1
|
Mao K, Huang Y, Liu Z, Sui W, Liu C, Li Y, Zeng J, Qian X, Ma X, Lin X, Lou B. Oxidative stress mediates retinal damage after corneal alkali burn through the activation of the cGAS/STING pathway. Exp Eye Res 2025; 251:110228. [PMID: 39736315 DOI: 10.1016/j.exer.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/22/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Retinal damage accounts for irreversible vision loss following ocular alkali burn (OAB), but the underlying mechanisms remain largely unexplored. Herein, using an OAB mouse model, we examined the impact of oxidative stress (OS) in retinal damage and its molecular mechanism. Results revealed that OS in the retina was enhanced soon after alkali injury. Antioxidant therapy with N-acetylcysteine (NAC) preserved the retinal structure, suppressed cell apoptosis and decreased retinal inflammation, confirming the role of OS. Moreover, enhanced OS was linked to mitochondrial dysfunction, mtDNA leakage and initiation of the cytosolic DNA-sensing signaling. The activation of the major DNA sensors cyclic GMP-AMP Synthase (cGas) and cGAS-Stimulator of Interferon Genes (cGAS/STING) pathway was then identified. Notably, inhibiting cGAS/STING signaling with C-176 markedly reduced inflammation and cell apoptosis and ultimately protected the retina against OAB. Overall, our study reveals the vital function of OS in the occurrence of OAB-induced retinal damage and the involvement of cGAS/STING activation. Furthermore, our provides preclinical validation of the use of an antioxidant or a STING inhibitor as a potential therapeutic approach to protect the retina after OAB.
Collapse
Affiliation(s)
- Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Sui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yujie Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
O’Neill N, Khan RS, Abd Alhadi S, Dine KE, Geisler JG, Chaqour B, Ross AG, Shindler KS. Mitochondrial Uncoupler, 2,4-Dinitrophenol, Reduces Spinal Cord Paralysis and Retinal Ganglion Cell Loss in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Biomolecules 2025; 15:189. [PMID: 40001492 PMCID: PMC11852757 DOI: 10.3390/biom15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Optic neuritis is an inflammatory demyelinating disease of the optic nerve that often occurs in multiple sclerosis (MS) patients. Sixty percent of patients develop some level of permanent visual loss due to retinal ganglion cell (RGC) damage following optic neuritis, with no known treatment to prevent this loss. Prior studies showed that MP201, a prodrug of 2,4-dinitrophenol (DNP) administered in the experimental autoimmune encephalitis (EAE) mouse model of MS attenuated optic neuritis with preserved vision, increased retinal ganglion cell (RGC) survival, decreased axon loss, and reduced demyelination. Oral administration of MP201, which converts to active form DNP after entry in the portal vein, decreases mitochondrial-derived reactive oxygen species (ROS) and restores calcium homeostasis, which are both implicated in many neurodegenerative diseases. Due to the established therapeutic benefits of prodrug MP201 in EAE mice, we hypothesized that administration of DNP itself may also have significant potential for therapeutic effects. Here, effects of varying doses of DNP treatment in EAE mice were assessed by the extent of spinal cord paralysis, optokinetic response (OKR), RGC survival, and optic nerve demyelination and inflammation. Results show that daily oral doses of 5-10 mg/kg DNP initiated after onset of EAE can significantly reduce spinal cord paralysis, a marker of the EAE MS-like disease, by day 42 after disease induction. DNP treatment significantly reduces RGC loss induced by optic neuritis in EAE mice; however, effects of DNP do not significantly improve visual function, or optic nerve demyelination and inflammation. Current studies show DNP treatment promotes increased RGC survival, but continued inflammation and demyelination likely reduce visual function, suggesting future studies examining combination therapy of DNP with anti-inflammatory agents may be warranted.
Collapse
Affiliation(s)
- Nuala O’Neill
- Department of Ophthalmology, Scheie Eye Institute, FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.O.); (R.S.K.); (S.A.A.); (K.E.D.); (B.C.); (A.G.R.)
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19087, USA;
| | - Reas S. Khan
- Department of Ophthalmology, Scheie Eye Institute, FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.O.); (R.S.K.); (S.A.A.); (K.E.D.); (B.C.); (A.G.R.)
| | - Suad Abd Alhadi
- Department of Ophthalmology, Scheie Eye Institute, FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.O.); (R.S.K.); (S.A.A.); (K.E.D.); (B.C.); (A.G.R.)
| | - Kimberly E. Dine
- Department of Ophthalmology, Scheie Eye Institute, FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.O.); (R.S.K.); (S.A.A.); (K.E.D.); (B.C.); (A.G.R.)
| | - John G. Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19087, USA;
| | - Brahim Chaqour
- Department of Ophthalmology, Scheie Eye Institute, FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.O.); (R.S.K.); (S.A.A.); (K.E.D.); (B.C.); (A.G.R.)
| | - Ahmara G. Ross
- Department of Ophthalmology, Scheie Eye Institute, FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.O.); (R.S.K.); (S.A.A.); (K.E.D.); (B.C.); (A.G.R.)
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth S. Shindler
- Department of Ophthalmology, Scheie Eye Institute, FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.O.); (R.S.K.); (S.A.A.); (K.E.D.); (B.C.); (A.G.R.)
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Oliveira de Andrade Filho V, Amarante MOC, Gonzalez-Lima F, Gomes da Silva S, Cardoso FDS. Systematic review of photobiomodulation for multiple sclerosis. Front Neurol 2024; 15:1465621. [PMID: 39329016 PMCID: PMC11424438 DOI: 10.3389/fneur.2024.1465621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory chronic autoimmune and neurodegenerative disorder of the brain and spinal cord, resulting in loss of motor, sensorial, and cognitive function. Among the non-pharmacological interventions for several brain conditions, photobiomodulation (PBM) has gained attention in medical society for its neuroprotective effects. We systematically reviewed the effects of PBM on MS. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: PBM, low-level laser therapy, multiple sclerosis, autoimmune encephalomyelitis, demyelination, and progressive multiple sclerosis. Data search was limited from 2012 to July 2024. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The initial systematic search identified 126 articles. Of these, 68 articles were removed by duplicity and 50 by screening. Thus, 8 studies satisfied the inclusion criteria. Results The reviewed studies showed that PBM modulates brain markers linked to inflammation, oxidative stress, and apoptosis. Improvements in motor, sensorial, and cognitive functions in MS patients were also observed after PBM therapy. No study reported adverse effects of PBM. Conclusion These findings suggest the potential of PBM as a promising non-pharmacological intervention for the management of MS, although further research is needed to standardize PBM protocols and assess its long-term effects.
