1
|
Tashiro M, Nakamura A, Kuratani Y, Takada M, Iwamoto S, Oka M, Ando S. Effects of truncations in the N- and C-terminal domains of filensin on filament formation with phakinin in cell-free conditions and cultured cells. FEBS Open Bio 2023; 13:1990-2004. [PMID: 37615966 PMCID: PMC10626283 DOI: 10.1002/2211-5463.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Filensin and phakinin are lens fiber cell-specific proteins that constitute the beaded filaments (BFs) that are critical for maintaining lens transparency. In the Shumiya cataract rat, filensin 94 kDa undergoes N- and C-terminal proteolytic processing to give a transient 50 kDa fragment and a final 38 kDa fragment, just before opacification. To characterize the effects of this processing on filensin function, recombinant proteins representing the two filensin fragments, termed Fil(30-416) and Fil(30-369), respectively, were examined. Fil(30-416) lacks the N-terminal 29 amino acids and the C-terminal 248 amino acids. Fil(30-369) lacks the N-terminal 29 residues and the C-terminal 295 residues. In cell-free assembly characterized by electron microscopy, filensin and Fil(30-416) co-polymerized with phakinin and formed rugged, entangled filaments, whereas Fil(30-369) formed only aggregates. In cultured SW-13 and MCF-7 cells expressing fluorescent fusion proteins, filensin and Fil(30-416) co-polymerized with phakinin and formed cytoplasmic sinuous filaments with different widths, while Fil(30-369) gave aggregates. Therefore, while truncation of the N-terminal 29 amino acids did not affect filament formation, truncation of the C-terminal 295 but not the 248 residues resulted in failure of filament formation. These results indicate that the tail B region (residues 370-416) of rat filensin is essential for filament formation with phakinin. Truncation of the tail B region by proteolytic processing in the cataract rat lens might interfere with BF formation and thereby contribute to opacification.
Collapse
Affiliation(s)
- Moe Tashiro
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Akari Nakamura
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Yamato Kuratani
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Miyako Takada
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Satoshi Iwamoto
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Mikako Oka
- Faculty of PharmacyKeio UniversityTokyoJapan
- Present address:
Yokohama University of Pharmacy601 Matano‐cho, Totsuka‐kuYokohama245‐0066Japan
| | - Shoji Ando
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| |
Collapse
|
2
|
Islam ST, Cheng C, Parreno J, Fowler VM. Nonmuscle Myosin IIA Regulates the Precise Alignment of Hexagonal Eye Lens Epithelial Cells During Fiber Cell Formation and Differentiation. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 37070941 PMCID: PMC10123325 DOI: 10.1167/iovs.64.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Purpose Epithelial cells in the equatorial region of the ocular lens undergo a remarkable transition from randomly packed cells into precisely aligned and hexagon-shaped cells organized into meridional rows. We investigated the function of nonmuscle myosin IIA (encoded by Myh9) in regulating equatorial epithelial cell alignment to form meridional rows during secondary fiber cell morphogenesis. Methods We used genetic knock-in mice to study a common human Myh9 mutation, E1841K, in the rod domain. The E1841K mutation disrupts bipolar filament assembly. Lens shape, clarity, and stiffness were evaluated, and Western blots were used to determine the level of normal and mutant myosins. Cryosections and lens whole mounts were stained and imaged by confocal microscopy to investigate cell shape and organization. Results We observed no obvious changes in lens size, shape, and biomechanical properties (stiffness and resilience) between the control and nonmuscle myosin IIA-E1841K mutant mice at 2 months of age. Surprisingly, we found misalignment and disorder of fiber cells in heterozygous and homozygous mutant lenses. Further analysis revealed misshapen equatorial epithelial cells that cause disorientation of the meridional rows before fiber cell differentiation in homozygous mutant lenses. Conclusions Our data indicate that nonmuscle myosin IIA bipolar filament assembly is required for the precise alignment of the meridional rows at the lens equator and that the organization of lens fiber cells depends on the proper patterning of meridional row epithelial cells. These data also suggest that lens fiber cell organization and a hexagonal shape are not required for normal lens size, shape transparency, or biomechanical properties.
