1
|
Mao Y, Ou S, Zhu C, Lin S, Liu X, Liang M, Yu J, Wu Y, He H, Zong R, Lin Z, Liu Z, Li W. Downregulation of p38 MAPK signaling pathway ameliorates tissue engineered corneal epithelium. Tissue Eng Part A 2022; 28:977-989. [PMID: 36066335 DOI: 10.1089/ten.tea.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue engineered corneal epithelium transplantation is effective treatment for severe limbal stem cell deficiency (LSCD), while epithelial terminal differentiation, tans-differentiation and insufficient stem cell during construction affects the quality of tissue engineered corneal epithelium. In this study, we applied SB203580 in the culture medium to downregulate the P38 MAPK signaling pathway during construction of tissue engineered corneal epithelium. With application of SB203580, tissue engineered corneal epithelium showed enhanced strength and condensed structure. The expression of progenitor cell markers ABCG2, P63, K14, Wnt7a was increased, differentiation markers K12, Pax6, K10, K13, and trans-differentiation markers α-SMA and Snail1 was decreased, while cell junction markers Claudin-1 and E-cadherin was increased in the tissue engineered corneal epithelium. The wnt/β-catenin signaling pathway was upregulated in the epithelium after p38 MAPK inhibition. Transplantation of tissue engineered corneal epithelium treated with SB203580 to rabbit LSCD model showed faster wound healing and improved epithelial quality. We conclude that downregulation of p38 MAPK signaling pathway helps maintain the stemness, prevent terminal differentiation and abnormal differentiation of corneal epithelial cells during epithelium construction process, thus can improve the quality of tissue engineered corneal epithelium.
Collapse
Affiliation(s)
- Yi Mao
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Shangkun Ou
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Chengfang Zhu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Sijie Lin
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Xiaodong Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Minghui Liang
- School of Medicine, Nankai University, Naikai, Fujian, China;
| | - Jingwen Yu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Yiming Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Hui He
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Rongrong Zong
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, 3. Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, China;
| | - Zhirong Lin
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China;
| | - Zuguo Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Wei Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| |
Collapse
|
2
|
Effects of pituitary adenylate cyclase activating polypeptide (PACAP) in corneal epithelial regeneration and signal transduction in rats. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCorneal epithelium responds to insults with a rapid wound healing, which is essential for maintaining vision. The proper balance of apoptotic and proliferation-stimulating pathways is critical for normal regeneration. Pituitary adenylate cyclase activating polypeptide (PACAP) is an important growth factor during the development of the nervous system and exerts cytoprotective effects in injuries. The aim of the present study was to investigate the effects of PACAP on corneal epithelial wound healing in rats and on two important protective signaling molecules, Akt and ERK1/2, both of which have been reported to play important roles during cell survival and regeneration, including corneal wound healing. Wistar rats received PACAP treatment in form of eyedrops, containing 1, 5 and 10 µg PACAP27, immediately and every two hours after corneal abrasion. Corneas were stained with fluorescein dye and further processed for histological staining or Western blot analysis for Akt and ERK1/2 expression. Our results showed that topical PACAP application enhanced corneal wound healing, as the area of injury was significantly less in PACAP-treated groups. Furthermore, both ERK1/2 and Akt signaling was induced upon PACAP administration in both injured and intact corneas. In summary, the present results show that PACAP enhances corneal wound healing in a rat model of corneal abrasion.