Collapse
Affiliation(s)
| | | | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário FAMINAS, Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
- Centro Universitário Redentor (UniREDENTOR/Afya), Itaperuna, RJ, Brazil
| | - Fabrízio Dos Santos Cardoso
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
- Centro Universitário Redentor (UniREDENTOR/Afya), Itaperuna, RJ, Brazil
| |
Collapse
|
4
|
Lambiri DW, Levin LA. Maculopapillary Bundle Degeneration in Optic Neuropathies. Curr Neurol Neurosci Rep 2024; 24:203-218. [PMID: 38833037 DOI: 10.1007/s11910-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Degeneration of the maculopapillary bundle (MPB) is a prominent feature in a spectrum of optic neuropathies. MPB-selective degeneration is seen in specific conditions, such as nutritional and toxic optic neuropathies, Leber hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA). Despite their distinct etiologies and clinical presentations, which encompass variations in age of incidence and monocular or binocular onset, these disorders share a core molecular mechanism: compromised mitochondrial homeostasis. This disruption is characterized by dysfunctions in mitochondrial metabolism, biogenesis, and protein synthesis. This article provides a comprehensive understanding of the MPB's role in optic neuropathies, emphasizing the importance of mitochondrial mechanisms in the pathogenesis of these conditions. RECENT FINDINGS Optical coherence tomography studies have characterized the retinal nerve fiber layer changes accompanying mitochondrial-affiliated optic neuropathies. Selective thinning of the temporal optic nerve head is preceded by thickening in early stages of these disorders which correlates with reductions in macular ganglion cell layer thinning and vascular atrophy. A recently proposed mechanism underpinning the selective atrophy of the MPB involves the positive feedback of reactive oxygen species generation as a common consequence of mitochondrial dysfunction. Additionally, new research has revealed that the MPB can undergo degeneration in the early stages of glaucoma, challenging the historically held belief that this area was not involved in this common optic neuropathy. A variety of anatomical risk factors influence the propensity of glaucomatous MPB degeneration, and cases present distinct patterns of ganglion cell degeneration that are distinct from those observed in mitochondria-associated diseases. This review synthesizes clinical and molecular research on primary MPB disorders, highlighting the commonalities and differences in their pathogenesis. KEY POINTS (BOX) 1. Temporal degeneration of optic nerve fibers accompanied by cecocentral scotoma is a hallmark of maculopapillary bundle (MPB) degeneration. 2. Mechanisms of MPB degeneration commonly implicate mitochondrial dysfunction. 3. Recent research challenges the traditional belief that the MPB is uninvolved in glaucoma by showing degeneration in the early stages of this common optic neuropathy, yet with features distinct from other MPB-selective neuropathies. 4. Reactive oxygen species generation is a mechanism linking mitochondrial mechanisms of MPB-selective optic neuropathies, but in-vivo and in-vitro studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Darius W Lambiri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Yang Z, Marcoci C, Öztürk HK, Giama E, Yenicelik AG, Slanař O, Linington C, Desai R, Smith KJ. Tissue Hypoxia and Associated Innate Immune Factors in Experimental Autoimmune Optic Neuritis. Int J Mol Sci 2024; 25:3077. [PMID: 38474322 DOI: 10.3390/ijms25053077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Cristina Marcoci
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Hatice Kübra Öztürk
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Eleni Giama
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ayse Gertrude Yenicelik
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Christopher Linington
- School of Infection and Immunity, The Sir Graeme Davies Building, Glasgow G12 8TA, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| |
Collapse
|
6
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Kim HJ, Cha S, Choi JS, Lee JY, Kim KE, Kim JK, Kim J, Moon SY, Lee SHS, Park K, Won SY. scAAV2-Mediated Expression of Thioredoxin 2 and C3 Transferase Prevents Retinal Ganglion Cell Death and Lowers Intraocular Pressure in a Mouse Model of Glaucoma. Int J Mol Sci 2023; 24:16253. [PMID: 38003443 PMCID: PMC10671512 DOI: 10.3390/ijms242216253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3). We evaluated the therapeutic effects of this vector in vitro and in vivo using dexamethasone (DEX)-induced glaucoma models. We found that scAAV2-Trx2-C3-treated HeLa cells had significantly reduced GTP-bound active RhoA and increased phosphor-cofilin Ser3 protein expression levels. scAAV2-Trx2-C3 was also shown to inhibit oxidative stress, fibronectin expression, and alpha-SMA expression in DEX-treated HeLa cells. NeuN immunostaining and TUNEL assay in mouse retinal tissues was performed to evaluate its neuroprotective effect upon RGCs, whereas changes in mouse IOP were monitored via rebound tonometer. The present study showed that scAAV2-Trx2-C3 can protect RGCs from degeneration and reduce IOP in a DEX-induced mouse model of glaucoma, while immunohistochemistry revealed that the expression of fibronectin and alpha-SMA was decreased after the transduction of scAAV2-Trx2-C3 in murine eye tissues. Our results suggest that AAV2-Trx2-C3 modulates the outflow resistance of the trabecular meshwork, protects retinal and other ocular tissues from oxidative damage, and may lead to the development of a gene therapeutic for glaucoma.
Collapse
Affiliation(s)
- Hee Jong Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Seho Cha
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Jun-Sub Choi
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea; (J.Y.L.); (K.E.K.)
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Ko Eun Kim
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea; (J.Y.L.); (K.E.K.)
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Jin Kwon Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Jin Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Seo Yun Moon
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Steven Hyun Seung Lee
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Keerang Park
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - So-Yoon Won
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| |
Collapse
|
8
|
Güvenç U, Ünlü N, Yaralı HN, Özbek NY. Does thalassemia truly cause microvascular changes without us noticing? An optical coherence tomography angiography study of the children with beta-thalassemia. Int Ophthalmol 2023; 43:3755-3765. [PMID: 37389762 DOI: 10.1007/s10792-023-02786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE It was aimed to evaluate the retinochoroidal microvascular alterations of pediatric beta-thalassemia patients and investigate the effect of blood transfusion on perfusion among transfusion-dependent thalassemia (TDT), by means of optical coherence tomography angiography (OCTA). METHODS In this multicentered, prospective, cross-sectional study, 56 TDT, 14 non-TDT (NTDT), and 63 healthy children were evaluated. The vessel density (VD) in superficial capillary plexus (SCP), deep capillary plexus, radial peripapillary capillary network, choriocapillaris, and the foveal avascular zone area (FAZ) were evaluated by OCTA. Before and after transfusion values of the TDT group were compared, and correlations were made with blood values and iron accumulation. RESULTS Foveal and parafoveal zones were significantly thinner among TDT patients, with larger FAZ area. Macula VD of SCP and ppVD was lowest in NTDT group. In the TDT group, a decrease in retinal nerve fiber thickness and ppVD values was detected after transfusion. A negative significant relationship was found between both hemoglobin (Hb), hematocrit (Htc), and ppVD. CONCLUSIONS OCTA provides a better insight into retinal and choriocapillaris vascular impairment influenced by tissue hypoxia and oxidative stress in different clinical phenotypes of beta-thalassemia.
Collapse
Affiliation(s)
- Umay Güvenç
- Ankara Training and Research Hospital Ophthalmology Department, Ankara, Turkey.
| | - Nurten Ünlü
- Ankara Training and Research Hospital Ophthalmology Department, Ankara, Turkey
| | - Hüsniye Neşe Yaralı
- Ankara City Hospital Pediatric Hematology and Oncology Department, Ankara, Turkey
| | - Namık Yaşar Özbek
- Ankara City Hospital Pediatric Hematology and Oncology Department, Ankara, Turkey
| |
Collapse
|
9
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
10
|
Shamsher E, Khan RS, Davis BM, Dine K, Luong V, Somavarapu S, Cordeiro MF, Shindler KS. Nanoparticles Enhance Solubility and Neuroprotective Effects of Resveratrol in Demyelinating Disease. Neurotherapeutics 2023; 20:1138-1153. [PMID: 37160530 PMCID: PMC10457259 DOI: 10.1007/s13311-023-01378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Resveratrol is a natural polyphenol which may be useful for treating neurodegenerative diseases such as multiple sclerosis (MS). To date, current immunomodulatory treatments for MS aim to reduce inflammation with limited effects on the neurodegenerative component of this disease. The purpose of the current study is to develop a novel nanoparticle formulation of resveratrol to increase its solubility, and to assess its ability to prevent optic nerve and spinal cord degeneration in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Resveratrol nanoparticles (RNs) were made using a thin rehydration technique. EAE mice received a daily oral administration of vehicle, RNs or unconjugated resveratrol for one month. They were assessed daily for clinical signs of paralysis and weekly for their visual acuity with optokinetic responses (OKR). After one month, their spinal cords and optic nerves were stained for inflammation and demyelination and retinal ganglion cells immunostained for Brn3a. RNs were stable for three months. The administration of RNs did not have any effect on clinical manifestation of EAE and did not preserve OKR scores but reduced the intensity of the disease. It did not reduce inflammation and demyelination in the spinal cord and the optic nerve. However, RNs were able to decrease RGC loss compared to the vehicle. Results demonstrate that resveratrol is neuroprotective by reducing RGC loss. Interestingly, neuroprotective effects and decreased disease severity occurred without reduction of inflammation or demyelination, suggesting this therapy may fill an unmet need to limit the neurodegenerative component of MS.