Collapse
Affiliation(s)
- Sadia T. Islam
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, Indiana, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Justin Parreno
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
3
|
Liang X, Li N, Rong Y, Wang J, Zhang H. Identification of proteomic changes for dexamethasone-induced ocular hypertension using a tandem mass tag (TMT) approach. Exp Eye Res 2021; 216:108914. [PMID: 34979099 DOI: 10.1016/j.exer.2021.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Glaucoma, characterized by ocular hypertension, is the second most common cause of vision loss worldwide. The potential mechanism, however, has yet to be elucidated. This study aimed to assess the proteomic changes in the trabecular meshwork (TM) in an observational animal model of Dexamethasone (DEX)-induced OHT. OHT was induced in Wistar rats by applying DEX topically to both eyes for 28 days. Intraocular pressure (IOP) was evaluated and TM protein expressions and protein identification were performed by a TMT-based method for comparing the changes in proteins between DEX-induced OHT and the control group. The results showed that average IOP was elevated significantly in rats of the DEX-induced OHT group compared to controls. Further, a total of 4,804 proteins in the control and DEX-induced OHT group were determined and 4,064 proteins were quantified via TMT proteomics. In total, 292 significantly abundant proteins (173 downregulated and 119 upregulated) were identified between the two groups. Proteins associated with vision, including Crystallin related proteins, filensin, rhodopsin, recoverin, phosducin were lowered in the DEX-induced OHT group relative to the control group. In summary, DEX induced extensive changes in the protein expression of TM tissue. These proteins were found to be candidate biomarkers for personalized treatment and diagnostic research in the future for improving visual health.
Collapse
Affiliation(s)
- Xin Liang
- Department of Ophthalmology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Li
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Rong
- Department of Ophthalmology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Varadaraj K, FitzGerald PG, Kumari SS. Deletion of beaded filament proteins or the C-terminal end of Aquaporin 0 causes analogous abnormal distortion aberrations in mouse lens. Exp Eye Res 2021; 209:108645. [PMID: 34087204 DOI: 10.1016/j.exer.2021.108645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
Lens-specific beaded filament (BF) proteins CP49 and filensin interact with the C-terminus of the water channel protein Aquaporin 0 (AQP0). Previously we have reported that a C-terminally end-deleted AQP0-expressing transgenic mouse model AQP0ΔC/ΔC developed abnormal optical aberrations in the lens. This investigation was undertaken to find out whether the total loss of the BF structural proteins alter the optical properties of the lens and cause optical aberrations similar to those in AQP0ΔC/ΔC lenses; also, to map the changes in the optical quality as a function of age in the single or double BF protein knockouts as well as to assess whether there is any significant change in the water channel function of AQP0 in these knockouts. A double knockout mouse (2xKO) model for CP49 and filensin was developed by crossing CP49-KO and filensin-KO mice. Wild type, CP49-KO, filensin-KO, and 2xKO lenses at different ages, and AQP0ΔC/ΔC lenses at postnatal day-17 were imaged through the optical axis and compared for optical quality and focusing property. All three knockout models showed loss of transparency, and development of abnormal optical distortion aberration similar to that in AQP0ΔC/ΔC. Copper grid focusing by the lenses at 6, 9 and 12 months of age showed an increase in aberrations as age advanced. With progression in age, the grid images produced by the lenses of all KO models showed a transition from a positive barrel distortion aberration to a pincushion distortion aberration with the formation of three distinct aberration zones similar to those produced by AQP0ΔC/ΔC lenses. Water permeability of fiber cell membrane vesicles prepared from CP49-KO, filensin-KO and 2xKO models, measured using the osmotic shrinking method, remained similar to that of the wild type without any statistically significant alteration (P > 0.05). Western blotting and quantification revealed the expression of comparable quantities of AQP0 in all three BF protein KOs. Our study reveals that loss of single or both beaded filament proteins significantly affect lens refractive index gradient, transparency and focusing ability in an age-dependent manner and the interaction of BF proteins with AQP0 is critical for the proper functioning of the lens. The presence of BF proteins is necessary to prevent abnormal optical aberrations and maintain homeostasis in the aging lens.
