands have been discovered. These mutations are associated with a gain of function, producing dominant cone and cone rod dystrophy phenotypes. In this article we review these mutations and describe the consequences of specific mutations on GCAP1 structure and GC stimulation.
Collapse
Affiliation(s)
- Li Jiang
- Department of Biology, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
45
|
Liu X, Pawlyk BS, Adamian M, Olshevskaya EV, Dizhoor AM, Makino CL, Li T. Increased light exposure alleviates one form of photoreceptor degeneration marked by elevated calcium in the dark. PLoS One 2009; 4:e8438. [PMID: 20041177 PMCID: PMC2793020 DOI: 10.1371/journal.pone.0008438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 12/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background In one group of gene mutations that cause photoreceptor degeneration in human patients, guanylyl cyclase is overactive in the dark. The ensuing excess opening of cGMP-gated cation channels causes intracellular calcium to rise to toxic levels. The Y99C mutation in guanylate cyclase-activating protein 1 (GCAP1) has been shown to act this way. We determined whether prolonged light exposure, which lowers cGMP levels through activation of phototransduction, might protect photoreceptors in a line of transgenic mice carrying the GCAP1-Y99C. Methodology/Principal Findings We reared cohorts of GCAP1-Y99C transgenic mice under standard cyclic, constant dark and constant light conditions. Mouse eyes were analyzed by histology and by immunofluorescence for GFAP upregulation, a non-specific marker for photoreceptor degeneration. Full-field electroretinograms (ERGs) were recorded to assess retinal function. Consistent with our hypothesis, constant darkness accelerated disease, while continuous lighting arrested photoreceptor degeneration. Conclusions/Significance In contrast to most forms of retinal degeneration, which are exacerbated by increased exposure to ambient light, a subset with mutations that cause overly active guanylyl cyclase and high intracellular calcium benefitted from prolonged light exposure. These findings may have therapeutic implications for patients with these types of genetic defects.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States of America
| | - Basil S. Pawlyk
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States of America
| | - Michael Adamian
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States of America
| | - Elena V. Olshevskaya
- Hafter Research Laboratories, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, United States of America
| | - Alexander M. Dizhoor
- Hafter Research Laboratories, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, United States of America
| | - Clint L. Makino
- Howe Laboratory, Harvard Medical School, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States of America
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Hunt DM, Buch P, Michaelides M. Guanylate cyclases and associated activator proteins in retinal disease. Mol Cell Biochem 2009; 334:157-68. [PMID: 19941038 DOI: 10.1007/s11010-009-0331-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 11/04/2009] [Indexed: 01/15/2023]
Abstract
Two isoforms of guanylate cyclase, GC1 and GC2 encoded by GUCY2D and GUCY2F, are responsible for the replenishment of cGMP in photoreceptors after exposure to light. Both are required for the normal kinetics of photoreceptor sensitivity and recovery, although disease mutations are restricted to GUCY2D. Recessive mutations in this gene cause the severe early-onset blinding disorder Leber congenital amaurosis whereas dominant mutations result in a later onset less severe cone-rod dystrophy. Cyclase activity is regulated by Ca(2+) which binds to the GC-associated proteins, GCAP1 and GCAP2 encoded by GUCA1A and GUCA1B, respectively. No recessive mutations in either of these genes have been reported. Dominant missense mutations are largely confined to the Ca(2+)-binding EF hands of the proteins. In a similar fashion to the disease mechanism for the dominant GUCY2D mutations, these mutations generally alter the sensitivity of the cyclase to inhibition as Ca(2+) levels rise following a light flash.