Collapse
Affiliation(s)
- Ehtesham Shamsher
- Institute of Ophthalmology, University College London, London, UK
- Jules-Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| | - Reas S Khan
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA
| | - Benjamin M Davis
- Institute of Ophthalmology, University College London, London, UK
| | - Kimberly Dine
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA
| | - Vy Luong
- Institute of Ophthalmology, University College London, London, UK
| | | | - M Francesca Cordeiro
- Institute of Ophthalmology, University College London, London, UK
- Imperial College London Ophthalmology Research Group, London, UK
- Western Eye Hospital, London, UK
| | - Kenneth S Shindler
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Lambiri DW, Levin LA. Modeling Reactive Oxygen Species-Induced Axonal Loss in Leber Hereditary Optic Neuropathy. Biomolecules 2022; 12:1411. [PMID: 36291620 PMCID: PMC9599876 DOI: 10.3390/biom12101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a rare syndrome that results in vision loss. A necessary but not sufficient condition for its onset is the existence of known mitochondrial DNA mutations that affect complex I biomolecular structure. Cybrids with LHON mutations generate higher rates of reactive oxygen species (ROS). This study models how ROS, particularly H2O2, could signal and execute the axonal degeneration process that underlies LHON. We modeled and explored several hypotheses regarding the influence of H2O2 on the dynamics of propagation of axonal degeneration in LHON. Zonal oxidative stress, corresponding to H2O2 gradients, correlated with the morphology of injury exhibited in the LHON pathology. If the axonal membrane is highly permeable to H2O2 and oxidative stress induces larger production of H2O2, small injuries could trigger cascading failures of neighboring axons. The cellular interdependence created by H2O2 diffusion, and the gradients created by tissue variations in H2O2 production and scavenging, result in injury patterns and surviving axonal loss distributions similar to LHON tissue samples. Specifically, axonal degeneration starts in the temporal optic nerve, where larger groups of small diameter fibers are located and propagates from that region. These findings correlate well with clinical observations of central loss of visual field, visual acuity, and color vision in LHON, and may serve as an in silico platform for modeling the mechanism of action for new therapeutics.
Collapse
Affiliation(s)
- Darius W. Lambiri
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Leonard A. Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
12
|
Song Y, Wang M, Zhao S, Tian Y, Zhang C. Matrine promotes mitochondrial biosynthesis and reduces oxidative stress in experimental optic neuritis. Front Pharmacol 2022; 13:936632. [PMID: 36238552 PMCID: PMC9552203 DOI: 10.3389/fphar.2022.936632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Optic neuritis (ON), characterized by inflammation of the optic nerve and apoptosis of retinal ganglion cells (RGCs), is one of the leading causes of blindness in patients. Given that RGC, as an energy-intensive cell, is vulnerable to mitochondrial dysfunction, improving mitochondrial function and reducing oxidative stress could protect these cells. Matrine (MAT), an alkaloid derived from Sophoraflavescens, has been shown to regulate immunity and protect neurons in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis and ON. However, the protective mechanism of MAT on RGCs is largely unknown. In this study, we show that MAT treatment significantly reduced the degree of inflammatory infiltration and demyelination of the optic nerve and increased the survival rate of RGCs. The expression of Sirtuin 1 (SIRT1), a member of an evolutionarily conserved gene family (sirtuins), was upregulated, as well as its downstream molecules Nrf2 and PGC-1α. The percentage of TOMM20-positive cells was also increased remarkably in RGCs after MAT treatment. Thus, our results indicate that MAT protects RGCs from apoptosis, at least in part, by activating SIRT1 to regulate PGC-1α and Nrf2, which, together, promote mitochondrial biosynthesis and reduce the oxidative stress of RGCs.
Collapse
Affiliation(s)
- Yifan Song
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Suyan Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yanjie Tian
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- *Correspondence: Yanjie Tian,
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Vafaei-Nezhad S, Niknazar S, Payvandi AA, Shirazi Tehrani A, Ahmady Roozbahany N, Ahrabi B, Abbaszadeh HA, Darabi S. Therapeutic Effects of Photobiomodulation Therapy on Multiple Sclerosis by Regulating the Inflammatory Process and Controlling Immune Cell Activity: A Novel Promising Treatment Target. J Lasers Med Sci 2022; 13:e32. [PMID: 36743142 PMCID: PMC9841388 DOI: 10.34172/jlms.2022.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Introduction: Multiple sclerosis (MS) is one of the autoimmune and chronic diseases of the central nervous system; this disease occurs more frequently in young people and women and leads to neurological symptoms. Oxidative stress, inflammatory processes, and oligodendrocyte dysfunction have a pivotal role in the pathophysiology of this disease. Nowadays it is reported that photobiomodulation (PBM) as a non-invasive treatment has neuroprotective potential, but the exact mechanisms are not understood. Methods: In this study, we reviewed the effects of PBM on MS. In this regard, we used the keywords "Photobiomodulation", "Laser therapy", and "Low-level laser therapy" on MS to find related studies on this subject in PubMed, Google scholar, Elsevier, Medline, and Scopus databases. Results: PBM has positive effects on MS by regulating the inflammatory process, controlling immune cell activity and mitochondrial functions, as well as inhibiting free radicals production which finally leads to a reduction in neurological defects and an improvement in the functional status of patients. Conclusion: Overall, researchers have suggested the use of laser therapy in neurodegenerative diseases due to its numerous therapeutic effects.
Collapse
Affiliation(s)
- Saeed Vafaei-Nezhad
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Payvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Shirazi Tehrani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to Hojjat Allah Abbaszadeh, Hearing Disorders Research Center, Loghman Hakim Hospital;
; Shahram Darabi, Cellular and Molecular Research Center, Research Institute for NonCommunicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran;
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran,Correspondence to Hojjat Allah Abbaszadeh, Hearing Disorders Research Center, Loghman Hakim Hospital;
; Shahram Darabi, Cellular and Molecular Research Center, Research Institute for NonCommunicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran;
| |
Collapse
|
14
|
Tolentino M, Cho CC, Lyons JA. Photobiomodulation at 830 nm Reduced Nitrite Production by Peripheral Blood Mononuclear Cells Isolated from Multiple Sclerosis Subjects. Photobiomodul Photomed Laser Surg 2022; 40:480-487. [DOI: 10.1089/photob.2021.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Miguel Tolentino
- Biomedical Sciences Department, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Chi C. Cho
- College of Health Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeri-Anne Lyons
- Biomedical Sciences Department, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
16
|
In Vivo Assessment of the Ameliorative Impact of Some Medicinal Plant Extracts on Lipopolysaccharide-Induced Multiple Sclerosis in Wistar Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051608. [PMID: 35268709 PMCID: PMC8911946 DOI: 10.3390/molecules27051608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Multiple sclerosis is a chronic autoimmune disorder that leads to the demyelination of nerve fibers, which is the major cause of non-traumatic disability all around the world. Herbal plants Nepeta hindustana L., Vitex negundo L., and Argemone albiflora L., in addition to anti-inflammatory and anti-oxidative effects, have shown great potential as neuroprotective agents. The study was aimed to develop a neuroprotective model to study the effectiveness of herbal plants (N. hindustana, V. negundo, and A. albiflora) against multiple sclerosis. The in vivo neuroprotective effects of ethanolic extracts isolated from N. hindustana, V. negundo, and A. albiflora were evaluated in lipopolysaccharides (LPS) induced multiple sclerosis Wistar rat model. The rat models were categorized into seven groups including group A as normal, B as LPS induced diseased group, while C, D, E, F, and G were designed as treatment groups. Histopathological evaluation and biochemical markers including stress and inflammatory (MMP-6, MDA, TNF-α, AOPPs, AGEs, NO, IL-17 and IL-2), antioxidant (SOD, GSH, CAT, GPx), DNA damage (Isop-2α, 8OHdG) as well as molecular biomarkers (RAGE, Caspase-8, p38) along with glutamate, homocysteine, acetylcholinesterase, and myelin binding protein (MBP) were investigated. The obtained data were analyzed using SPSS version 21 and GraphPad Prism 8.0. The different extract treated groups (C, D, E, F, G) displayed a substantial neuroprotective effect regarding remyelination of axonal terminals and oligodendrocytes migration, reduced lymphocytic infiltrations, and reduced necrosis of Purkinje cells. The levels of stress, inflammatory, and DNA damage markers were observed high in the diseased group B, which were reduced after treatments with plant extracts. The antioxidant activity was significantly reduced in diseased induced group B, however, their levels were raised after treatment with plant extract. Group F (a mélange of all the extracts) showed the most significant change among all other treatment groups (C, D, E, G). The communal dose of selected plant extracts regulates neurodegeneration at the cellular level resulting in restoration and remyelination of axonal neurons. Moreover, 400 mg/kg dose of three plants in conjugation (Group F) were found to be more effective in restoring the normal activities of all measured parameters than independent doses (Group C, D, E) and is comparable with standard drug nimodipine (Group G) clinically used for the treatment of multiple sclerosis. The present study, for the first time, reported the clinical evidence of N. hindustana, V. negundo, and A. albiflora against multiple sclerosis and concludes that all three plants showed remyelination as well neuroprotective effects which may be used as a potential natural neurotherapeutic agent against multiple sclerosis.