Collapse
Affiliation(s)
| | - Paul G FitzGerald
- Cell Biology and Human Anatomy, School of Medicine, University of California-Davis, Davis, CA, USA
| | - S Sindhu Kumari
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY, USA.
| |
Collapse
|
5
|
Wang Z, Ryan DJ, Schey KL. Localization of the lens intermediate filament switch by imaging mass spectrometry. Exp Eye Res 2020; 198:108134. [PMID: 32682822 PMCID: PMC7508834 DOI: 10.1016/j.exer.2020.108134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 01/18/2023]
Abstract
Imaging mass spectrometry (IMS) enables targeted and untargeted visualization of the spatial localization of molecules in tissues with great specificity. The lens is a unique tissue that contains fiber cells corresponding to various stages of differentiation that are packed in a highly spatial order. The application of IMS to lens tissue localizes molecular features that are spatially related to the fiber cell organization. Such spatially resolved molecular information assists our understanding of lens structure and physiology; however, protein IMS studies are typically limited to abundant, soluble, low molecular weight proteins. In this study, a method was developed for imaging low solubility cytoskeletal proteins in the lens; a tissue that is filled with high concentrations of soluble crystallins. Optimized tissue washes combined with on-tissue enzymatic digestion allowed successful imaging of peptides corresponding to known lens cytoskeletal proteins. The resulting peptide signals facilitated segmentation of the bovine lens into molecularly distinct regions. A sharp intermediate filament transition from vimentin to lens-specific beaded filament proteins was detected in the lens cortex. MALDI IMS also revealed the region where posttranslational myristoylation of filensin occurs and the results indicate that truncation and myristoylation of filensin starts soon after filensin expression increased in the inner cortex. From intermediate filament switch to filensin truncation and myristoylation, multiple remarkable changes occur in the narrow region of lens cortex. MALDI images delineated the boundaries of distinct lens regions that will guide further proteomic and interactomic studies.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel J Ryan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Li Y, Liu X, Xia CH, FitzGerald PG, Li R, Wang J, Gong X. CP49 and filensin intermediate filaments are essential for formation of cold cataract. Mol Vis 2020; 26:603-612. [PMID: 32913386 PMCID: PMC7479064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/21/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the molecular and cellular mechanisms of cataract induced by cold temperatures in young lenses of wild-type C57BL/6J (B6), wild-type 129SvJae (129), and filensin knockout (KO) mice. To determine how lens intermediate filament proteins, filensin (BFSP1) and CP49 (BFSP2), are involved in the formation of cold cataract. Methods The formation of cold cataract was examined in enucleated lenses at different temperatures and was imaged under a dissecting microscope. Lens vibratome sections were prepared, immunostained with different antibodies and fluorescent probes, and then imaged with a laser confocal microscope to evaluate the protein distribution and the membrane and cytoskeleton structures in the lens fibers. Results Postnatal day 14 (P14) wild-type B6 lenses showed cataracts dependent on cold temperatures in interior fibers about 420-875 µm (zone III) and 245-875 µm (zone II and zone III) from the lens surface, under 25 °C and 4 °C, respectively. In contrast, wild-type 129 (with CP49 gene deletion) and filensin KO (on the B6 background) lenses did not have cold cataracts at 25 °C but displayed a reduced cold cataract, especially in zone III, at 4 °C. Immunofluorescent staining data revealed that CP49 and filensin proteins were uniformly distributed in fiber cell cytosols without cold cataracts but accumulated or aggregated in the cell boundaries of the fibers where cold cataracts appeared. Conclusions CP49 and filensin are important components for the formation of cold cataract in young B6 mouse lenses. Accumulated or aggregated CP49 and filensin beaded intermediate filaments in fiber cell boundaries might directly or indirectly contribute to the light scattering of cold cataract. Cold cataract in zone II is independent of beaded intermediate filaments. CP49 and filensin intermediate filaments and other lens proteins probably form distinct high molecular organizations to regulate lens transparency in interior fibers.
