1
|
Lee HP, Tsung TH, Tsai YC, Chen YH, Lu DW. Glaucoma: Current and New Therapeutic Approaches. Biomedicines 2024; 12:2000. [PMID: 39335514 PMCID: PMC11429057 DOI: 10.3390/biomedicines12092000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is identified by the loss of retinal ganglion cells (RGCs). The primary approach to managing glaucoma is to control intraocular pressure (IOP). Lately, there has been an increasing focus on neuroprotective therapies for glaucoma because of the limited effectiveness of standard methods in reducing IOP and preventing ongoing vision deterioration in certain glaucoma patients. Various drug-based techniques with neuroprotective properties have demonstrated the ability to decrease the mortality of retinal ganglion cells. This study will analyze the currently recommended drug-based techniques for neuroprotection in the prospective treatment of glaucoma.
Collapse
Affiliation(s)
- Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
2
|
Durmaz E, Dribika L, Kutnyanszky M, Mead B. Utilizing extracellular vesicles as a drug delivery system in glaucoma and RGC degeneration. J Control Release 2024; 372:209-220. [PMID: 38880332 DOI: 10.1016/j.jconrel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Retinal diseases are the leading cause of blindness, resulting in irreversible degeneration and death of retinal neurons. One such cell type, the retinal ganglion cell (RGC), is responsible for connecting the retina to the rest of the brain through its axons that make up the optic nerve and is the primary cell lost in glaucoma and traumatic optic neuropathy. To date, different therapeutic strategies have been investigated to protect RGCs from death and preserve vision, yet currently available strategies are restricted to treating neuron loss by reducing intraocular pressure. A major barrier identified by these studies is drug delivery to RGCs, which is in large part due to drug stability, short duration time at target, low delivery efficiency, and undesired off-target effects. Therefore, a delivery system to deal with these problems is needed to ensure maximum benefit from the candidate therapeutic material. Extracellular vesicles (EV), nanocarriers released by all cells, are lipid membranes encapsulating RNAs, proteins, and lipids. As they naturally shuttle these encapsulated compounds between cells for communicative purposes, they may be exploitable and offer opportunities to overcome hurdles in retinal drug delivery, including drug stability, drug molecular weight, barriers in the retina, and drug adverse effects. Here, we summarize the potential of an EV drug delivery system, discussing their superiorities and potential application to target RGCs.
Collapse
Affiliation(s)
- Esmahan Durmaz
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| | | | | | - Ben Mead
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| |
Collapse
|
3
|
Ishikawa T, Kishi N, Shimizu Y, Fujimura T, Yamazaki T. Real-Time Imaging of Single Retinal Cell Apoptosis in a Non-Human Primate Ocular Hypertension Model. Transl Vis Sci Technol 2024; 13:20. [PMID: 38252520 PMCID: PMC10810027 DOI: 10.1167/tvst.13.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose To evaluate the feasibility of using DARC (detection of apoptosing retinal cells) technology as a biomarker for preclinical assessment of glaucomatous damage in a non-human primate (NHP) model of ocular hypertension (OHT). Methods Elevated intraocular pressure (IOP) was induced by applying a laser to the trabecular meshwork in each eye of NHPs. Changes in DARC counts in the retina, identified as fluorescent-tagged annexin V (ANX776)-positive cells, were evaluated together with optic nerve damage, assessed using spectral domain-optical coherence tomography. The pharmacokinetic properties of ANX776 in both healthy and OHT model monkeys were also examined. Results Sustained elevation of IOP and subsequent thinning of the retinal nerve fiber layer thickness (RNFLT) around the optic nerve head were confirmed in the OHT model. Increases in DARC counts were also detected after IOP elevation. We identified a statistically significant relationship between cumulative DARC counts and reductions in RNFLT both globally and in each peripapillary sector. Intravenous administration of ANX776 increased blood annexin V in a dose-dependent manner, which was subsequently eliminated. Conclusions This study revealed that DARC technology can effectively assess glaucomatous damage in an NHP OHT model. We obtained the fundamental data that could serve as a reference for developing preclinical models to evaluate the pharmacodynamics of neuroprotective agents using DARC technology in NHP OHT models. Translational Relevance Our basic data in a monkey OHT model could be useful for future preclinical studies using DARC technology to estimate the pharmacodynamic response of neuroprotective agents.
Collapse
Affiliation(s)
- Takeshi Ishikawa
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| | - Naoki Kishi
- Portfolio Evaluation Group, Cooperate Strategy, Astellas Pharma Inc., Tokyo, Japan
| | - Yoshiko Shimizu
- Product Creation Unit, Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Takao Fujimura
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| | - Takao Yamazaki
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| |
Collapse
|
4
|
Feng KM, Tsung TH, Chen YH, Lu DW. The Role of Retinal Ganglion Cell Structure and Function in Glaucoma. Cells 2023; 12:2797. [PMID: 38132117 PMCID: PMC10741833 DOI: 10.3390/cells12242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a leading cause of irreversible blindness globally, primarily affects retinal ganglion cells (RGCs). This review dives into the anatomy of RGC subtypes, covering the different underlying theoretical mechanisms that lead to RGC susceptibility in glaucoma, including mechanical, vascular, excitotoxicity, and neurotrophic factor deficiency, as well as oxidative stress and inflammation. Furthermore, we examined numerous imaging methods and functional assessments to gain insight into RGC health. Finally, we investigated the current possible neuroprotective targets for RGCs that could help with future glaucoma research and management.
Collapse
Affiliation(s)
| | | | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (K.M.F.); (T.-H.T.); (Y.-H.C.)
| |
Collapse
|
5
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
6
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Zhou ZX, Xu LJ, Wang HN, Cheng S, Li F, Miao Y, Lei B, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling mediated downregulation of glutamate transporter GLAST in Müller cells in an experimental glaucoma model. Glia 2023; 71:720-741. [PMID: 36416239 DOI: 10.1002/glia.24307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.