Collapse
|
17
|
Hassan W, Noreen H, Rehman S, Kamal MA, Teixeira da Rocha JB. Association of Oxidative Stress with Neurological Disorders. Curr Neuropharmacol 2022; 20:1046-1072. [PMID: 34781871 PMCID: PMC9886831 DOI: 10.2174/1570159x19666211111141246] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGORUND Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson's, Alzheimer's, and Huntington's diseases. OBJECTIVES In this study, we explored the involvement of OS in neurodegenerative diseases. METHODS We used different search terms like "oxidative stress and neurological disorders" "free radicals and neurodegenerative disorders" "oxidative stress, free radicals, and neurological disorders" and "association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS. RESULTS Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress. CONCLUSION More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.
Collapse
Affiliation(s)
- Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hamsa Noreen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shakila Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Joao Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
18
|
Kang EYC, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 2021; 10:1948. [PMID: 34943051 PMCID: PMC8750806 DOI: 10.3390/antiox10121948] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ocular diseases associated with retinal ganglion cell (RGC) degeneration is the most common neurodegenerative disorder that causes irreversible blindness worldwide. It is characterized by visual field defects and progressive optic nerve atrophy. The underlying pathophysiology and mechanisms of RGC degeneration in several ocular diseases remain largely unknown. RGCs are a population of central nervous system neurons, with their soma located in the retina and long axons that extend through the optic nerve to form distal terminals and connections in the brain. Because of this unique cytoarchitecture and highly compartmentalized energy demand, RGCs are highly mitochondrial-dependent for adenosine triphosphate (ATP) production. Recently, oxidative stress and mitochondrial dysfunction have been found to be the principal mechanisms in RGC degeneration as well as in other neurodegenerative disorders. Here, we review the role of oxidative stress in several ocular diseases associated with RGC degenerations, including glaucoma, hereditary optic atrophy, inflammatory optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and drug toxicity. We also review experimental approaches using cell and animal models for research on the underlying mechanisms of RGC degeneration. Lastly, we discuss the application of antioxidants as a potential future therapy for the ocular diseases associated with RGC degenerations.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80424, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Sarah R. Levi
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97403, Taiwan
| |
Collapse
|
19
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
20
|
Golomb BA. Diplomats' Mystery Illness and Pulsed Radiofrequency/Microwave Radiation. Neural Comput 2018; 30:2882-2985. [PMID: 30183509 DOI: 10.1162/neco_a_01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance: A mystery illness striking U.S. and Canadian diplomats to Cuba (and now China) "has confounded the FBI, the State Department and US intelligence agencies" (Lederman, Weissenstein, & Lee, 2017). Sonic explanations for the so-called health attacks have long dominated media reports, propelled by peculiar sounds heard and auditory symptoms experienced. Sonic mediation was justly rejected by experts. We assessed whether pulsed radiofrequency/microwave radiation (RF/MW) exposure can accommodate reported facts in diplomats, including unusual ones. Observations: (1) Noises: Many diplomats heard chirping, ringing or grinding noises at night during episodes reportedly triggering health problems. Some reported that noises were localized with laser-like precision or said the sounds seemed to follow them (within the territory in which they were perceived). Pulsed RF/MW engenders just these apparent "sounds" via the Frey effect. Perceived "sounds" differ by head dimensions and pulse characteristics and can be perceived as located behind in or above the head. Ability to hear the "sounds" depends on high-frequency hearing and low ambient noise. (2) Signs/symptoms: Hearing loss and tinnitus are prominent in affected diplomats and in RF/MW-affected individuals. Each of the protean symptoms that diplomats report also affect persons reporting symptoms from RF/MW: sleep problems, headaches, and cognitive problems dominate in both groups. Sensations of pressure or vibration figure in each. Both encompass vision, balance, and speech problems and nosebleeds. Brain injury and brain swelling are reported in both. (3) Mechanisms: Oxidative stress provides a documented mechanism of RF/MW injury compatible with reported signs and symptoms; sequelae of endothelial dysfunction (yielding blood flow compromise), membrane damage, blood-brain barrier disruption, mitochondrial injury, apoptosis, and autoimmune triggering afford downstream mechanisms, of varying persistence, that merit investigation. (4) Of note, microwaving of the U.S. embassy in Moscow is historically documented. Conclusions and relevance: Reported facts appear consistent with pulsed RF/MW as the source of injury in affected diplomats. Nondiplomats citing symptoms from RF/MW, often with an inciting pulsed-RF/MW exposure, report compatible health conditions. Under the RF/MW hypothesis, lessons learned for diplomats and for RF/MW-affected civilians may each aid the other.
Collapse
|
21
|
McDougald DS, Dine KE, Zezulin AU, Bennett J, Shindler KS. SIRT1 and NRF2 Gene Transfer Mediate Distinct Neuroprotective Effects Upon Retinal Ganglion Cell Survival and Function in Experimental Optic Neuritis. Invest Ophthalmol Vis Sci 2018; 59:1212-1220. [PMID: 29494741 PMCID: PMC5839257 DOI: 10.1167/iovs.17-22972] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Optic neuritis is a condition defined by autoimmune-mediated demyelination of the optic nerve and death of retinal ganglion cells. SIRT1 and NRF2 stimulate anti-inflammatory mechanisms and have previously demonstrated therapeutic value in preclinical models of neurodegenerative disease. Here we investigated the neuroprotective potential of SIRT1 or NRF2 gene transfer using adeno-associated virus (AAV) vectors in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Methods C57Bl/6J mice were administered intravitreal doses of AAV2 vectors and immunized to induce EAE symptoms. Visual function was examined by recording the optokinetic response (OKR) just prior to EAE induction and once every 7 days postinduction for 7 weeks. Retina and optic nerves were harvested to investigate retinal ganglion cell survival (immunolabeling with Brn3a antibodies); inflammation (hematoxylin and eosin staining); and demyelination (luxol fast blue staining). Results Animals modeling EAE demonstrate reduced visual acuity compared to sham-induced controls. Intravitreal delivery of AAV2-NRF2 did not preserve visual function. However, AAV2-SIRT1 mediated significant preservation of the OKR compared to AAV2-eGFP controls. Treatment with AAV2-NRF2 promoted RGC survival while AAV2-SIRT1 mediated an upward trend in protection compared to vehicle and AAV2-eGFP controls. Neither NRF2 nor SIRT1 gene augmentation was able to suppress optic nerve inflammation or demyelination. Conclusions AAV-mediated overexpression of NRF2 or SIRT1 within RGCs mediates distinct neuroprotective effects upon visual function and RGC survival. This study expands our understanding of SIRT1 and NRF2-mediated neuroprotection in the context of MS pathogenesis and optic neuropathies.
Collapse
Affiliation(s)
- Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kimberly E Dine
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra U Zezulin
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S Shindler
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
22
|
Abstract
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.