Collapse
Affiliation(s)
- Yuxing Li
- Vision Science and Optometry, University of California, Berkeley, Berkeley, CA
- Tsinghua-Berkeley Shenzhen Institute (TBSI), UC Berkeley, Berkeley, CA
| | - Xi Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), UC Berkeley, Berkeley, CA
| | - Chun-hong Xia
- Vision Science and Optometry, University of California, Berkeley, Berkeley, CA
| | - Paul G. FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA
| | - Rachel Li
- Vision Science and Optometry, University of California, Berkeley, Berkeley, CA
| | - Jessica Wang
- Vision Science and Optometry, University of California, Berkeley, Berkeley, CA
| | - Xiaohua Gong
- Vision Science and Optometry, University of California, Berkeley, Berkeley, CA
- Tsinghua-Berkeley Shenzhen Institute (TBSI), UC Berkeley, Berkeley, CA
| |
Collapse
|
7
|
Molecular genetics of congenital cataracts. Exp Eye Res 2019; 191:107872. [PMID: 31770519 DOI: 10.1016/j.exer.2019.107872] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Congenital cataracts, the most common cause of visual impairment and blindness in children worldwide, have diverse etiologies. According to statistics analysis, about one quarter of congenital cataracts caused by genetic defects. Various mutations of more than one hundred genes have been identified in hereditary cataracts so far. In this review, we briefly summarize recent developments about the genetics, molecular mechanisms, and treatments of congenital cataracts. The studies of these pathogenic mutations and molecular genetics is making it possible for us to comprehend the underlying mechanisms of cataractogenesis and providing new insights into the preventive, diagnostic and therapeutic approaches of cataracts.
Collapse
|
8
|
Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 2019; 179:32-46. [PMID: 30359574 PMCID: PMC6360118 DOI: 10.1016/j.exer.2018.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/31/2018] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular compositions of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein compositions between the lens epithelium and fibers, we employed tandem mass spectrometry (2D-LC/MS) analysis of microdissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular processes and subcellular localizations, were adapted for the lens. Expression levels of both epithelial and fiber proteomes were compared with whole lens proteome and mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins (e.g. Carhsp1), translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal [e.g. non-muscle myosin IIA heavy chain (Myh9) and βB2-spectrin (Sptbn2)] and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown functions in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets represent the first mouse lens epithelium and fiber cell proteomes, establish comparative analyses of protein and RNA-Seq data, and characterize the major proteome remodeling required to form the mature lens fiber cells.
Collapse
Affiliation(s)
- Yilin Zhao
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Phillip A Wilmarth
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saima Limi
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neurology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Larry L David
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Ales Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
9
|
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells. Invest Ophthalmol Vis Sci 2017; 57:4084-99. [PMID: 27537257 PMCID: PMC4986768 DOI: 10.1167/iovs.16-19949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Roberta B Nowak
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Velia M Fowler
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
10
|
FitzGerald P, Sun N, Shibata B, Hess JF. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium. Mol Vis 2016; 22:970-89. [PMID: 27559293 PMCID: PMC4975932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 08/04/2016] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For this reason, both proteins have been considered robust markers of fiber cell differentiation. We report here that both proteins are also expressed in the mouse lens epithelium, but only after 5 weeks of age. METHODS Localization of CP49 was achieved with immunocytochemical probing of wild-type, CP49 knockout, filensin knockout, and vimentin knockout mice, in sections and in the explanted lens epithelium, at the light microscope and electron microscope levels. The relationship between CP49 and other cytoskeletal elements was probed using fluorescent phalloidin, as well as with antibodies to vimentin, GFAP, and α-tubulin. The relationship between CP49 and the aggresome was probed with antibodies to γ-tubulin, ubiquitin, and HDAC6. RESULTS CP49 and filensin were expressed in the mouse lens epithelium, but only after 5 weeks of age. At the light microscope level, these two proteins colocalize to a large tubular structure, approximately 7 × 1 μm, which was typically present at one to two copies per cell. This structure is found in the anterior and anterolateral lens epithelium, including the zone where mitosis occurs. The