Collapse
Affiliation(s)
- Zhi-Xin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Hu L, Xu Y, Meng H. Development and Evaluation of Puerarin Loaded-Albumin Nanoparticles Thermoresponsive in situ Gel for Ophthalmic Delivery. Drug Des Devel Ther 2022; 16:3315-3326. [PMID: 36193285 PMCID: PMC9526508 DOI: 10.2147/dddt.s374061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lixiu Hu
- Department of Pharmaceutical, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yong Xu
- Department of Pharmaceutical, Shanghai Punan Hospital of Pudong New District, Shanghai, People’s Republic of China
| | - Hui Meng
- Department of Pharmaceutical, 905 Hospital of People’s Liberation Army, Shanghai, People’s Republic of China
- Correspondence: Hui Meng, Email
| |
Collapse
|
9
|
Brahma MM, Takahashi K, Namekata K, Harada T, Goshima Y, Ohshima T. Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes Cells 2022; 27:526-536. [PMID: 35703119 DOI: 10.1111/gtc.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Glaucoma is a neurodegenerative disorder caused by the death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is a cause of glaucoma. However, glaucoma often develops with normal IOP and is known as normal-tension glaucoma (NTG). Glutamate neurotoxicity is considered as one of the significant causes of NTG, resulting in excessive stimulation of retinal neurons via the N-methyl-D-aspartate (NMDA) receptors. The present study examined the phosphorylation of collapsin response mediator protein-2 (CRMP2), a protein that is abundantly expressed in neurons and involved in their development. In two mouse models, NMDA-injection and glutamate/aspartate transporter (GLAST) mutant, CRMP2 phosphorylation at the cyclin-dependent kinase-5 (Cdk5) site was elevated in RGCs. We confirmed that the decrease in the number of RGCs and thickness of the inner retinal layer (IRL) could be suppressed after NMDA administration in CRMP2KI/KI mice with genetically inhibited CRMP2 phosphorylation. Next, we investigated GLAST heterozygotes (GLAST+/-) with CRMP2KI/KI (GLAST+/-;CRMP2KI/KI) and GLAST knockout (GLAST-/-) mice with CRMP2KI/KI (GLAST-/-;CRMP2KI/KI) mice and compared them with GLAST+/- and GLAST-/- mice. pCRMP2 (S522) inhibition significantly reduced RGC loss and IRL thinning. These results suggest that the inhibition of CRMP2 phosphorylation could be a novel strategy for treating NTG.
Collapse
Affiliation(s)
- Musukha Mala Brahma
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Kazuya Takahashi
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
10
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
11
|
Hann Yih T, Abd Ghapor AA, Agarwal R, Razali N, Iezhitsa I, Mohd Ismail N. Effect of trans-resveratrol on glutamate clearance and visual behaviour in rats with glutamate induced retinal injury. Exp Eye Res 2022; 220:109104. [DOI: 10.1016/j.exer.2022.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
|
12
|
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23084287. [PMID: 35457104 PMCID: PMC9025234 DOI: 10.3390/ijms23084287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC.
Collapse
|
13
|
Huang SK, Lu CW, Lin TY, Wang SJ. Neuroprotective Role of the B Vitamins in the Modulation of the Central Glutamatergic Neurotransmission. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:292-301. [PMID: 34477538 DOI: 10.2174/1871527320666210902165739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Regulation of glutamate release is crucial for maintaining normal brain function, but excess glutamate release is implicated in many neuropathological conditions. Therefore, the minimum glutamate release from presynaptic nerve terminals is an important neuroprotective mechanism. OBJECTIVE In this mini-review, we analyze the three B vitamins, namely vitamin B2 (riboflavin), vitamin B6 (pyridoxine), and vitamin B12 (cyanocobalamin), that affect the 4-aminopyridine (4- AP)-evoked glutamate release from presynaptic nerve terminal in rat and discuss their neuroprotective role. METHODS In this study, the measurements include glutamate release, DiSC3(5), and Fura-2. RESULTS The riboflavin, pyridoxine, and cyanocobalamin produced significant inhibitory effects on 4-aminopyridine-evoked glutamate release from rat cerebrocortical nerve terminals (synaptosomes) in a dose-dependent relationship. These presynaptic inhibitory actions of glutamate release are attributed to inhibition of physiologic Ca2+-dependent vesicular exocytosis but not Ca2+-independent nonvesicular release. These effects also did not affect membrane excitability, while diminished cytosolic (Ca2+)c through a reduction of direct Ca2+ influx via Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, rather than through indirect Ca2+induced Ca2+ release from ryanodine-sensitive intracellular stores. Furthermore, their effects were attenuated by GF109203X and Ro318220, two protein kinase C (PKC) inhibitors, suggesting suppression of PKC activity. Taken together, these results suggest that riboflavin, pyridoxine, and cyanocobalamin inhibit presynaptic vesicular glutamate release from rat cerebrocortical synaptosomes, through the depression Ca2+ influx via voltage- dependent Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, and PKC signaling cascade. CONCLUSION Therefore, these B vitamins may reduce the strength of glutamatergic synaptic transmission and is of considerable importance as potential targets for therapeutic agents in glutamate- induced excitation-related diseases.
Collapse
Affiliation(s)
- Shu-Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan, China
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan, China
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City, Taiwan, China
| | - Su-Jane Wang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, Taiwan, China
| |
Collapse
|
14
|
Zhang X, Zhang R, Wu J. Inhibition of the NR2B-PSD95 interaction exerts neuroprotective effects on retinal ischemia-reperfusion injury. Neuroscience 2022; 490:89-99. [DOI: 10.1016/j.neuroscience.2022.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
|
15
|
Arrigo A, Aragona E, Saladino A, Arrigo D, Fantaguzzi F, Battaglia Parodi M, Bandello F. Cognitive Dysfunctions in Glaucoma: An Overview of Morpho-Functional Mechanisms and the Impact on Higher-Order Visual Function. Front Aging Neurosci 2021; 13:747050. [PMID: 34690746 PMCID: PMC8526892 DOI: 10.3389/fnagi.2021.747050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Glaucoma is a chronic, vision-threatening disease, and a major cause of legal blindness. The current view is no longer limited to the progressive optic nerve injury, since growing evidence strongly support the interpretation of glaucoma as a complex neurodegenerative disease. However, the precise pathogenic mechanisms leading to the onset and progression of central nervous system (CNS) impairment, and the functional consequences of this damage, are still partially understood. The main aim of this review is to provide a complete and updated overview of the current knowledge regarding the CNS involvement in glaucoma, and the possible therapeutic perspectives. Methods: We made a careful survey of the current literature reporting all the relevant findings related to the cognitive dysfunctions occurring in glaucoma, with specific remarks dedicated on the higher-order visual function impairment and the possible employment of neuroprotective agents. Results: The current literature strongly support the interpretation of glaucoma as a multifaceted chronic neurodegenerative disease, widely affecting the CNS. The cognitive impairment may vary in terms of higher-order functions involvement and in the severity of the degeneration. Although several neuroprotective agents are currently available, the development of new molecules represents a major topic of investigation for future clinical trials. Conclusions: Glaucoma earned the right to be fully considered a neurodegenerative disease. Glaucomatous patients may experience a heterogeneous set of visual and cognitive symptoms, progressively deteriorating the quality of life. Neuroprotection is nowadays a necessary therapeutic goal and a future promising way to preserve visual and cognitive functions, thus improving patients' quality of life.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Davide Arrigo
- School of Medicine, University of Messina, Messina, Italy
| | - Federico Fantaguzzi
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| |
Collapse
|
16
|
Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int J Mol Sci 2021; 22:7994. [PMID: 34360760 PMCID: PMC8346985 DOI: 10.3390/ijms22157994] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
| | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
17
|
Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic. Prog Retin Eye Res 2021; 86:100976. [PMID: 34102318 DOI: 10.1016/j.preteyeres.2021.100976] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
DARC (Detection of Apoptosing Retinal Cells) is a retinal imaging technology that has been developed within the last 2 decades from basic laboratory science to Phase 2 clinical trials. It uses ANX776 (fluorescently labelled Annexin A5) to identify stressed and apoptotic cells in the living eye. During its development, DARC has undergone biochemistry optimisation, scale-up and GMP manufacture and extensive preclinical evaluation. Initially tested in preclinical glaucoma and optic neuropathy models, it has also been investigated in Alzheimer, Parkinson's and Diabetic models, and used to assess efficacy of therapies. Progression to clinical trials has not been speedy. Intravenous ANX776 has to date been found to be safe and well-tolerated in 129 patients, including 16 from Phase 1 and 113 from Phase 2. Results on glaucoma and AMD patients have been recently published, and suggest DARC with an AI-aided algorithm can be used to predict disease activity. New analyses of DARC in GA prediction are reported here. Although further studies are needed to validate these findings, it appears there is potential of the technology to be used as a biomarker. Much larger clinical studies will be needed before it can be considered as a diagnostic, although the relatively non-invasive nature of the nasal as opposed to intravenous administration would widen its acceptability in the future as a screening tool. This review describes DARC development and its progression into Phase 2 clinical trials from lab-based research. It discusses hypotheses, potential challenges, and regulatory hurdles in translating technology.