Collapse
Affiliation(s)
- Kareem Clark
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,2 Neuroscience Curriculum, 72054 Virginia Commonwealth University , Richmond, VA, USA
| | - Brooke A Sword
- 3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| | - Jeffrey L Dupree
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| |
Collapse
|
23
|
The possible anti-apoptotic and antioxidant effects of acetyl l-carnitine as an add-on therapy on a relapsing-remitting model of experimental autoimmune encephalomyelitis in rats. Biomed Pharmacother 2018; 103:1302-1311. [DOI: 10.1016/j.biopha.2018.04.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023] Open
|
24
|
Satheesh Kumar MK, Nair S, Mony U, Kalingavarman S, Venkat R, Sivanarayanan TB, Unni AKK, Rajeshkannan R, Anandakuttan A, Radhakrishnan S, Menon KN. Significance of elevated Prohibitin 1 levels in Multiple Sclerosis patients lymphocytes towards the assessment of subclinical disease activity and its role in the central nervous system pathology of disease. Int J Biol Macromol 2017; 110:573-581. [PMID: 29242126 DOI: 10.1016/j.ijbiomac.2017.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/26/2017] [Accepted: 12/10/2017] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune-neurodegenerative disorder managed therapeutically by modulating lymphocytes activity which has potential in disease management. Prohibitin 1(PHB) that controls the reactive oxygen species (ROS) and present on the activated lymphocytes have significance in the therapy of MS as esters of fumaric acid that regulates ROS is in phase II/III clinical trials. Thus, we evaluated the expression levels of PHB1 in experimental autoimmune encephalomyelitis (EAE), the animal model of MS and on MS patient's lymphocytes. PHB levels in brain tissue of EAE animals were determined by immunoblotting and on blood lymphocytes from MS relapse, Remission, Optic Neuritis, Neurological controls and Healthy volunteers by FACS using anti-PHB and anti-CD45 antibodies. We observed significant elevation of PHB in EAE brains (91.0 ± 17.59%) vs controls (29.8 ± 12.9%) (p = 0.01) and on lymphocytes of MS patients in acute (73.5 ± 11.20%) or relapsing (69.3 ± 17.33%) phase compared to remission (45.9 ± 8.08%) [p = 0.034 acute vs remission; p = 0.004 relapse vs remission]. Up regulation of PHB in relapsing vs remission MS patients imply the potential use of PHB to clinically evaluate subclinical disease status towards prognosis of an oncoming relapse. Elevated PHB levels in EAE brains signify the role of PHB in regulating ROS and implies PHB's role in oxidative stress.
Collapse
Affiliation(s)
| | - Sreepriya Nair
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ullas Mony
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sugavanan Kalingavarman
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ramaswamynathan Venkat
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Ramiah Rajeshkannan
- Department of Radiation Oncology, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Krishnakumar N Menon
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
25
|
Aranda ML, González Fleitas MF, Dieguez HH, Milne GA, Devouassoux JD, Keller Sarmiento MI, Chianelli M, Sande PH, Dorfman D, Rosenstein RE. Therapeutic benefit of environmental enrichment on optic neuritis. Neuropharmacology 2017; 145:87-98. [PMID: 29233635 DOI: 10.1016/j.neuropharm.2017.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/13/2017] [Accepted: 12/09/2017] [Indexed: 12/22/2022]
Abstract
Optic neuritis (ON) is an inflammatory, demyelinating, neurodegenerative, and presently untreatable condition of the optic nerve which might induce blindness. We analyzed the effect of environmental enrichment (EE) on visual pathway damage provoked by experimental ON induced by a microinjection of bacterial lipopolysaccharide (LPS) into the optic nerve. For this purpose, LPS was microinjected into the optic nerve from male Wistar rats. After injection, one group of animals was submitted to EE, and another group remained in standard environment (SE) for 21 days. EE prevented the decrease in pupil light reflex (PLR), visual evoked potentials, retinal anterograde transport, phosphorylated neurofilament immunoreactivity, myelination (luxol fast blue staining), and axon (toluidine blue staining) and retinal ganglion cell (Brn3a-immunoreactivity) number. EE also prevented microglial/macrophage reactivity (Iba-1- and ED1-immunoreactivity), and astrocytosis (glial fibrillary acidic protein-immunostaining) induced by experimental ON. LPS-injected optic nerves displayed oxidative damage and increased inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β and TNFα mRNA levels which were prevented by EE. EE increased optic nerve brain-derived neurotrophic factor levels. When EE started at 4 (but not 7) days post-injection of LPS, a preservation of the PLR was observed at 21 days post-LPS, which was blocked by the daily administration of ANA-12 from day 4 to day 7 post-LPS. Moreover, EE from day 4 to day 7 post-LPS significantly preserved the PLR at 21 days post-injection. Taken together, our data suggest that EE preserved visual functions and reduced neuroinflammation of the optic nerve. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- Marcos L Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Georgia A Milne
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Julián D Devouassoux
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Mónica Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Paraguay 2155, 5th Floor, 1121, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Retinal nerve fiber layer thickness in children with β-thalassemia major. Saudi J Ophthalmol 2017; 31:224-228. [PMID: 29234223 PMCID: PMC5717504 DOI: 10.1016/j.sjopt.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 09/28/2017] [Accepted: 10/08/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose To measure the retinal nerve fiber layer thickness (RNFLT) in children with β-thalassemia major and to compare with healthy controls. Methods A total of 47 patients with β-thalassemia major and 51 healthy controls were included. Each subject underwent a standard ophthalmological examination. RNFLT measurements were performed using optical coherence tomography. Results Mean age of the patient group and healthy controls were 13.7 ± 2.1 and 14.3 ± 2.2 years, respectively. Mean peripapillary RNFL thickness was 94 µm in the patient group, and 100 µm in the control group (p < 0.01). In patients with β-thalassemia major, RNFL was thinner in all quadrants than control subjects. Within the β-thalassemia major group neither average RNFLT nor each four quadrant RNFLT were correlated with the age, serum ferritin or serum hemoglobin levels (p > 0.05). Conclusion In this study, we observed RNFL was thinner in patients with β-thalassemia major. Thinning of RNFL did not correlate with hemoglobin or ferritin levels.
Collapse
|
27
|
Guo X, Namekata K, Kimura A, Harada C, Harada T. ASK1 in neurodegeneration. Adv Biol Regul 2017; 66:63-71. [PMID: 28882588 DOI: 10.1016/j.jbior.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs) such as glaucoma, multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are characterized by the progressive loss of neurons, causing irreversible damage to patients. Longer lifespans may be leading to an increase in the number of people affected by NDDs worldwide. Among the pathways strongly impacting the pathogenesis of NDDs, oxidative stress, a condition that occurs because of an imbalance in oxidant and antioxidant levels, has been known to play a vital role in the pathophysiology of NDDs. One of the molecules activated by oxidative stress is apoptosis signal-regulating kinase 1 (ASK1), which has been shown to play a role in NDDs. ASK1 activation is regulated by multiple steps, including oligomerization, phosphorylation, and protein-protein interactions. In the oxidative stress state, reactive oxygen species (ROS) induce the dissociation of thioredoxin, a protein regulating cellular reduction and oxidation (redox), from the N-terminal region of ASK1, and ASK1 is subsequently activated by the oligomerization and phosphorylation of a critical threonine residue, leading to cell death. Here, we review experimental evidence that links ASK1 signaling with the pathogenesis of several NDDs. We propose that ASK1 may be a new point of therapeutic intervention to prevent or treat NDDs.
Collapse
Affiliation(s)
- Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
28
|
Mitochondrial Uncoupler Prodrug of 2,4-Dinitrophenol, MP201, Prevents Neuronal Damage and Preserves Vision in Experimental Optic Neuritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7180632. [PMID: 28680531 PMCID: PMC5478871 DOI: 10.1155/2017/7180632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/30/2017] [Indexed: 11/18/2022]
Abstract
The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis.