Collapse
|
3
|
Preparation of Drug Sustained-Release Scaffold with De-Epithelized Human Amniotic Epithelial Cells and Thiolated Chitosan Nanocarriers and Its Repair Effect on Spinal Cord Injury. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6294148. [PMID: 35070240 PMCID: PMC8767368 DOI: 10.1155/2022/6294148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
The disability rate of spinal cord injury (SCI) is extremely high, and stem cell inhibition is one of the most effective schemes in treating the spinal cord, but the survival rate is extremely low after stem cell transplantation, so it cannot be widely used in clinic. Studies have revealed that loading stem cells with biological scaffolds can effectively improve the survival rate and effect after stem cell transplantation. Therefore, this research was devised to analyze the repair effect of thiolated chitosan nanocarriers scaffold carrying de-epithelized human amniotic epithelial cells (HAECs) on SCI. And we used thiolated chitosan as nanocarriers, aiming to provide a reliable theoretical basis for future clinical practice. Through experiments, we concluded that the Tarlov and BBB scores of rats with SCI were raised under the intervention of thiolated chitosan carrying HAECs, while the inflammatory factors in serum, oxidative stress reaction in spinal cord tissue, apoptosis rate of nerve cells, and autophagy protein expression were all suppressed. Thus, the thiolated chitosan carrying HAECs may be applied to treat SCI by suppressing autophagy protein expression, oxidative stress response, and release of inflammatory factors in spinal cord tissue, which may be a new clinical therapy for SCI in the future. Even though we cannot understand exactly the therapeutic mechanism of thiolated chitosan carrying HAECs for SCI, the real clinical application of thiolated chitosan carrying HAECs needs to be confirmed by human experiments.
Collapse
|
4
|
Zhu J, Wang LY, Li CY, Wu JY, Zhang YT, Pang KP, Wei Y, Du LQ, Liu M, Wu XY. SPARC promotes self-renewal of limbal epithelial stem cells and ocular surface restoration through JNK and p38-MAPK signaling pathways. Stem Cells 2019; 38:134-145. [PMID: 31644832 DOI: 10.1002/stem.3100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the effects of secreted protein acidic and rich in cysteine (SPARC) on the maintenance of limbal epithelial stem cell (LESC) stemness and restoration of ocular surface. To determine the suitable concentration of SPARC for LESC culture, the marker expression, mitogenic effect, and holoclone-forming capacity of LESCs treated with different concentrations of SPARC were analyzed. To investigate the mechanism of SPARC's action on the preservation of LESCs stemness, the phosphorylation of related signaling pathways was evaluated by Western blotting. A corneal wound model was established to verify the function of SPARC in ocular surface repair. Consecutive subculturing, colony-forming efficiency, immunofluorescence, and 5-ethynyl-2-deoxyuridine incorporation assays indicated that 1 μg/mL SPARC was a suitable concentration to stimulate LESC proliferation and preserve their proliferative potential. Compared with a control group, 1 μg/mL SPARC effectively increased the expression of ABCG-2, Bmi-1, and Ki67, while decreasing that of CK3/12. The mitogenic effect of SPARC on LESCs was found to be mediated by the phosphorylation of c-Jun N-terminal kinase (JNK) and p38-MAPK signaling pathways, whereas the inhibitors of JNK and p38 MAPK reduced the marker expression and mitogenic capacity of LESCs. In a corneal injury model, SPARC facilitated corneal epithelial wound healing and promoted the proliferation of p63α-positive cells both in the limbus and in the epithelial healing front. SPARC promotes proliferation while suppressing spontaneous differentiation of LESCs through JNK and p38-MAPK signaling pathways, suggesting that SPARC is a promising factor for the improvement of LESCs culture in vitro and in vivo.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Le-Yi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Chong-Yun Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jia-Yin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yu-Ting Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Kun-Peng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yan Wei
- Department of First Operating Room, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Li-Qun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Mei Liu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xin-Yi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
5
|
Dhamodaran K, Subramani M, Matalia H, Jayadev C, Shetty R, Das D. One for all: A standardized protocol for ex vivo culture of limbal, conjunctival and oral mucosal epithelial cells into corneal lineage. Cytotherapy 2016; 18:546-61. [DOI: 10.1016/j.jcyt.2016.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 12/27/2015] [Accepted: 01/03/2016] [Indexed: 12/18/2022]
|
6
|
Saghizadeh M, Dib CM, Brunken WJ, Ljubimov AV. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res 2014; 129:66-73. [PMID: 25446319 DOI: 10.1016/j.exer.2014.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/26/2022]
Abstract