Collapse
|
18
|
What Is New in Glaucoma: From Treatment to Biological Perspectives. J Ophthalmol 2021; 2021:5013529. [PMID: 33936807 PMCID: PMC8060111 DOI: 10.1155/2021/5013529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a chronic silent disease and an irreversible cause of blindness worldwide. Research has made many efforts to improve disease control and especially to anticipate both early diagnosis and treatment of advanced stages of glaucoma. In terms of prevention, networking between professionals and nonprofessionals is an important goal to disseminate information and help diagnose the disease early. On the other hand, the most recent approaches to treat glaucoma outcomes in its advanced stages include electrical stimulation, stem cells, exosomes, extracellular vesicles, and growth factors. Finally, neuronal plasticity-based rehabilitation methods are being studied to reeducate patients in order to stimulate their residual visual capacity. This review provides an overview of new approaches to future possible glaucoma treatment modalities and gives insight into the perspectives available nowadays in this field.
Collapse
|
19
|
Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res 2021; 205:108506. [PMID: 33609512 DOI: 10.1016/j.exer.2021.108506] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Glaucoma is a neuropathic disease that causes optic nerve damage, loss of retinal ganglion cells (RGCs), and visual field defects. Most glaucoma patients have no early signs or symptoms. Conventional pharmacological glaucoma medications and surgeries that focus on lowering intraocular pressure are not sufficient; RGCs continue to die, and the patient's vision continues to decline. Recent evidence has demonstrated that neuroprotective approaches could be a promising strategy for protecting against glaucoma. In the case of glaucoma, neuroprotection aims to prevent or slow down disease progression by mitigating RGCs death and optic nerve degeneration. Notably, new pharmacologic medications such as antiglaucomatous agents, antibiotics, dietary supplementation, novel neuroprotective molecules, neurotrophic factors, translational methods such as gene therapy and cell therapy, and electrical stimulation-based physiotherapy are emerging to attenuate the death of RGCs, or to make RGCs resilient to attacks. Understanding the roles of these interventions in RGC protection may offer benefits over traditional pharmacological medications and surgeries. In this review, we summarize the recent neuroprotective strategy for glaucoma, both in clinical trials and in laboratory research.
Collapse
Affiliation(s)
- Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuanqi Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
20
|
Zollet P, E.Yap T, Cordeiro MF. Detecting apoptosis as a clinical endpoint for proof of a clinical principle. Ophthalmologica 2020; 244:408-417. [DOI: 10.1159/000513584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022]
Abstract
The transparent eye media represent a window through which to observe changes occurring in the retina during pathological processes. In contrast to visualising the extent of neurodegenerative damage that has already occurred, imaging an active process such as apoptosis has the potential to report on disease progression and therefore the threat of irreversible functional loss in various eye and brain diseases. Early diagnosis in these conditions is an important unmet clinical need to avoid or delay irreversible sight loss. In this setting, apoptosis detection is a promising strategy with which to diagnose, provide prognosis, and monitor therapeutic response. Additionally, monitoring apoptosis in vitro and in vivo has been shown to be valuable for drug development in order to assess the efficacy of novel therapeutic strategies both in the pre-clinical and clinical setting. Detection of Apoptosing Retinal Cells (DARC) technology is to date the only tool of its kind to have been tested in clinical trials, with other new imaging techniques under investigation in the fields of neuroscience, ophthalmology and drug development. We summarize the transitioning of techniques detecting apoptosis from bench to bedside, along with the future possibilities they encase.
Collapse
|
21
|
Barbosa Breda J, Croitor Sava A, Himmelreich U, Somers A, Matthys C, Rocha Sousa A, Vandewalle E, Stalmans I. Metabolomic profiling of aqueous humor from glaucoma patients - The metabolomics in surgical ophthalmological patients (MISO) study. Exp Eye Res 2020; 201:108268. [PMID: 33011236 DOI: 10.1016/j.exer.2020.108268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
Glaucoma is still a poorly understood disease with a clear need for new biomarkers to help in diagnosis and potentially offer new therapeutic targets. We aimed to determine if the metabolic profile of aqueous humor (AH) as determined by nuclear magnetic resonance (NMR) spectroscopy allows the distinction between primary open-angle glaucoma patients and control subjects, and to distinguish between high-tension (POAG) and normal-tension glaucoma (NTG). We analysed the AH of patients with POAG, NTG and control subjects (n = 30/group). 1H NMR spectra were acquired using a 400 MHz spectrometer. Principle component analysis (PCA), machine learning algorithms and descriptive statistics were applied to analyse the metabolic variance between groups, identify the spectral regions, and hereby potential metabolites that can act as biomarkers for glaucoma. According to PCA, fourteen regions of the NMR spectra were significant in explaining the metabolic variance between the glaucoma and control groups, with no differences found between POAG and NTG groups. These regions were further used in building a classifier for separating glaucoma from control patients, which achieved an AUC of 0.93. Peak integration was performed on these regions and a statistical analysis, after false discovery rate correction and adjustment for the different perioperative topical drug regimen, revealed that five of them were significantly different between groups. The glaucoma group showed a higher content in regions typical for betaine and taurine, possibly linked to neuroprotective mechanisms, and also a higher content in regions that are typical for glutamate, which can indicate damaged neurons and oxidative stress. These results show how aqueous humor metabolomics based on NMR spectroscopy can distinguish glaucoma patients from controls with a high accuracy. Further studies are needed to validate these results in order to incorporate them in clinical practice.