structure becomes smaller and largely undetectable closer to the equator where the cell exits the cell cycle and commits to fiber cell differentiation. This structure bears some resemblance to the aggresome and is reactive with antibodies to HDAC6, a marker for the aggresome. However, the structure does not colocalize with antibodies to γ-tubulin or ubiquitin, also markers for the aggresome. The structure also colocalizes with actin but appears to largely exclude vimentin and α-tubulin. In the CP49 and filensin knockouts, this structure is absent, confirming the identity of CP49 and filensin in this structure, and suggesting a requirement for the physiologic coassembly of CP49 and filensin. CONCLUSIONS CP49 and filensin have been considered robust markers for mouse lens fiber cell differentiation. The data reported here, however, document both proteins in the mouse lens epithelium, but only after 5 weeks of age, when lens epithelial growth and mitotic activity have slowed. Because of this, CP49 and filensin must be considered markers of differentiation for both fiber cells and the lens epithelium in the mouse. In addition, to our knowledge, no other protein has been shown to emerge so late in the development of the mouse lens epithelium, suggesting that lens epithelial differentiation may continue well into post-natal life. If this structure is related to the aggresome, it is a rare, or perhaps unique example of a large, stable aggresome in wild-type tissue.
Collapse
|
11
|
Rao PV, Maddala R. Ankyrin-B in lens architecture and biomechanics: Just not tethering but more. BIOARCHITECTURE 2016; 6:39-45. [PMID: 27044909 DOI: 10.1080/19490992.2016.1156284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ankyrins are a family of well-characterized metazoan adaptor proteins that play a key role in linking various membrane-spanning proteins to the underlying spectrin-actin cytoskeleton; a mechanistic understanding of their role in tissue architecture and mechanics, however, remains elusive. Here we comment on a recent study demonstrating a key role for ankyrin-B in maintaining the hexagonal shape and radial alignment of ocular lens fiber cells by regulating the membrane organization of periaxin, dystrophins/dystroglycan, NrCAM and spectrin-actin network of proteins, and revealing that ankyrin-B deficiency impairs fiber cell shape and mechanical properties of the ocular lens. These observations indicate that ankyrin-B plays an important role in maintaining tissue cytoarchitecture, cell shape and biomechanical properties via engaging in key protein: protein interactions required for membrane anchoring and organization of the spectrin-actin skeleton, scaffolding proteins and cell adhesive proteins.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pharmacology & Cancer Biology , Duke University School of Medicine , Durham , NC , USA
| | - Rupalatha Maddala
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
12
|
Wenke JL, McDonald WH, Schey KL. Spatially Directed Proteomics of the Human Lens Outer Cortex Reveals an Intermediate Filament Switch Associated With the Remodeling Zone. Invest Ophthalmol Vis Sci 2016; 57:4108-14. [PMID: 27537260 PMCID: PMC4991037 DOI: 10.1167/iovs.16-19791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/15/2016] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To quantify protein changes in the morphologically distinct remodeling zone (RZ) and adjacent regions of the human lens outer cortex using spatially directed quantitative proteomics. METHODS Lightly fixed human lens sections were deparaffinized and membranes labeled with fluorescent wheat germ agglutinin (WGA-TRITC). Morphology directed laser capture microdissection (LCM) was used to isolate tissue from four distinct regions of human lens outer cortex: differentiating zone (DF), RZ, transition zone (TZ), and inner cortex (IC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the plasma membrane fraction from three lenses (21-, 22-, and 27-year) revealed changes in major cytoskeletal proteins including vimentin, filensin, and phakinin. Peptides from proteins of interest were quantified using multiple reaction monitoring (MRM) mass spectrometry and isotopically-labeled internal peptide standards. RESULTS Results revealed an intermediate filament switch from vimentin to beaded filament proteins filensin and phakinin that occurred at the RZ. Several other cytoskeletal proteins showed significant changes between regions, while most crystallins remained unchanged. Targeted proteomics provided accurate, absolute quantification of these proteins and confirmed vimentin, periplakin, and periaxin decrease from the DF to the IC, while filensin, phakinin, and brain acid soluble protein 1 (BASP1) increase significantly at the RZ. CONCLUSIONS Mass spectrometry-compatible fixation and morphology directed laser capture enabled proteomic analysis of narrow regions in the human lens outer cortex. Results reveal dramatic cytoskeletal protein changes associated with the RZ, suggesting that one role of these proteins is in membrane deformation and/or the establishment of ball and socket joints in the human RZ.