Overexpression of c-met and suppression of matrix metalloproteinase-10 (MMP-10) and cathepsin F genes was previously shown to normalize wound healing, epithelial and stem cell marker patterns in organ-cultured human diabetic corneas. We now examined if gene therapy of limbal cells only would produce similar effects. Eight pairs of organ-cultured autopsy human diabetic corneas were used. One cornea of each pair was treated for 48 h with adenoviruses (Ad) harboring full-length c-met mRNA or a mixture (combo) of Ad with c-met and shRNA to MMP-10 and cathepsin F genes. Medium was kept at the limbal level to avoid transduction of central corneal epithelium. Fellow corneas received control Ad with EGFP gene. After additional 5 (c-met) or 10 days (combo) incubation, central corneal epithelial debridement with n-heptanol was performed, and wound healing times were determined microscopically. Corneal cryostat sections were immunostained for diabetic and putative limbal stem cell markers, α3β1 integrin, nidogen-1, fibronectin, laminin γ3 chain, ΔNp63α, keratins 14, 15, and 17, as well as for activated signaling intermediates, phosphorylated EGFR, Akt, and p38. Limbal c-met overexpression significantly accelerated healing of 8.5-mm epithelial wounds over EGFP controls (6.3 days vs. 9.5 days, p < 0.02). Combo treatment produced a similar result (6.75 days vs. 13.5 days, p < 0.03). Increased immunostaining vs. EGFP controls for most markers and signaling intermediates accompanied c-met gene or combo transduction. Gene therapy of limbal epithelial stem cell compartment has a beneficial effect on the diabetic corneal wound healing and on diabetic and stem cell marker expression, and shows potential for alleviating symptoms of diabetic keratopathy.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | | | - William J Brunken
- Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Ho TC, Chen SL, Wu JY, Ho MY, Chen LJ, Hsieh JW, Cheng HC, Tsao YP. PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing. Stem Cells 2014; 31:1775-84. [PMID: 23553951 DOI: 10.1002/stem.1393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/06/2013] [Indexed: 12/15/2022]
Abstract
Limbal epithelial stem cell (LSC) transplantation is a prevalent therapeutic method for patients with LSC deficiency. The maintenance of stem cell characteristics in the process of culture expansion is critical for the success of ocular surface reconstruction. Pigment epithelial-derived factor (PEDF) increased the numbers of holoclone in LSC monolayer culture and preserved the stemness of LSC in suspension culture by evidence of ΔNp63α, Bmi-1, and ABCG2 expression. BrdU pulse-labeling assay also demonstrated that PEDF stimulated LSCs proliferation. In air-lift culture of limbal equivalent, PEDF was capable of increasing the numbers of ΔNp63α-positive cells. The mitogenic effect of PEDF was found to be mediated by the phosphorylations of p38 MAPK and STAT3 in LSCs. Synthetic 44-mer PEDF (residues 78-121) was as effective as the full length PEDF in LSC expansion in suspension culture and limbal equivalent formation, as well as the activation of p38 MAPK and STAT3. In mice subjecting to mechanical removal of cornea epithelium, 44-mer PEDF facilitated corneal wound healing. Microscopically, 44-mer PEDF advanced the early proliferative response in limbus, increased the proliferation of ΔNp63α-positive cells both in limbus and in epithelial healing front, and assisted the repopulation of limbus in the late phase of wound healing. In conclusion, the capability of expanding LSC in cell culture and in animal indicates the potential of PEDF and its fragment (e.g., 44-mer PEDF) in ameliorating limbal stem cell deficiency; and their uses as therapeutics for treating corneal wound.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tsai RJF, Tsai RYN. From stem cell niche environments to engineering of corneal epithelium tissue. Jpn J Ophthalmol 2014; 58:111-9. [PMID: 24492887 DOI: 10.1007/s10384-014-0306-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/19/2013] [Indexed: 12/13/2022]
Abstract
Studies on stem cells (SC) show that SC functions are determined by the extracellular microenvironment, known as the "niche", and by intrinsic genetic programs in the SCs; both are involved in regulating the delicate balance of self-renewal and differentiation. We have identified an animal model of limbal SC (LSC) deficiency and transplantation of SC-containing limbal tissue to treat the LSC deficiency, which could not only replace LSCs by providing new healthy corneal epithelial cells but also restore the lost niche of the limbal stromal layer, causing the regression of vessels and rearrangement of the corneal stromal lamellae. The purpose of the ex-vivo expansion technique is to develop a method that will enable culture of a small number of SCs which could than be expanded in a defined cultured system while preserving the original characteristics and properties of the SCs. In addition, SC characteristics will continue to be maintained when the cultured cells are transplanted back into the host. Bromodeoxyuridine-retaining, ΔNp63, ABCG2, p120, and N-cadherin immunoreactive studies of LSC cultured on an amniotic membrane have been performed. Pathological studies have been conducted for cases with preexisting central corneal stromal opacity treated by transplantation of LSCs followed by penetrating keratoplasty. The results indicate that the amniotic membrane can provide the niche environment for cultured LSCs and maintain the limbal-like environment for the transplanted area of cornea.