Collapse
Affiliation(s)
- João Barbosa Breda
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Herestraat 49, Leuven, 3000, Belgium; Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, Porto, 4200-319, Portugal; Department of Ophthalmology, Centro Hospitalar e Universitário São João, Alameda Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.
| | - Anca Croitor Sava
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Leuven, 3000, Belgium; Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Leuven, 3000, Belgium; Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Alix Somers
- Department of Ophthalmology, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Aging, KU Leuven, Herestraat 49, Leuven, 3000, Belgium; Clinical Nutrition, Department of Endocrinology, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Amândio Rocha Sousa
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, Porto, 4200-319, Portugal; Department of Ophthalmology, Centro Hospitalar e Universitário São João, Alameda Prof. Hernâni Monteiro, Porto, 4200-319, Portugal
| | - Evelien Vandewalle
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Herestraat 49, Leuven, 3000, Belgium; Department of Ophthalmology, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Ingeborg Stalmans
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Herestraat 49, Leuven, 3000, Belgium; Department of Ophthalmology, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
22
|
Li Q, Jin R, Zhang S, Sun X, Wu J. Group II metabotropic glutamate receptor agonist promotes retinal ganglion cell survival by reducing neuronal excitotoxicity in a rat chronic ocular hypertension model. Neuropharmacology 2020; 170:108016. [PMID: 32101763 DOI: 10.1016/j.neuropharm.2020.108016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Glaucoma, the second leading cause of irreversible blindness worldwide, is characterized by the selective death of retinal ganglion cells (RGCs). The group II metabotropic glutamate receptor (mGluR II) activation has been linked to RGC survival, however, the mechanism by which it promotes neuronal survival remains poorly defined. In the present work, we show that extracellular application of LY341495, an mGluR II antagonist could increase the RGC firing frequency, suggesting that activation of mGluR II by endogenously released glutamate could modulate RGC excitability. LY354740, an mGluR II agonist, significantly decreased RGC excitability and the reduced presynaptic excitatory inputs and post-synaptic Ca2+-permeable currents mediated the LY354740-induced effects. By using a well-characterized in vivo male Sprague-Dawley rat glaucoma model, we further demonstrate that in the early stage of experimental glaucoma, the expression of mGluR II dimer-formed protein was significantly reduced, and pre-activation of mGluR II by intravitreal injection of LY354740 before establishment of the glaucoma model could effectively reduce excitatory inputs, thereby reversing hyperexcitability induced by elevated intraocular pressure. Furthermore, LY354740 could increase the expression level of brain-derived neurotrophic factor in the glaucomatous retinas, further protecting RGCs. Our study indicates that the abnormal expression of mGluR II may accelerate RGC apoptosis in glaucoma, and demonstrates that mGluR II agonist LY354740 can be used as a novel method to counter RGC apoptosis in glaucoma.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ruiri Jin
- Department of Gastroenterology, Songjiang Central Hospital, Shanghai, 201600, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Jihong Wu
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
23
|
Asanad S, Fantini M, Sultan W, Nassisi M, Felix CM, Wu J, Karanjia R, Ross-Cisneros FN, Sagare AP, Zlokovic BV, Chui HC, Pogoda JM, Arakaki X, Fonteh AN, Sadun A. A. AA, Harrington MG. Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline. PLoS One 2020; 15:e0232785. [PMID: 32469871 PMCID: PMC7259639 DOI: 10.1371/journal.pone.0232785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Alzheimer’s disease (AD) pathology precedes symptoms and its detection can identify at-risk individuals who may benefit from early treatment. Since the retinal nerve fiber layer (RNFL) is depleted in established AD, we tested whether its thickness can predict whether cognitively healthy (CH) individuals have a normal or pathological cerebrospinal fluid (CSF) Aß42 (A) and tau (T) ratio. Methods As part of an ongoing longitudinal study, we enrolled CH individuals, excluding those with cognitive impairment and significant ocular pathology. We classified the CH group into two sub-groups, normal (CH-NAT, n = 16) or pathological (CH-PAT, n = 27), using a logistic regression model from the CSF AT ratio that identified >85% of patients with a clinically probable AD diagnosis. Spectral-domain optical coherence tomography (OCT) was acquired for RNFL, ganglion cell-inner plexiform layer (GC-IPL), and macular thickness. Group differences were tested using mixed model repeated measures and a classification model derived using multiple logistic regression. Results Mean age (± standard deviation) in the CH-PAT group (n = 27; 75.2 ± 8.4 years) was similar (p = 0.50) to the CH-NAT group (n = 16; 74.1 ± 7.9 years). Mean RNFL (standard error) was thinner in the CH-PAT group by 9.8 (2.7) μm; p < 0.001. RNFL thickness classified CH-NAT vs. CH-PAT with 87% sensitivity and 56.3% specificity. Conclusions Our retinal data predict which individuals have CSF biomarkers of AD pathology before cognitive deficits are detectable with 87% sensitivity. Such results from easy-to-acquire, objective and non-invasive measurements of the RNFL merit further study of OCT technology to monitor or screen for early AD pathology.
Collapse
Affiliation(s)
- Samuel Asanad
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Michele Fantini
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Department of Medicine, Ophthalmology, University of Udine, Udine, Italy
| | - William Sultan
- Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Marco Nassisi
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Clinical Sciences and Community Health, Ophthalmological Unit, IRCCS-Cà Granda Foundation—Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Christian M. Felix
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Jessica Wu
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Rustum Karanjia
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Abhay P. Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, CA, United States of America
| | - Janice M. Pogoda
- Cipher Biostatistics & Reporting, Reno, NV, United States of America
| | - Xianghong Arakaki
- Huntington Medical Research Institutes, Pasadena, CA, United States of America
| | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States of America
| | - Alfredo A. Sadun A. A.
- Doheny Eye Institute, Los Angeles, CA, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Michael G. Harrington
- Huntington Medical Research Institutes, Pasadena, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Naik S, Pandey A, Lewis SA, Rao BSS, Mutalik S. Neuroprotection: A versatile approach to combat glaucoma. Eur J Pharmacol 2020; 881:173208. [PMID: 32464192 DOI: 10.1016/j.ejphar.2020.173208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
In most retinal diseases, neuronal loss is the main cause of vision loss. Neuroprotection is the alteration of neurons and/or their environment to encourage the survival and function of the neurons, especially in environments that are deleterious to the neuronal health. The area of neuroprotection progresses with a therapeutically-based hope of improving vision and clinical outcomes for patients through the developments in neurotrophic therapy, antioxidative therapy, anti-excitotoxic, anti-ischemic, anti-inflammatory, and anti-apoptotic care. In this review, we summarize the various neuroprotection strategies for the treatment of glaucoma, genetics of glaucoma and the role of various nanoplatforms in the treatment of glaucoma.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India.
| |
Collapse
|
25
|
Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21:ijms21072262. [PMID: 32218163 PMCID: PMC7177277 DOI: 10.3390/ijms21072262] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.