Collapse
|
29
|
Jutley G, Luk SM, Dehabadi MH, Cordeiro MF. Management of glaucoma as a neurodegenerative disease. Neurodegener Dis Manag 2017; 7:157-172. [PMID: 28540772 DOI: 10.2217/nmt-2017-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a neurodegenerative disease with an estimated prevalence of 60 million people, and the most common cause of irreversible blindness worldwide. The mainstay of treatment has been aimed at lowering intraocular pressure, currently the only modifiable risk factor. Unfortunately, despite adequate pressure control, many patients go on to suffer irreversible visual loss. We first briefly examine currently established intraocular pressure lowering-treatments, with a discussion of their roles in neuroprotection as demonstrated by both animal and clinical studies. The review then examines currently available intraocular pressure independent agents that have shown promise for possessing neuroprotective effects in the management of glaucoma. Finally, we explore potential future treatments such as immune-modulation, stem cell therapy and neural regeneration as they may provide further protection against the neurodegenerative processes involved in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Gurjeet Jutley
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| | - Sheila Mh Luk
- Medical Retina, Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Mohammad H Dehabadi
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK.,Medical Retina, Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK.,Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
30
|
Medina-Fernandez FJ, Escribano BM, Agüera E, Aguilar-Luque M, Feijoo M, Luque E, Garcia-Maceira FI, Pascual-Leone A, Drucker-Colin R, Tunez I. Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radic Res 2017; 51:460-469. [DOI: 10.1080/10715762.2017.1324955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Begoña M. Escribano
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
- Faculty of Veterinary Medicine, Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
- Department of Neurology, Reina Sofia University Hospital, Cordoba, Spain
| | - Macarena Aguilar-Luque
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Montserrat Feijoo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
| | - Evelio Luque
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
- Histology Section, Faculty of Medicine, Department of Morphological Sciences, University of Cordoba, Cordoba, Spain
| | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - René Drucker-Colin
- Department of Molecular Neuropathology, Institute of Cell Physiology, National Autonomous University of Mexico (UNAM), Ciudad de Mexico, D.F, Mexico
| | - Isaac Tunez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
31
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
32
|
Targeting Oxidative Stress for Treatment of Glaucoma and Optic Neuritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2817252. [PMID: 28270908 PMCID: PMC5320364 DOI: 10.1155/2017/2817252] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease of the eye and it is one of the leading causes of blindness. Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons, namely, the optic nerve, usually associated with elevated intraocular pressure (IOP). Current glaucoma therapies target reduction of IOP, but since RGC death is the cause of irreversible vision loss, neuroprotection may be an effective strategy for glaucoma treatment. One of the risk factors for glaucoma is increased oxidative stress, and drugs with antioxidative properties including valproic acid and spermidine, as well as inhibition of apoptosis signal-regulating kinase 1, an enzyme that is involved in oxidative stress, have been reported to prevent glaucomatous retinal degeneration in mouse models of glaucoma. Optic neuritis is a demyelinating inflammation of the optic nerve that presents with visual impairment and it is commonly associated with multiple sclerosis, a chronic demyelinating disease of the central nervous system. Although steroids are commonly used for treatment of optic neuritis, reduction of oxidative stress by approaches such as gene therapy is effective in ameliorating optic nerve demyelination in preclinical studies. In this review, we discuss oxidative stress as a therapeutic target for glaucoma and optic neuritis.
Collapse
|
33
|
Aranda ML, Fleitas MFG, Dieguez H, Iaquinandi A, Sande PH, Dorfman D, Rosenstein RE. Melatonin as a Therapeutic Resource for Inflammatory Visual Diseases. Curr Neuropharmacol 2017; 15:951-962. [PMID: 28088912 PMCID: PMC5652015 DOI: 10.2174/1570159x15666170113122120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Uveitis and optic neuritis are prevalent ocular inflammatory diseases, and highly damaging ocular conditions. Both diseases are currently treated with corticosteroids, but they do not have adequate efficacy and are often associated with severe side effects. Thus, uveitis and optic neuritis remain a challenging field to ophthalmologists and a significant public health concern. OBJECTIVE This review summarizes findings showing the benefits of a treatment with melatonin in experimental models of these inflammatory ocular diseases. RESULTS Oxidative and nitrosative damage, tumor necrosis factor, and prostaglandin production have been involved in the pathogeny of uveitis and optic neuritis. Melatonin is an efficient antioxidant and antinitridergic, and has the ability to reduce prostaglandin and tumor necrosis factor levels both in the retina and optic nerve. Moreover, melatonin not only prevents functional and structural consequences of experimental uveitis and optic neuritis, but it is also capable of suppressing the actively ongoing ocular inflammatory response. CONCLUSIONS Since melatonin protects ocular tissues against inflammation, it could be a potentially useful anti-inflammatory therapy in ophthalmology.
Collapse
Affiliation(s)
- Marcos L. Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María Florencia González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Hernán Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Agustina Iaquinandi
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H. Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | - Ruth E. Rosenstein
- Address correspondence to this author at the Department of Human Biochemistry, School of Medicine, CEFyBO, University of Buenos Aires, CONICET, Paraguay 2155, 5th Floor, (1121), Buenos Aires, Argentina;, Tel: 54-11-45083672 (ext 37); Fax: 54-11-45083672 (ext 317);, E-mail:
| |
Collapse
|
34
|
Griggs RB, Yermakov LM, Susuki K. Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 2016; 116:77-87. [PMID: 27717670 DOI: 10.1016/j.neures.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria. Disruption of excitable domains and altered distribution of functional elements in CNS axons is associated with demyelinating diseases such as multiple sclerosis, and is likely a mechanism common to other neurological disorders. This review will provide a brief overview of the molecular structure of the AIS and nodes of Ranvier, as well as the distribution of mitochondria in myelinated axons. In addition, this review highlights important structural and functional changes within myelinated CNS axons that are associated with neurological dysfunction.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|
35
|
Oxidative damage and chemokine production dominate days before immune cell infiltration and EAE disease debut. J Neuroinflammation 2016; 13:246. [PMID: 27630002 PMCID: PMC5024447 DOI: 10.1186/s12974-016-0707-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Multiple sclerosis is widely accepted as an inflammatory disease. However, studies indicate that degenerative processes in the CNS occur prior to inflammation. In the widely used animal model experimental autoimmune encephalomyelitis (EAE), we investigated the significance of degenerative processes from mitochondrial membrane potentials, reactive oxidative species, cell death markers, chemokines, and inflammatory cell types in brain, spinal cord, and optic nerve tissue during the effector phase of the disease, before clinical disease was evident. Methods Sixty-two rats were placed in eight groups, n = 6 to 10. Four groups were immunized with spinal cord homogenate emulsified in complete Freund’s adjuvant (one served as EAE group), three groups were immunized with complete Freund’s adjuvant only, and a control group was injected with phosphate buffered saline only. Groups were sacrificed 3, 5, 7, or 12–13 days after the intervention and analyzed for early signs of CNS degeneration. Results Loss of mitochondrial membrane potential and oxidative changes was observed days before clinical disease debut at day 9.75 ± 0.89. The early mitochondrial changes were not associated with cytochrome C release, cleavage of caspases 9 (38/40 kDa) and 3 (17/19 kDa), and cleavage of PARP (89 kDa) or spectrin (120/150 kDa), and apoptosis was not initiated. Axonal degeneration was only present at disease onset. Increases in a range of cytokines and chemokines were observed systemically as a consequence of immunization with complete Freund’s adjuvant, whereas the encephalitogenic emulsion induced an upregulation of the chemokines Ccl2, Ccl20, and Cxcl1, specifically in brain tissue, 7 days after immunization. Conclusion Five to seven days after immunization, subtle decreases in the mitochondrial membrane potential and an increased reactive oxygen species burden in brain tissue were observed. No cell death was detected at these time-points, but a specific expression pattern of chemokines indicates activity in the CNS, several days before clinical disease debut.
Collapse
|
36
|
Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med 2016; 10:889-902. [PMID: 27416337 DOI: 10.2217/bmm-2016-0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. METHOD A semi-systematic literature search using PubMed and other databases. RESULTS Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. CONCLUSION Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.