Collapse
Affiliation(s)
- Ray Jui-Fang Tsai
- Taipei Eye Center, 2F, 350 Section 4, ChengKung Road, Taipei 114, Taiwan,
| | | |
Collapse
|
9
|
Saghizadeh M, Epifantseva I, Hemmati DM, Ghiam CA, Brunken WJ, Ljubimov AV. Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci 2013; 54:8172-80. [PMID: 24255036 DOI: 10.1167/iovs.13-13233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Diabetic corneas overexpress proteinases including matrix metalloproteinase-10 (M10) and cathepsin F (CF). Our purpose was to assess if silencing M10 and CF in organ-cultured diabetic corneas using recombinant adenovirus (rAV)-driven small hairpin RNA (rAV-sh) would normalize slow wound healing, and diabetic and stem cell marker expression. METHODS Sixteen pairs of organ-cultured autopsy human diabetic corneas (four per group) were treated with rAV-sh. Proteinase genes were silenced either separately, together, or both, in combination (Combo) with rAV-driven c-met gene overexpression. Fellow control corneas received rAV-EGFP. Quantitative RT-PCR confirmed small hairpin RNA (shRNA) silencing effect. Ten days after transfection, 5-mm epithelial wounds were made with n-heptanol and healing time recorded. Diabetic, signaling, and putative stem cell markers were studied by immunofluorescence of corneal cryostat sections. RESULTS Proteinase silencing reduced epithelial wound healing time versus rAV-enhanced green fluorescent protein (EGFP) control (23% for rAV-shM10, 31% for rAV-shCF, and 36% for rAV-shM10 + rAV-shCF). Combo treatment was even more efficient (55% reduction). Staining patterns of diabetic markers (α₃β₁ integrin and nidogen-1), and of activated epidermal growth factor receptor and its signaling target activated Akt were normalized upon rAV-sh treatment. Combo treatment also restored normal staining for activated p38. All treatments, especially the combined ones, increased diabetes-altered staining for putative limbal stem cell markers, ΔNp63α, ABCG2, keratins 15 and 17, and laminin γ3 chain. CONCLUSIONS Small hairpin RNA silencing of proteinases overexpressed in diabetic corneas enhanced corneal epithelial and stem cell marker staining and accelerated wound healing. Combined therapy with c-met overexpression was even more efficient. Specific corneal gene therapy has a potential for treating diabetic keratopathy.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Eye Program, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
10
|
Pluripotin enhances the expansion of rabbit limbal epithelial stem/progenitor cells in vitro. Exp Eye Res 2012; 100:52-8. [DOI: 10.1016/j.exer.2012.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/19/2022]
|
11
|
Cheng CY, Hsieh HL, Hsiao LD, Yang CM. PI3-K/Akt/JNK/NF-κB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane. Stem Cell Res 2012; 9:9-23. [PMID: 22459175 DOI: 10.1016/j.scr.2012.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) plays an important role in the outgrowth of expanded human limbal epithelial cells on intact amniotic membranes (AM). The mechanisms of MMP-9 expression and cell outgrowth remain unknown. Here, we demonstrated that MMP-9 is preferentially expressed at the leading edge of limbal epithelial outgrowth. Treatment with the inhibitors of PI3-K (LY294002), Akt (SH-5), MEK1/2 (U0126), and JNK1/2 (SP600125) attenuated the outgrowth area, indicating that PI3-K/Akt, p42/p44 MAPK, and JNK1/2 are involved in the outgrowth of intact AM-expanded limbal epithelial cells. However, MMP-9 expression at both transcriptional and translational levels was attenuated by treatment with SP600125, LY294002, or SH-5, not by U0126 and SB202190, suggesting that JNK1/2 and PI3-K/Akt participate in MMP-9 expression. Moreover, NF-κB phosphorylation and nuclear translocation was especially noted at the leading edge, which was attenuated by treatment with SP600125 or LY294002. Helenalin, a selective NF-κB inhibitor, reduced both the limbal epithelial outgrowth and MMP-9 expression. Finally, the data reveal that PI3-K/Akt is an upstream component of the JNK1/2 pathway in MMP-9 expression. Thus, both MAPKs and PI3-K/Akt are required for limbal epithelial outgrowth on intact AM, only the PI3-K/Akt/JNK is essential for MMP-9 expression mediated through activation of transcriptional factor NF-κB in this model.