Collapse
|
26
|
Guo L, Davis BM, Ravindran N, Galvao J, Kapoor N, Haamedi N, Shamsher E, Luong V, Fico E, Cordeiro MF. Topical recombinant human Nerve growth factor (rh-NGF) is neuroprotective to retinal ganglion cells by targeting secondary degeneration. Sci Rep 2020; 10:3375. [PMID: 32099056 PMCID: PMC7042238 DOI: 10.1038/s41598-020-60427-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Optic neuropathy is a major cause of irreversible blindness worldwide, and no effective treatment is currently available. Secondary degeneration is believed to be the major contributor to retinal ganglion cell (RGC) death, the endpoint of optic neuropathy. Partial optic nerve transection (pONT) is an established model of optic neuropathy. Although the mechanisms of primary and secondary degeneration have been delineated in this model, until now how this is influenced by therapy is not well-understood. In this article, we describe a clinically translatable topical, neuroprotective treatment (recombinant human nerve growth factor, rh-NGF) predominantly targeting secondary degeneration in a pONT rat model. Topical application of rh-NGF twice daily for 3 weeks significantly improves RGC survival as shown by reduced RGC apoptosis in vivo and increased RGC population in the inferior retina, which is predominantly affected in this model by secondary degeneration. Topical rh-NGF also promotes greater axonal survival and inhibits astrocyte activity in the optic nerve. Collectively, these results suggest that topical rh-NGF exhibits neuroprotective effects on retinal neurons via influencing secondary degeneration process. As topical rh-NGF is already involved in early clinical trials, this highlights its potential in multiple indications in patients, including those affected by glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Benjamin M Davis
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nivedita Ravindran
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Joana Galvao
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Neel Kapoor
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nasrin Haamedi
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ehtesham Shamsher
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Vy Luong
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Elena Fico
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom. .,Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
27
|
Asanad S, Ross-Cisneros FN, Nassisi M, Barron E, Karanjia R, Sadun AA. The Retina in Alzheimer's Disease: Histomorphometric Analysis of an Ophthalmologic Biomarker. Invest Ophthalmol Vis Sci 2019; 60:1491-1500. [PMID: 30973577 PMCID: PMC6892387 DOI: 10.1167/iovs.18-25966] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To provide a histopathologic, morphometric analysis of the retina in Alzheimer's disease (AD). Methods Human postmortem retinas from eight patients with AD (mean age: 80 ± 12.7 years) and from 11 age-matched controls (mean age: 78 ± 16.57 years) were analyzed. The retinas were sampled from the superior quadrant on both the temporal and nasal sides with respect to the optic nerve. Thickness of the inner and outer layers involving the retinal nerve fiber layer (RNFL), retinal ganglion cell layer (RGCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer nuclear layer (ONL) were measured and compared between controls and AD. A total of 16 measurements of retinal thickness were acquired for each layer. Results RNFL thinning supero-temporally was significant closest to the optic nerve (∼35% thickness reduction; P < 0.001). Supero-nasally, RNFL was thinner throughout all points (∼40% reduction; P < 0.001). Supero-temporally, RGCL thinning was pronounced toward the macula (∼35% thickness reduction; P < 0.001). Supero-nasally, RGCL showed uniform thinning throughout (∼35% reduction; P < 0.001). IPL thinning supero-temporally was statistically significant in the macula (∼15% reduction; P < 0.01). Supero-nasal IPL featured uniform thinning throughout (∼25% reduction; P < 0.001). Supero-temporally, INL and ONL thinning were pronounced toward the macula (∼25% reduction; P < 0.01). Supero-nasally, INL and ONL were thinner throughout (∼25% reduction; P < 0.01). Conclusions Our study revealed marked thinning in both the inner and outer layers of the retina. These quantified histopathologic findings provide a more comprehensive understanding of the retina in AD than previously reported.
Collapse
Affiliation(s)
- Samuel Asanad
- Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States
| | | | - Marco Nassisi
- Doheny Eye Institute, Los Angeles, California, United States
| | - Ernesto Barron
- Doheny Eye Institute, Los Angeles, California, United States
| | - Rustum Karanjia
- Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States.,Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
28
|
Honda S, Namekata K, Kimura A, Guo X, Harada C, Murakami A, Matsuda A, Harada T. Survival of Alpha and Intrinsically Photosensitive Retinal Ganglion Cells in NMDA-Induced Neurotoxicity and a Mouse Model of Normal Tension Glaucoma. ACTA ACUST UNITED AC 2019; 60:3696-3707. [DOI: 10.1167/iovs.19-27145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
29
|
Yap T, Shamsher E, Guo L, Cordeiro M. Ophthalmic Research Lecture 2018: DARC as a Potential Surrogate Marker. Ophthalmic Res 2019; 63:1-7. [DOI: 10.1159/000500527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 11/19/2022]
|
30
|
Shamsher E, Davis BM, Yap TE, Guo L, Cordeiro MF. Neuroprotection in glaucoma: old concepts, new ideas. EXPERT REVIEW OF OPHTHALMOLOGY 2019. [DOI: 10.1080/17469899.2019.1604222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ehtesham Shamsher
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
| | - Benjamin M. Davis
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Li Guo
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
| | - Maria Francesca Cordeiro
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
31
|
Arranz-Romera A, Davis B, Bravo-Osuna I, Esteban-Pérez S, Molina-Martínez I, Shamsher E, Ravindran N, Guo L, Cordeiro M, Herrero-Vanrell R. Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J Control Release 2019; 297:26-38. [DOI: 10.1016/j.jconrel.2019.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 01/05/2023]
|
32
|
|
33
|
Adeghate J, Rahmatnejad K, Waisbourd M, Katz LJ. Intraocular pressure-independent management of normal tension glaucoma. Surv Ophthalmol 2018; 64:101-110. [PMID: 30300625 DOI: 10.1016/j.survophthal.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jennifer Adeghate
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Weill Cornell Medical College, Department of Ophthalmology, New York, New York, USA
| | - Kamran Rahmatnejad
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA
| | - Michael Waisbourd
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA; Tel-Aviv University Medical Center, Glaucoma Research Center, Tel-Aviv, Israel
| | - L Jay Katz
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
34
|
Liao H, Zhu Z, Peng Y. Potential Utility of Retinal Imaging for Alzheimer's Disease: A Review. Front Aging Neurosci 2018; 10:188. [PMID: 29988470 PMCID: PMC6024140 DOI: 10.3389/fnagi.2018.00188] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023] Open
Abstract
The ensuing upward shift in demographic distribution due to the increase in life expectancy has resulted in a rising prevalence of Alzheimer's disease (AD). The heavy public burden of AD, along with the urgent to prevent and treat the disease before the irreversible damage to the brain, calls for a sensitive and specific screening technology to identify high-risk individuals before cognitive symptoms arise. Even though current modalities, such as positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarker, showed their potential clinical uses in early detection of AD, the high cost, narrow isotope availability of PET probes and invasive characteristics of CSF biomarker limited their broad utility. Therefore, additional tools for detection of AD are needed. As a projection of the central nervous system (CNS), the retina has been described as a "window to the brain" and a novel marker for AD. Low cost, easy accessibility and non-invasive features make retina tests suitable for large-scale population screening and investigations of preclinical AD. Furthermore, a number of novel approaches in retina imaging, such as optical coherence tomography (OCT), have been developed and made it possible to visualize changes in the retina at a very fine resolution. In this review, we outline the background for AD to accelerate the adoption of retina imaging for the diagnosis and management of AD in clinical practice. Then, we focus on recent findings on the application of retina imaging to investigate AD and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Huan Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Yap TE, Donna P, Almonte MT, Cordeiro MF. Real-Time Imaging of Retinal Ganglion Cell Apoptosis. Cells 2018; 7:E60. [PMID: 29914056 PMCID: PMC6025611 DOI: 10.3390/cells7060060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells) project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.