Collapse
Affiliation(s)
- David M Hunt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | |
Collapse
|
47
|
Thiadens AAHJ, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RWJ, De Baere E, Koenekoop RK, van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJC, Lotery AJ, van Moll-Ramirez N, Leroy BP, van den Born LI, Hoyng CB, Cremers FPM, Klaver CCW. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 2009; 85:240-7. [PMID: 19615668 DOI: 10.1016/j.ajhg.2009.06.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/08/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022] Open
Abstract
Cone photoreceptor disorders form a clinical spectrum of diseases that include progressive cone dystrophy (CD) and complete and incomplete achromatopsia (ACHM). The underlying disease mechanisms of autosomal recessive (ar)CD are largely unknown. Our aim was to identify causative genes for these disorders by genome-wide homozygosity mapping. We investigated 75 ACHM, 97 arCD, and 20 early-onset arCD probands and excluded the involvement of known genes for ACHM and arCD. Subsequently, we performed high-resolution SNP analysis and identified large homozygous regions spanning the PDE6C gene in one sibling pair with early-onset arCD and one sibling pair with incomplete ACHM. The PDE6C gene encodes the cone alpha subunit of cyclic guanosine monophosphate (cGMP) phosphodiesterase, which converts cGMP to 5'-GMP, and thereby plays an essential role in cone phototransduction. Sequence analysis of the coding region of PDE6C revealed homozygous missense mutations (p.R29W, p.Y323N) in both sibling pairs. Sequence analysis of 104 probands with arCD and 10 probands with ACHM revealed compound heterozygous PDE6C mutations in three complete ACHM patients from two families. One patient had a frameshift mutation and a splice defect; the other two had a splice defect and a missense variant (p.M455V). Cross-sectional retinal imaging via optical coherence tomography revealed a more pronounced absence of cone photoreceptors in patients with ACHM compared to patients with early-onset arCD. Our findings identify PDE6C as a gene for cone photoreceptor disorders and show that arCD and ACHM constitute genetically and clinically overlapping phenotypes.
Collapse
|
48
|
Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekström P, Paquet-Durand F. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 2008; 38:253-69. [PMID: 18982459 DOI: 10.1007/s12035-008-8045-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/16/2008] [Indexed: 02/24/2023]
Abstract
Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Institute for Ophthalmic Research, University of Tübingen, Centre for Ophthalmology, Röntgenweg 11, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vision Res 2008; 48:2425-32. [PMID: 18706439 DOI: 10.1016/j.visres.2008.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/23/2022]
Abstract
The GUCA1A gene encodes a guanylate cyclase activating protein (GCAP1) that is involved in regulation of phototransduction in the vertebrate retina. We discovered a novel C312A transversion in exon 2 of the human GUCA1A gene, replacing Asn-104 (N104) in GCAP1 with Lys (K), in two affected members of a family with dominant cone dystrophy. The mutation N104K is located in the third EF-hand motif (EF3) shown previously to be instrumental in converting Ca2+-free GCAP1 to a GC inhibitor in the Ca2+-bound form. In one patient, rod ERGs were fairly stable over a 12-year-period whereas 30 Hz flicker ERG and single-flash cone ERGs declined. In both patients, double-flash ERGs showed that rod recovery from an intense test flash was significantly delayed. The EC(50) for GC stimulation shifted from approximately 250 nM in wild-type GCAP1 to approximately 800 nM in the GCAP1(N104K) mutant suggesting inability of the mutant to assume an inactive form under physiological conditions. The replacement of N104 by K in GCAP1 is the first naturally occurring mutation identified in the EF3 loop. The rod recovery delays observed in double-flash ERG of affected patients suggest a novel dominant-negative effect that slows GC stimulation.
Collapse
|
50
|
Stephen R, Filipek S, Palczewski K, Sousa MC. Ca2+ -dependent regulation of phototransduction. Photochem Photobiol 2008; 84:903-10. [PMID: 18346093 DOI: 10.1111/j.1751-1097.2008.00323.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photon absorption by rhodopsin triggers the phototransduction signaling pathway that culminates in degradation of cGMP, closure of cGMP-gated ion channels and hyperpolarization of the photoreceptor membrane. This process is accompanied by a decrease in free Ca(2+) concentration in the photoreceptor cytosol sensed by Ca(2+)-binding proteins that modulate phototransduction and activate the recovery phase to reestablish the photoreceptor dark potential. Guanylate cyclase-activating proteins (GCAPs) belong to the neuronal calcium sensor (NCS) family and are responsible for activating retinal guanylate cyclases (retGCs) at low Ca(2+) concentrations triggering synthesis of cGMP and recovery of the dark potential. Here we review recent structural insight into the role of the N-terminal myristoylation in GCAPs and compare it to other NCS family members. We discuss previous studies identifying regions of GCAPs important for retGC1 regulation in the context of the new structural data available for myristoylated GCAP1. In addition, we present a hypothetical model for the Ca(2+)-triggered conformational change in GCAPs and retGC1 regulation. Finally, we briefly discuss the involvement of mutant GCAP1 proteins in the etiology of retinal degeneration as well as the importance of other Ca(2+) sensors in the modulation of phototransduction.
Collapse
Affiliation(s)
- Ricardo Stephen
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | | | | | | |
Collapse
|