Collapse
Affiliation(s)
- Ching-Yi Cheng
- Department of Biomedical Engineering, Chung Yuan Christian University, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
12
|
Tan Y, Qiu F, Qu YL, Li C, Shao Y, Xiao Q, Liu Z, Li W. Amniotic membrane inhibits squamous metaplasia of human conjunctival epithelium. Am J Physiol Cell Physiol 2011; 301:C115-25. [DOI: 10.1152/ajpcell.00375.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Squamous metaplasia is a common pathological process that occurs in the ocular surface epithelium. At present, there is no effective treatment for this abnormality. In the current study, we established an ex vivo conjunctival squamous metaplasia model by culturing human conjunctival tissues at an air-liquid interface for durations of up to 12 days. We then investigated the effects of amniotic membrane (AM) on squamous metaplasia through coculture of conjunctival tissues with AM or AM extract. We found that metaplasia features such as hyperproliferation and abnormal epidermal differentiation of conjunctival epithelium could be inhibited by AM or its extract. In addition, existing squamous metaplasia of conjunctival epithelium could be reversed to a nearly normal phenotype by AM. The mechanism by which AM prevents squamous metaplasia may involve downregulation of p38 mitogen-activated protein kinase and Wnt signaling pathways, which were activated in conjunctival explants cultured with an airlift technique. In conclusion, AM can inhibit and reverse squamous metaplasia of conjunctival epithelium. This finding may shed new light on prevention and treatment of diseases that involve epithelial squamous metaplasia.
Collapse
Affiliation(s)
- Yehui Tan
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian
- Department of Ophthalmology, The Affiliated Yue Bei Hospital, Medical College of Shantou University, South Huimin Road, Shaoguan, Guangdong
- Department of Ophthalmology, The Second Affiliated Hospital, Nanhua University, Hengyang, Hunan, China
| | - Fangfang Qiu
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian
| | - Yang-Luowa Qu
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian
| | - Cheng Li
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian
| | - Yi Shao
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian
| | - Qiguo Xiao
- Department of Ophthalmology, The Affiliated Yue Bei Hospital, Medical College of Shantou University, South Huimin Road, Shaoguan, Guangdong
| | - Zuguo Liu
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian
| | - Wei Li
- Eye Institute and affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian
| |
Collapse
|
13
|
Liu Y, Zhang B, Zhang S, Qi J, Zhang Z, Liu L, Fang X. Nerve growth factor mediated SH2-Bbeta/Akt signal pathway activated in allergic airway challenge in mice. Respirology 2009; 15:80-7. [PMID: 19947990 DOI: 10.1111/j.1440-1843.2009.01648.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Nerve growth factor (NGF) contributes to airway inflammation and bronchoconstriction in allergic asthma. The Src homology 2beta/serine/threonine kinase (SH2-Bbeta/Akt) pathway is one of the avenues through which NGF regulates the biological activity of pheochromocytoma (PC)12 cells. It has also been reported that NGF upregulates the expression of SH2-Bbeta in the lung tissue of asthmatic mice. The present study investigated the effects of NGF and SH2-Bbeta on Akt activation during allergic airway challenge. METHODS BALB/c mice were sensitized and challenged with ovalbumin. The effects of NGF and SH2-Bbeta on Akt in allergic airway challenge were assessed by intravenously administering anti-NGF antibody or a mutant of SH2-Bbeta (R555E) to these mice. Pulmonary histological changes were then assessed and the inflammatory cells in the BAL fluid (BALF) were