Collapse
Affiliation(s)
- Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Piero Donna
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Melanie T Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Maria Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK.
| |
Collapse
|
36
|
Yang E, Al-Mugheiry TS, Normando EM, Cordeiro MF. Real-Time Imaging of Retinal Cell Apoptosis by Confocal Scanning Laser Ophthalmoscopy and Its Role in Glaucoma. Front Neurol 2018; 9:338. [PMID: 29867744 PMCID: PMC5962659 DOI: 10.3389/fneur.2018.00338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness in the world. It is characterized by the progressive loss of retinal ganglion cells (RGCs), mainly through the process of apoptosis. Glaucoma patients often come to clinical attention when irreversible loss of visual function has been already established; therefore, early recognition of RGC apoptosis is inordinately important in disease prevention. The novel technology called Detection of Apoptosing Retinal Cells (DARC) allows real-time in vivo quantification of apoptosing cells through the use of a fluorescent biomarker and a confocal scanning ophthalmoscope. A recent Phase I clinical trial has evaluated the safety of DARC and its ability to detect retinal apoptosis in glaucoma patients and healthy volunteers. Results suggest that DARC may have potential in the early detection of glaucoma, which could help alleviate the medical, social, and economic burden associated with this blinding condition.
Collapse
Affiliation(s)
- Elizabeth Yang
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.,The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Toby S Al-Mugheiry
- Queen Elizabeth Hospital, King's Lynn NHS Foundation Trust, Norfolk, United Kingdom
| | - Eduardo M Normando
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.,The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom.,Insitute of Ophthalmology, University College London, London, United Kingdom
| | - Maria F Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.,The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom.,Insitute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
37
|
Abstract
Glaucoma is one of the leading causes of irreversible visual loss, which has been estimated to affect 3.5% of those over 40 years old and projected to affect a total of 112 million people by 2040. Such a dramatic increase in affected patients demonstrates the need for continual improvement in the way we diagnose and treat this condition. Annexin A5 is a 36 kDa protein that is ubiquitously expressed in humans and is studied as an indicator of apoptosis in several fields. This molecule has a high calcium-dependent affinity for phosphatidylserine, a cell membrane phospholipid externalized to the outer cell membrane in early apoptosis. The DARC (Detection of Apoptosing Retinal Cells) project uses fluorescently-labelled annexin A5 to assess glaucomatous degeneration, the inherent process of which is the apoptosis of retinal ganglion cells. Furthermore, this project has conducted investigation of the retinal apoptosis in the neurodegenerative conditions of the eye and brain. In this present study, we summarized the use of annexin A5 as a marker of apoptosis in the eye. We also relayed the progress of the DARC project, developing real-time imaging of retinal ganglion cell apoptosis in vivo from the experimental models of disease and identifying mechanisms underlying neurodegeneration and its treatments, which has been applied to the first human clinical trials. DARC has potential as a biomarker in neurodegeneration, especially in the research of novel treatments, and could be a useful tool for the diagnosis and monitoring of glaucoma.
Collapse
|
38
|
Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, Calpena AC, Souto EMB, Ravindran N, Ettcheto M, Camins A, García ML, Cordeiro MF. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1701808. [PMID: 29154484 DOI: 10.1002/smll.201701808] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/10/2017] [Indexed: 05/20/2023]
Abstract
Glaucoma is a multifactorial neurodegenerative disease associated with retinal ganglion cells (RGC) loss. Increasing reports of similarities in glaucoma and other neurodegenerative conditions have led to speculation that therapies for brain neurodegenerative disorders may also have potential as glaucoma therapies. Memantine is an N-methyl-d-aspartate (NMDA) antagonist approved for Alzheimer's disease treatment. Glutamate-induced excitotoxicity is implicated in glaucoma and NMDA receptor antagonism is advocated as a potential strategy for RGC preservation. This study describes the development of a topical formulation of memantine-loaded PLGA-PEG nanoparticles (MEM-NP) and investigates the efficacy of this formulation using a well-established glaucoma model. MEM-NPs <200 nm in diameter and incorporating 4 mg mL-1 of memantine were prepared with 0.35 mg mL-1 localized to the aqueous interior. In vitro assessment indicated sustained release from MEM-NPs and ex vivo ocular permeation studies demonstrated enhanced delivery. MEM-NPs were additionally found to be well tolerated in vitro (human retinoblastoma cells) and in vivo (Draize test). Finally, when applied topically in a rodent model of ocular hypertension for three weeks, MEM-NP eye drops were found to significantly (p < 0.0001) reduce RGC loss. These results suggest that topical MEM-NP is safe, well tolerated, and, most promisingly, neuroprotective in an experimental glaucoma model.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
| | - Maria Antonia Egea
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Benjamin Michael Davis
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Li Guo
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Amelia Maria Silva
- Department of Biology and Environment, School of Life and Environmental sciences (ECVA, UTAD), and Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana Maria Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC) and REQUIMTE/Group of Pharmaceutical Technology, Polo das Ciências da Saúde Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Nivedita Ravindran
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Miren Ettcheto
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Camins
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Maria Francesca Cordeiro
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
39
|
Opere CA, Heruye S, Njie-Mbye YF, Ohia SE, Sharif NA. Regulation of Excitatory Amino Acid Transmission in the Retina: Studies on Neuroprotection. J Ocul Pharmacol Ther 2017; 34:107-118. [PMID: 29267132 DOI: 10.1089/jop.2017.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Excitotoxicity occurs in neurons due to the accumulation of excitatory amino acids such as glutamate in the synaptic and extrasynaptic locations. In the retina, excessive glutamate concentrations trigger a neurotoxic cascade involving several mechanisms, including the elevation of intracellular calcium (Ca2+) and the activation of α-amino-3-hydroxy 5-methyl-4-iso-xazole-propionic acid/kainate (AMPA/KA) and N-methyl-d-aspartate (NMDA) receptors leading to retinal degeneration. Both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are present in the mammalian retina. Indeed, due to the abundant expression of GluRs, the mammalian retina is highly susceptible to excitotoxic neurodegeneration. Excitotoxicity has been postulated to present a common downstream mechanism for several stimuli, including hypoglycemia, hypoxia, ischemia, and chronic neurodegenerative diseases. Experimental approaches to the study of neuroprotection in the retina have utilized insults that trigger hypoxia, hypoglycemia, or excitotoxicity. Using these experimental approaches, the neuroprotective potential of GluR agents, including the NMDA receptor modulators (MK801, ifenprodil, memantine); AMPA/KA receptor antagonist (CNQX); Group II and III mGluR agonists (LY354740, quisqualate); and Ca2+-channel blockers (diltiazem, lomerizine, verapamil, ω-conotoxin), and others (pituitary adenylate cyclase activating polypeptide, neuropeptide Y, acetylcholine receptor agonists) have been elucidated. In addition to corroborating the exocytotic role of excitatory amino acids in retinal degeneration, these studies affirm that multiple mechanism/s contribute to the prevention of damage caused by excitotoxicity in the retina. Therefore, it is feasible that several pathways are involved in protecting the retina from toxic insults in ocular neurodegenerative conditions such as glaucoma and retinal ischemia. Furthermore, these experimental models are viable tools for evaluating therapeutic candidates in ocular neuropathies.