Collapse
Affiliation(s)
- Richard Ibitoye
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kevin Kemp
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Claire Rice
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| |
Collapse
|
37
|
Aranda ML, González Fleitas MF, De Laurentiis A, Keller Sarmiento MI, Chianelli M, Sande PH, Dorfman D, Rosenstein RE. Neuroprotective effect of melatonin in experimental optic neuritis in rats. J Pineal Res 2016; 60:360-72. [PMID: 26882296 DOI: 10.1111/jpi.12318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Optic neuritis (ON) is an inflammatory, demyelinating, and neurodegenerative condition of the optic nerve, which might induce permanent vision loss. Currently, there are no effective therapies for this disorder. We have developed an experimental model of primary ON in rats through a single microinjection of 4.5 μg of bacterial lipopolysaccharide (LPS) into the optic nerve. Since melatonin acts as a pleiotropic therapeutic agent in various neurodegenerative diseases, we analyzed the effect of melatonin on LPS-induced ON. For this purpose, LPS or vehicle were injected into the optic nerve from adult male Wistar rats. One group of animals received a subcutaneous pellet of 20 mg melatonin at 24 hr before vehicle or LPS injection, and another group was submitted to a sham procedure. Melatonin completely prevented the decrease in visual evoked potentials (VEPs), and pupil light reflex (PLR), and preserved anterograde transport of cholera toxin β-subunit from the retina to the superior colliculus. Moreover, melatonin prevented microglial reactivity (ED1-immunoreactivity, P < 0.01), astrocytosis (glial fibrillary acid protein-immunostaining, P < 0.05), demyelination (luxol fast blue staining, P < 0.01), and axon (toluidine blue staining, P < 0.01) and retinal ganglion cell (Brn3a-immunoreactivity, P < 0.01) loss, induced by LPS. Melatonin completely prevented the increase in nitric oxide synthase 2, cyclooxygenase-2 levels (Western blot) and TNFα levels, and partly prevented lipid peroxidation induced by experimental ON. When the pellet of melatonin was implanted at 4 days postinjection of LPS, it completely reversed the decrease in VEPs and PLR. These data suggest that melatonin could be a promising candidate for ON treatment.
Collapse
Affiliation(s)
- Marcos L Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
38
|
Park JW, Kyung SE. Correlation between Visual Acuity and Retinal Nerve Fiber Layer Thickness in Optic Neuropathies. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2016. [DOI: 10.3341/jkos.2016.57.4.628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ji Woong Park
- Department of Ophthalmology, Dankook University College of Medicine, Cheonan, Korea
| | - Sung Eun Kyung
- Department of Ophthalmology, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
39
|
The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis. Mult Scler Int 2015; 2015:681289. [PMID: 26839705 PMCID: PMC4709725 DOI: 10.1155/2015/681289] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023] Open
Abstract
Until recently, multiple sclerosis has been viewed as an entirely inflammatory disease without acknowledgment of the significant neurodegenerative component responsible for disease progression and disability. This perspective is being challenged by observations of a dissociation between inflammation and neurodegeneration where the neurodegenerative component may play a more significant role in disease progression. In this review, we explore the relationship between mitochondrial dysfunction and neurodegeneration in multiple sclerosis. We review evidence that the ketogenic diet can improve mitochondrial function and discuss the potential of the ketogenic diet in treating progressive multiple sclerosis for which no treatment currently exists.
Collapse
|
40
|
Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp Neurol 2015; 277:58-67. [PMID: 26626971 PMCID: PMC7094520 DOI: 10.1016/j.expneurol.2015.11.010] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/08/2015] [Accepted: 11/21/2015] [Indexed: 01/18/2023]
|
41
|
Rottlaender A, Kuerten S. Stepchild or Prodigy? Neuroprotection in Multiple Sclerosis (MS) Research. Int J Mol Sci 2015; 16:14850-65. [PMID: 26140377 PMCID: PMC4519875 DOI: 10.3390/ijms160714850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities.
Collapse
Affiliation(s)
- Andrea Rottlaender
- Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg 97070, Germany.
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg 97070, Germany.
| |
Collapse
|
42
|
Ravera S, Bartolucci M, Cuccarolo P, Litamè E, Illarcio M, Calzia D, Degan P, Morelli A, Panfoli I. Oxidative stress in myelin sheath: The other face of the extramitochondrial oxidative phosphorylation ability. Free Radic Res 2015; 49:1156-64. [PMID: 25971447 DOI: 10.3109/10715762.2015.1050962] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is not only the main source of ATP for the cell, but also a major source of reactive oxygen species (ROS), which lead to oxidative stress. At present, mitochondria are considered the organelles responsible for the OXPHOS, but in the last years we have demonstrated that it can also occur outside the mitochondrion. Myelin sheath is able to conduct an aerobic metabolism, producing ATP that we have hypothesized is transferred to the axon, to support its energetic demand. In this work, spectrophotometric, cytofluorimetric, and luminometric analyses were employed to investigate the oxidative stress production in isolated myelin, as far as its respiratory activity is concerned. We have evaluated the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), markers of lipid peroxidation, as well as of hydrogen peroxide (H2O2), marker of ROS production. To assess the presence of endogenous antioxidant systems, superoxide dismutase, catalase, and glutathione peroxidase activities were assayed. The effect of certain uncoupling or antioxidant molecules on oxidative stress in myelin was also investigated. We report that isolated myelin produces high levels of MDA, 4-HNE, and H2O2, likely through the pathway composed by Complex I-III-IV, but it also contains active superoxide dismutase, catalase, and glutathione peroxidase, as antioxidant defense. Uncoupling compounds or Complex I inhibitors increase oxidative stress, while antioxidant compounds limit ROS generation. Data may shed new light on the role of myelin sheath in physiology and pathology. In particular, it can be presumed that the axonal degeneration associated with myelin loss in demyelinating diseases is related to oxidative stress caused by impaired OXPHOS.
Collapse
Affiliation(s)
- S Ravera
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova , Genova , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:725370. [PMID: 26106458 PMCID: PMC4461760 DOI: 10.1155/2015/725370] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Different trigger pathologies have been suggested by the primary cytodegenerative “inside-out” and primary inflammation-driven “outside-in” hypotheses. Recent data indicate that mitochondrial injury and subsequent energy failure are key factors in the induction of demyelination and neurodegeneration. The brain weighs only a few percent of the body mass but accounts for approximately 20% of the total basal oxygen consumption of mitochondria. Oxidative stress induces mitochondrial injury in patients with multiple sclerosis and energy failure in the central nervous system of susceptible individuals. The interconnected mechanisms responsible for free radical production in patients with multiple sclerosis are as follows: (i) inflammation-induced production of free radicals by activated immune cells, (ii) liberation of iron from the myelin sheets during demyelination, and (iii) mitochondrial injury and thus energy failure-related free radical production. In the present review, the different sources of oxidative stress and their relationships to patients with multiple sclerosis considering tissue injury mechanisms and clinical aspects have been discussed.
Collapse
|
44
|
Hauswirth WW. Retinal gene therapy using adeno-associated viral vectors: multiple applications for a small virus. Hum Gene Ther 2015; 25:671-8. [PMID: 25136913 DOI: 10.1089/hum.2014.2530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, FL 32610-0284
| |
Collapse
|
45
|
Talla V, Koilkonda R, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, Guy J. Complex I subunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE. Invest Ophthalmol Vis Sci 2015; 56:1129-40. [PMID: 25613946 DOI: 10.1167/iovs.14-15950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To address the permanent disability induced by mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE). METHODS Mice sensitized for EAE were rescued by intravitreal injection of adeno-associated viral vector serotype 2 with the complex I subunit gene scAAV-NDUFA6Flag. Controls were injected with a mitochondrially targeted red fluorescent protein (scAAV-COX8-cherry). Another group received scAAV-COX8-cherry, but was not sensitized for EAE. Serial pattern electroretinograms (PERGs) and optical coherent tomography (OCT) evaluated visual function and structure of the retina at 1, 3, and 6 months post injection (MPI). Treated mice were killed 6 MPI for histopathology. Immunodetection of cleaved caspase 3 gauged apoptosis. Complex I activity was assessed spectrophotometrically. Expression of NDUFA6Flag in the retina and optic nerve were evaluated between 1 week to 1 month post injection by RT-PCR, immunofluorescence and immunoblotting. RESULTS Reverse transcription-PCR and immunoblotting confirmed NDUFA6Flag overexpression with immunoprecipitation and blue native PAGE showing integration into murine complex I. Overexpression of NDUFA6Flag in the visual system of EAE mice rescued retinal complex I activity completely, axonal loss by 73%, and retinal ganglion cell (RGC) loss by 88%, RGC apoptosis by 66%, and restored the 33% loss of complex I activity in EAE to normal levels; thereby, preventing loss of vision indicated by the 43% reduction in the PERG amplitudes of EAE mice. CONCLUSIONS NDUFA6 gene therapy provided long-term suppression of neurodegeneration in the EAE animal model suggesting that it may also ameliorate the mitochondrial dysfunction associated with permanent disability in optic neuritis and MS patients.