Collapse
|
13
|
Cheng C, Nowak RB, Gao J, Sun X, Biswas SK, Lo WK, Mathias RT, Fowler VM. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells. Am J Physiol Cell Physiol 2015; 308:C835-47. [PMID: 25740157 PMCID: PMC4436989 DOI: 10.1152/ajpcell.00372.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1(-/-);CP49(-/-) double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Roberta B Nowak
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Junyuan Gao
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York; and
| | - Xiurong Sun
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York; and
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Richard T Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York; and
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California;
| |
Collapse
|
14
|
Sindhu Kumari S, Gupta N, Shiels A, FitzGerald PG, Menon AG, Mathias RT, Varadaraj K. Role of Aquaporin 0 in lens biomechanics. Biochem Biophys Res Commun 2015; 462:339-45. [PMID: 25960294 DOI: 10.1016/j.bbrc.2015.04.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 12/17/2022]
Abstract
Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer fiber cell shape, architecture and integrity. To our knowledge, this is the first report identifying the involvement of an aquaporin in lens biomechanics. Since accommodation is required in human lenses for proper focusing, alteration in the adhesion and/or water channel functions of AQP0 could contribute to presbyopia.
Collapse
Affiliation(s)
- S Sindhu Kumari
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Neha Gupta
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Alan Shiels
- Washington University School of Medicine, St. Louis, MO, USA
| | - Paul G FitzGerald
- Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Anil G Menon
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard T Mathias
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA; SUNY Eye Institute, NY, USA
| | - Kulandaiappan Varadaraj
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA; SUNY Eye Institute, NY, USA.
| |
Collapse
|
15
|
Biswas SK, Brako L, Lo WK. Massive formation of square array junctions dramatically alters cell shape but does not cause lens opacity in the cav1-KO mice. Exp Eye Res 2014; 125:9-19. [PMID: 24877741 DOI: 10.1016/j.exer.2014.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/23/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022]
Abstract
The wavy square array junctions are composed of truncated aquaporin-0 (AQP0) proteins typically distributed in the deep cortical and nuclear fibers in wild-type lenses. These junctions may help maintain the narrowed extracellular spaces between fiber cells to minimize light scattering. Herein, we investigate the impact of the cell shape changes, due to abnormal formation of extensive square array junctions, on the lens opacification in the caveolin-1 knockout mice. The cav1-KO and wild-type mice at age 1-22 months were used. By light microscopy examinations, cav1-KO lenses at age 1-18 months were transparent in both cortical and nuclear regions, whereas some lenses older than 18 months old exhibited nuclear cataracts. Scanning EM consistently observed the massive formation of ridge-and-valley membrane surfaces in young fibers at approximately 150 μm deep in all cav1-KO lenses studied. In contrast, the typical ridge-and-valleys were only seen in mature fibers deeper than 400 μm in wild-type lenses. The resulting extensive ridge-and-valleys dramatically altered the overall cell shape in cav1-KO lenses. Remarkably, despite dramatic shape changes, these deformed fiber cells remained intact and made close contact with their neighboring cells. By freeze-fracture TEM, ridge-and-valleys exhibited the typical orthogonal arrangement of 6.6 nm square array intramembrane particles and displayed the narrowed extracellular spaces. Immunofluorescence analysis showed that AQP0 C-terminus labeling was significantly decreased in outer cortical fibers in cav1-KO lenses. However, freeze-fracture immunogold labeling showed that the AQP0 C-terminus antibody was sparsely distributed on the wavy square array junctions, suggesting that the cleavage of AQP0 C-termini might not yet be complete. The cav1-KO lenses with nuclear cataracts showed complete cellular breakdown and large globule formation in the lens nucleus. This study suggests that despite dramatic cell shape changes, the massive formation of wavy square array junctions in intact fibers may provide additional adhesive support for maintaining the narrowed extracellular spaces that are crucial for the transparency of cav1-KO lenses.