Collapse
Affiliation(s)
- Catherine A Opere
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Segewkal Heruye
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Ya-Fatou Njie-Mbye
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Sunny E Ohia
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Najam A Sharif
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas.,3 Santen Incorporated , Emeryville, California
| |
Collapse
|
40
|
Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond) 2017; 131:2865-2883. [DOI: 10.1042/cs20171246] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.
Collapse
|
41
|
Gao FJ, Zhang SH, Xu P, Yang BQ, Zhang R, Cheng Y, Zhou XJ, Huang WJ, Wang M, Chen JY, Sun XH, Wu JH. Quercetin Declines Apoptosis, Ameliorates Mitochondrial Function and Improves Retinal Ganglion Cell Survival and Function in In Vivo Model of Glaucoma in Rat and Retinal Ganglion Cell Culture In Vitro. Front Mol Neurosci 2017; 10:285. [PMID: 28936163 PMCID: PMC5594060 DOI: 10.3389/fnmol.2017.00285] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is a progressive neuropathy characterized by the loss of retinal ganglion cells (RGCs). Strategies that delay or halt RGC loss have been recognized as potentially beneficial for rescuing vision in glaucoma patients. Quercetin (Qcn) is a natural and important dietary flavonoid compound, widely distributed in fruits and vegetables. Mounting evidence suggests that Qcn has numerous neuroprotective effects. However, whether Qcn exerts neuroprotective effects on RGC in glaucoma is poorly understood. In this study, we investigated the protective effect of Qcn against RGC damage in a rat chronic ocular hypertension (COHT) model invivo and hypoxia-induced primary cultured RGC damage in vitro, and we further explored the underlying neuroprotective mechanisms. We found that Qcn not only improved RGC survival and function from a very early stage of COHT invivo, it promoted the survival of hypoxia-treated primary cultured RGCs invitro via ameliorating mitochondrial function and preventing mitochondria-mediated apoptosis. Our findings suggest that Qcn has direct protective effects on RGCs that are independent of lowering the intraocular pressure (IOP). Qcn may be a promising therapeutic agent for improving RGC survival and function in glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Bo-Qi Yang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Rong Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Yun Cheng
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Xu-Jiao Zhou
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Wan-Jing Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Min Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Jun-Yi Chen
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China
| | - Xing-Huai Sun
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality,Shanghai, China.,Key Laboratory of Myopia, Ministry of HealthShanghai, China
| |
Collapse
|
42
|
Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway. Clin Sci (Lond) 2017; 131:2363-2375. [PMID: 28811386 PMCID: PMC5582167 DOI: 10.1042/cs20171182] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/18/2022]
Abstract
Acute glaucoma is one of the leading causes of irreversible vision impairment characterized by the rapid elevation of intraocular pressure (IOP) and consequent retinal ganglion cell (RGC) death. Oxidative stress and neuroinflammation have been considered critical for the pathogenesis of RGC death in acute glaucoma. Trimetazidine (TMZ), an anti-ischemic drug, possesses antioxidative and anti-inflammatory properties, contributing to its therapeutic potential in tissue damage. However, the role of TMZ in acute glaucoma and the underlying molecular mechanisms remain elusive. Here, we report that treatment with TMZ significantly attenuated retinal damage and RGC death in mice with acute glaucoma, with a significant decrease in reactive oxygen species (ROS) and inflammatory cytokine production in the retina. Furthermore, TMZ treatment directly decreased ROS production and rebalanced the intracellular redox state, thus contributing to the survival of RGCs in vitro. TMZ treatment also reduced the production of inflammatory cytokines in vitro. Mechanistically, the TMZ-mediated inhibition of apoptosis and inflammatory cytokine production in RGCs occurred via the regulation of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1/caspase-8 pathway. Moreover, the TMZ-mediated neuroprotection in acute glaucoma was abrogated when an HO-1 inhibitor, SnPP, was used. Our findings identify potential mechanisms of RGC apoptosis and propose a novel therapeutic agent, TMZ, which exerts a precise neuroprotective effect against acute glaucoma.
Collapse
|
43
|
Cordeiro MF, Normando EM, Cardoso MJ, Miodragovic S, Jeylani S, Davis BM, Guo L, Ourselin S, A'Hern R, Bloom PA. Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain 2017; 140:1757-1767. [PMID: 28449038 PMCID: PMC5445254 DOI: 10.1093/brain/awx088] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
See Herms and Schön (doi10.1093/brain/awx100) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Maria F Cordeiro
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK.,The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.,The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - Eduardo M Normando
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.,The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - M Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, Wolfson House, Stephenson Way, London, NW1 2HE London, UK
| | - Serge Miodragovic
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK
| | - Seham Jeylani
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK
| | - Benjamin M Davis
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Li Guo
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, Wolfson House, Stephenson Way, London, NW1 2HE London, UK
| | | | - Philip A Bloom
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.,The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| |
Collapse
|
44
|
Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9208489. [PMID: 28194256 PMCID: PMC5286467 DOI: 10.1155/2017/9208489] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.
Collapse
|
45
|
The neuroprotective effects of orthosteric agonists of group II and III mGluRs in primary neuronal cell cultures are dependent on developmental stage. Neuropharmacology 2016; 111:195-211. [PMID: 27600687 DOI: 10.1016/j.neuropharm.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022]
Abstract
Activation of metabotropic glutamate receptors (mGluRs) modulates neuronal excitability. Here, we evaluated the neuroprotective potential of four structurally diverse activators of group II and III mGluRs: an orthosteric agonist of group II (LY354740), an orthosteric agonist of group III (ACPT-I), an allosteric agonist of mGluR7 (AMN082) and a positive allosteric modulator (PAM) of mGluR4 (VU0361737). Neurotoxicity was induced by the pro-apoptotic agents: staurosporine (St) and doxorubicin (Dox) or the excitotoxic factor glutamate (Glu). The effects were analyzed in primary hippocampal (HIP) and cerebellar granule cell (CGC) cultures at two developmental stages, at 7 and 12 days in vitro (DIV). The data reveal a general neuroprotective effect of group II and III mGluR activators against the St- and Glu- but not Dox-induced cell damage. We found that neuroprotective effects of group II and III mGluR orthosteric agonists (LY354740 and ACPT-I) were higher at 12 DIV when compared to 7 DIV cells. In contrast, the efficiency of allosteric mGluR agents (AMN082 and VU0361737) did not differ between 7 and 12 DIV in both, St and Glu models of neuronal cell damage. Interestingly, the protective effects of activators of group II and III mGluRs were blocked by relevant antagonists only against Glu-induced neurotoxicity. Moreover, the observed neuroprotective action of group II and III mGluR activators in the St model was associated with a decreased number of PI-positive cells and no alterations in the caspase-3 activity. Finally, we showed that MAPK/ERK pathway activation was potentially involved in the mechanism of ACPT-I- and AMN082-induced neuroprotection against the St-evoked cellular damage. Our comparative study demonstrated the developmental stage-dependent neuroprotective effect of orthosteric group II and III mGluR agonists. In comparison to allosteric modulators, orthosteric compounds may provide more specific tools for suppression of neuronal cell loss associated with various chronic neurodegenerative conditions. Our results also suggest that the inhibition of intracellular pathways mediating necrotic, rather than apoptotic cascades, may be involved in neuroprotective effects of activators of group II and III mGluRs.