Collapse
Affiliation(s)
- Venu Talla
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| | - Rajeshwari Koilkonda
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| | - Vince Chiodo
- Departments of Ophthalmology, University of Florida, College of Medicine, Gainesville, Florida, United States
| | - Sanford L Boye
- Departments of Ophthalmology, University of Florida, College of Medicine, Gainesville, Florida, United States
| | - William W Hauswirth
- Departments of Ophthalmology, University of Florida, College of Medicine, Gainesville, Florida, United States
| | - John Guy
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
46
|
Yokoyama Y, Maruyama K, Yamamoto K, Omodaka K, Yasuda M, Himori N, Ryu M, Nishiguchi KM, Nakazawa T. The role of calpain in an in vivo model of oxidative stress-induced retinal ganglion cell damage. Biochem Biophys Res Commun 2014; 451:510-5. [PMID: 25111816 DOI: 10.1016/j.bbrc.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE In this study, we set out to establish an in vivo animal model of oxidative stress in the retinal ganglion cells (RGCs) and determine whether there is a link between oxidative stress in the RGCs and the activation of calpain, a major part of the apoptotic pathway. MATERIALS AND METHODS Oxidative stress was induced in the RGCs of C57BL/6 mice by the intravitreal administration of 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH, 30mM, 2μl). Control eyes were injected with 2μl of vehicle. Surviving Fluorogold (FG)-labeled RGCs were then counted in retinal flat mounts. Double staining with CellROX and Annexin V was performed to investigate the co-localization of free radical generation and apoptosis. An immunoblot assay was used both to indirectly evaluate calpain activation in the AAPH-treated eyes by confirming α-fodrin cleavage, and also to evaluate the effect of SNJ-1945 (a specific calpain inhibitor: 4% w/v, 100mg/kg, intraperitoneal administration) in these eyes. RESULTS Intravitreal administration of AAPH led to a significant decrease in FG-labeled RGCs 7days after treatment (control: 3806.7±575.2RGCs/mm(2), AAPH: 3156.1±371.2RGCs/mm(2), P<0.01). CellROX and Annexin V signals were co-localized in the FG-labeled RGCs 24h after AAPH injection. An immunoblot assay revealed a cleaved α-fodrin band that increased significantly 24h after AAPH administration. Intraperitoneally administered SNJ-1945 prevented the cleavage of α-fodrin and had a neuroprotective effect against AAPH-induced RGC death (AAPH: 3354.0±226.9RGCs/mm(2), AAPH+SNJ-1945: 3717.1±614.6RGCs/mm(2), P<0.01). CONCLUSION AAPH administration was an effective model of oxidative stress in the RGCs, showing that oxidative stress directly activated the calpain pathway and induced RGC death. Furthermore, inhibition of the calpain pathway protected the RGCs after AAPH administration.
Collapse
Affiliation(s)
- Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kotaro Yamamoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Morin Ryu
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
47
|
Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathol 2014; 128:247-66. [PMID: 24622774 PMCID: PMC4102830 DOI: 10.1007/s00401-014-1263-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/22/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
Recent data suggest that oxidative injury may play an important role in demyelination and neurodegeneration in multiple sclerosis (MS). We compared the extent of oxidative injury in MS lesions with that in experimental models driven by different inflammatory mechanisms. It was only in a model of coronavirus-induced demyelinating encephalomyelitis that we detected an accumulation of oxidised phospholipids, which was comparable in extent to that in MS. In both, MS and coronavirus-induced encephalomyelitis, this was associated with massive microglial and macrophage activation, accompanied by the expression of the NADPH oxidase subunit p22phox but only sparse expression of inducible nitric oxide synthase (iNOS). Acute and chronic CD4+ T cell-mediated experimental autoimmune encephalomyelitis lesions showed transient expression of p22phox and iNOS associated with inflammation. Macrophages in chronic lesions of antibody-mediated demyelinating encephalomyelitis showed lysosomal activity but very little p22phox or iNOS expressions. Active inflammatory demyelinating lesions induced by CD8+ T cells or by innate immunity showed macrophage and microglial activation together with the expression of p22phox, but low or absent iNOS reactivity. We corroborated the differences between acute CD4+ T cell-mediated experimental autoimmune encephalomyelitis and acute MS lesions via gene expression studies. Furthermore, age-dependent iron accumulation and lesion-associated iron liberation, as occurring in the human brain, were only minor in rodent brains. Our study shows that oxidative injury and its triggering mechanisms diverge in different models of rodent central nervous system inflammation. The amplification of oxidative injury, which has been suggested in MS, is only reflected to a limited degree in the studied rodent models.
Collapse
|
48
|
Chiang CW, Wang Y, Sun P, Lin TH, Trinkaus K, Cross AH, Song SK. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage 2014; 101:310-9. [PMID: 25017446 DOI: 10.1016/j.neuroimage.2014.06.064] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 06/12/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA) and increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice.
Collapse
Affiliation(s)
- Chia-Wen Chiang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Yong Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - Kathryn Trinkaus
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Keino H, Watanabe T, Sato Y, Shudo K, Kitaoka Y, Harada T, Okada AA. Retinoic acid receptor stimulation ameliorates experimental autoimmune optic neuritis. Clin Exp Ophthalmol 2014; 43:558-67. [DOI: 10.1111/ceo.12308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/26/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Keino
- Department of Ophthalmology; Kyorin University School of Medicine; Mitaka Tokyo Japan
| | - Takayo Watanabe
- Department of Ophthalmology; Kyorin University School of Medicine; Mitaka Tokyo Japan
| | - Yasuhiko Sato
- Division of Radioisotope Research; Kyorin University School of Medicine; Mitaka Tokyo Japan
| | - Koichi Shudo
- The Research Foundation ITSUU Laboratory; Setagaya-ku Tokyo Japan
| | - Yasushi Kitaoka
- Department of Ophthalmology; St. Marianna University School of Medicine; Kawasaki Kanagawa Japan
| | - Takayuki Harada
- Visual Research Project; Tokyo Metropolitan Institute of Medical Science; Setagaya-ku Tokyo Japan
| | - Annabelle A Okada
- Department of Ophthalmology; Kyorin University School of Medicine; Mitaka Tokyo Japan
| |
Collapse
|
50
|
Li K, Du Y, Fan Q, Tang CY, He JF. Gypenosides might have neuroprotective and immunomodulatory effects on optic neuritis. Med Hypotheses 2014; 82:636-8. [PMID: 24629564 DOI: 10.1016/j.mehy.2014.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/16/2014] [Accepted: 02/24/2014] [Indexed: 11/24/2022]
Abstract
Optic neuritis is a common disease in young adults, inducing apoptosis of retinal ganglion cells, which leads to varying degree of visual function damages, even blindness. As the standard treatment, methylprednisolone pulse therapy can only promote the recovery of visual acuity but not prevent retinal ganglion cell degeneration. It cannot help improve the ultimate visual outcome. Both inflammatory response and endogenous oxidative stress play crucial roles in the progression of optic neuritis. The combination of immunomodulatory and antioxidant is expected to improve the prognosis of the disease by preventing the apoptosis of retinal ganglion cells. Triterpenoids (oleanolic acid derived) were reported to have the dual capacity of simultaneously repressing production of pro-inflammatory mediators and exerting neuroprotective effects through induction of anti-oxidant genes in experimental optic neuritis. Gypenosides with an aglycone mainly of dammarane-type tetracyclic triterpenoids, also has the dual capacity of immune regulation and antioxidation. Both gypenosides and oleanolic acid were reported to have similar roles in hepatoprotection. Beside, gypenosides were reported to have the capacity of modulating the activation of immune cells and the expression of cytokines. In addition, gypenosides showed neuroprotective effect against oxidative injury in dopaminergic neurons and mouse model of Parkinson's disease. Accordingly, we propose that gypenosides have potential neuroprotective and immunomodulatory effects on optic neuritis through antioxidation and immune regulation. The application of gypenosides might prevent the apoptosis of retinal ganglion cells and improve the ultimate visual outcome in patients with optic neuritis.
Collapse
Affiliation(s)
- Kaijun Li
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yi Du
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Cheng-Ye Tang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jian-Feng He
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|