counted. Additionally, phosphorylated Akt (p-Akt) expression was determined by fluorescence microscopy, western blotting and quantitative RT-PCR. Airway resistance was also measured using closed-type body plethysmography. RESULTS We observed p-Akt overexpression in the lungs after allergen challenge by fluorescence microscopy, Western blotting and RT-PCR, as compared with the control. However, after treatment with anti-NGF or R555E, p-Akt levels and allergen-induced airway inflammation were reduced in comparison with those of allergen-challenged mice. Anti-NGF and R555E also decreased airway hyperresponsiveness caused by allergen challenge in response to methacholine (MCH). CONCLUSIONS These results suggest that SH2-Bbeta regulation of Akt partly participates in the NGF-mediated development of allergic airway challenge.
Collapse
Affiliation(s)
- Yuli Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shengyang, Liaoning Province 110001, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Kapetanovic IM, Muzzio M, Hu SC, Crowell JA, Rajewski RA, Haslam JL, Jong L, McCormick DL. Pharmacokinetics and enhanced bioavailability of candidate cancer preventative agent, SR13668 in dogs and monkeys. Cancer Chemother Pharmacol 2009; 65:1109-16. [PMID: 19756605 DOI: 10.1007/s00280-009-1116-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE SR13668 (2,10-dicarbethoxy-6-methoxy-5,7-dihydro-indolo-(2,3-b)carbazole), is a new candidate cancer chemopreventive agent under development. It was designed using computational modeling based on a naturally occurring indole-3-carbinol and its in vivo condensation products. It showed promising anti-cancer activity and its preclinical toxicology profile (genotoxicity battery and subchronic rat and dog studies) was unremarkable. However, it exhibited a very poor oral bioavailability (<1%) in both rats and dogs. Therefore, a study was initiated to develop and evaluate in dogs and non-human primates formulations with a more favorable oral bioavailability. METHODS Two formulations utilizing surfactant/emulsifiers, PEG400:Labrasol and Solutol, were tested in dogs and monkeys. Levels of SR13668 were measured in plasma and blood using a high-performance liquid chromatograph-tandem mass spectrometer system. Non-compartmental analysis was used to derive pharmacokinetic parameters including the bioavailability. RESULTS The Solutol formulation yielded better bioavailability reaching a maximum of about 14.6 and 7.3% in dogs and monkeys, respectively, following nominal oral dose of ca. 90 mg SR13668/m(2). Blood levels of SR13668 were consistently about threefold higher than those in plasma in both species. SR13668 did not cause untoward hematology, clinical chemistry, or coagulation effects in dogs or monkeys with the exception of a modest, reversible increase in liver function enzymes in monkeys. CONCLUSIONS The lipid-based surfactant/emulsifiers, especially Solutol, markedly enhanced the oral bioavailability of SR13668 over that previously seen in preclinical studies. These formulations are being evaluated in a Phase 0 clinical study prior to further clinical development of this drug.
Collapse
Affiliation(s)
- Izet M Kapetanovic
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd., Rm. 2116, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ocular injuries following sulfur mustard exposure—Pathological mechanism and potential therapy. Toxicology 2009; 263:59-69. [DOI: 10.1016/j.tox.2008.10.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/30/2008] [Accepted: 10/30/2008] [Indexed: 01/31/2023]
|
16
|
Bibliography. Current world literature. Corneal and external disorders. Curr Opin Ophthalmol 2006; 17:413-8. [PMID: 16900037 DOI: 10.1097/01.icu.0000233964.03757.bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|