Collapse
|
46
|
Magnetically softened iron oxide (MSIO) nanofluid and its application to thermally-induced heat shock proteins for ocular neuroprotection. Biomaterials 2016; 101:165-75. [DOI: 10.1016/j.biomaterials.2016.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
47
|
Li Q, Cui P, Miao Y, Gao F, Li XY, Qian WJ, Jiang SX, Wu N, Sun XH, Wang Z. Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h. Brain Struct Funct 2016; 222:813-830. [PMID: 27306787 DOI: 10.1007/s00429-016-1248-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR I) activation exerts a slow postsynaptic excitatory effect in the CNS. Here, the issues of whether and how this receptor is involved in regulating retinal ganglion cell (RGC) excitability were investigated in retinal slices using patch-clamp techniques. Under physiological conditions, RGCs displayed spontaneous firing. Extracellular application of LY367385 (10 µM)/MPEP (10 µM), selective mGluR1 and mGluR5 antagonists, respectively, significantly reduced the firing frequency, suggesting that glutamate endogenously released from bipolar cells constantly modulates RGC firing. DHPG (10 µM), an mGluR I agonist, significantly increased the firing and caused depolarization of the cells, which were reversed by LY367385, but not by MPEP, suggesting the involvement of the mGluR1 subtype. Intracellular Ca2+-dependent PI-PLC/PKC and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways mediated the DHPG-induced effects. In the presence of cocktail synaptic blockers (CNQX, D-AP5, bicuculline, and strychnine), which terminated the spontaneous firing in both ON and OFF RGCs, DHPG still induced depolarization and triggered the cells to fire. The DHPG-induced depolarization could not be blocked by TTX. In contrast, Ba2+, an inwardly rectifying potassium channel (Kir) blocker, and Cs+ and ZD7288, hyperpolarization-activated cation channel (I h) blockers, mimicked the effect of DHPG. Furthermore, in the presence of Ba2+/ZD7288, DHPG did not show further effects. Moreover, Kir and I h currents could be recorded in RGCs, and extracellular application of DHPG indeed suppressed these currents. Our results suggest that activation of mGluR I regulates the excitability of rat RGCs by inhibiting Kir and I h.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Cui
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Yan Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shu-Xia Jiang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Wu
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,Institute of Neurobiology, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Tao Y, Geng L, Xu WW, Qin LM, Peng GH, Huang YF. The potential utilizations of hydrogen as a promising therapeutic strategy against ocular diseases. Ther Clin Risk Manag 2016; 12:799-806. [PMID: 27279745 PMCID: PMC4878665 DOI: 10.2147/tcrm.s102518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hydrogen, one of the most well-known natural molecules, has been used in numerous medical applications owing to its ability to selectively neutralize cytotoxic reactive oxygen species and ameliorate hazardous inflammations. Hydrogen can exert protective effects on various reactive oxygen species-related diseases, including the transplantation-induced intestinal graft injury, chronic inflammation, ischemia–reperfusion injuries, and so on. Especially in the eye, hydrogen has been used to counteract multiple ocular pathologies in the ophthalmological models. Herein, the ophthalmological utilizations of hydrogen are systematically reviewed and the underlying mechanisms of hydrogen-induced beneficial effects are discussed. It is our hope that the protective effects of hydrogen, as evidenced by these pioneering studies, would enrich our pharmacological knowledge about this natural element and cast light into the discovery of a novel therapeutic strategy against ocular diseases.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Lei Geng
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Wei-Wei Xu
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Li-Min Qin
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Guang-Hua Peng
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| | - Yi-Fei Huang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Ophthalmology & Visual Science Key Lab of PLA, Beijing, People's Republic of China
| |
Collapse
|
49
|
Doozandeh A, Yazdani S. Neuroprotection in Glaucoma. J Ophthalmic Vis Res 2016; 11:209-20. [PMID: 27413504 PMCID: PMC4926571 DOI: 10.4103/2008-322x.183923] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/03/2015] [Indexed: 11/04/2022] Open
Abstract
Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC) loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP) reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba extract, neurotrophic factors, antioxidants, calcium channel blockers, brimonidine, glaucoma medications with blood regulatory effect and nitric oxide synthase inhibitors are among compounds with possible neuroprotective activity in preclinical studies. A few agents (such as brimonidine or memantine) with neuroprotective effects in experimental studies have advanced to clinical trials; however the results of clinical trials for these agents have not been conclusive. Nevertheless, lack of compelling clinical evidence has not prevented the off-label use of some of these compounds in glaucoma practice. Stem cell transplantation has been reported to halt experimental neurodegenerative disease processes in the absence of cell replacement. It has been hypothesized that transplantation of some types of stem cells activates multiple neuroprotective pathways via secretion of various factors. The advantage of this approach is a prolonged and targeted effect. Important concerns in this field include the secretion of unwanted harmful mediators, graft survival issues and tumorigenesis. Neuroprotection in glaucoma, pharmacologically or by stem cell transplantation, is an interesting subject waiting for broad and multidisciplinary collaborative studies to better clarify its role in clinical practice.
Collapse
Affiliation(s)
- Azadeh Doozandeh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Yazdani
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Roberti G, Tanga L, Michelessi M, Quaranta L, Parisi V, Manni G, Oddone F. Cytidine 5'-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives. Int J Mol Sci 2015; 16:28401-17. [PMID: 26633368 PMCID: PMC4691046 DOI: 10.3390/ijms161226099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022] Open
Abstract
Cytidine 5'-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson's disease and Alzheimer's disease, as well as in amblyopia. Glaucoma is a neurodegenerative disease currently considered a disease involving ocular and visual brain structures. Neuroprotection has been proposed as a valid therapeutic option for those patients progressing despite a well-controlled intraocular pressure, the main risk factor for the progression of the disease. The aim of this review is to critically summarize the current evidence about the effect of citicoline in glaucoma.
Collapse
Affiliation(s)
- Gloria Roberti
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.
| | - Lucia Tanga
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.
| | | | - Luciano Quaranta
- DSMC, Università degli studi di Brescia, USVD "Centro per lo studio del Glaucoma" P.le Spedali Civili, 1, 25123 Brescia, Italy.
| | - Vincenzo Parisi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.
| | - Gianluca Manni
- DSCMT, Università di Roma Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| | | |
Collapse
|