Collapse
Affiliation(s)
- Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Lawrence Brako
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA.
| |
Collapse
|
16
|
Gerhart J, Greenbaum M, Scheinfeld V, FitzGerald P, Crawford M, Bravo-Nuevo A, Pitts M, George-Weinstein M. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens. PLoS One 2014; 9:e95262. [PMID: 24736495 PMCID: PMC3988172 DOI: 10.1371/journal.pone.0095262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
Posterior capsule opacification (PCO) is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA) was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Marvin Greenbaum
- Lankenau Medical Center, Wynnewood, Pennsylvania, United States of America
| | - Victoria Scheinfeld
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Paul FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Mitchell Crawford
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Arturo Bravo-Nuevo
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Meghan Pitts
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Mindy George-Weinstein
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| |
Collapse
|
17
|
Liu Q, Wang KJ, Zhu SQ. A novel p.G112E mutation in BFSP2 associated with autosomal dominant pulverulent cataract with sutural opacities. Curr Eye Res 2014; 39:1013-9. [PMID: 24654948 DOI: 10.3109/02713683.2014.891749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identify the genetic defect in a Chinese family with bilateral pulverulent sutural cataract. MATERIALS AND METHODS A three-generation family with congenital cataract was recruited in the study. The study protocol followed the principles of the Declaration of Helsinki. Detailed family history and clinical data were recorded. Genomic DNA was extracted from peripheral blood leukocytes. Candidate gene sequencing was performed to identify the disease-causing mutation. The effects of amino acid changes on the structure and function of proteins were predicted by bioinformatics analysis. RESULTS All affected individuals presented pulverulent opacities in the embryonal nucleus and sutures. Direct candidate gene sequencing revealed a heterozygous c. 335 G>A variation in the beaded filament structural protein 2(BFSP2) gene, which resulted in the replacement of a highly conserved glycine by glutamic at codon 112 (p. G112E). Haplotype analysis indicated that the affected members shared a common haplotype with markers near BFSP2. This mutation co-segregated with all affected individuals and was not observed in unaffected members or in 120 ethnically matched controls. Bioinformatic analyses confirmed that the mutation altered the hydrophobic and secondary structure of the protein around the substitution site. CONCLUSIONS We report a novel mutation (p.G112E) in the BFSP2 gene, underscoring the physiological importance of the beaded filament protein and supporting its role in human cataract formation.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab , Beijing , China
| | | | | |
Collapse
|
18
|
Schey KL, Grey AC, Nicklay JJ. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 2013; 52:3807-17. [PMID: 23394619 DOI: 10.1021/bi301604j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.
| | | | | |
Collapse
|
19
|
Gokhin DS, Nowak RB, Kim NE, Arnett EE, Chen AC, Sah RL, Clark JI, Fowler VM. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One 2012; 7:e48734. [PMID: 23144950 PMCID: PMC3492431 DOI: 10.1371/journal.pone.0048734] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/28/2012] [Indexed: 11/25/2022] Open
Abstract
The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α2β2-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by pointed-end capping by tropomodulin 1 (Tmod1) and structurally disrupted in the absence of Tmod1. The beaded filament cytoskeleton consists of the intermediate filament proteins CP49 and filensin, which require CP49 for assembly and contribute to lens transparency and biomechanics. To assess the simultaneous physiological contributions of these cytoskeletal networks and uncover potential functional synergy between them, we subjected lenses from mice lacking Tmod1, CP49, or both to a battery of structural and physiological assays to analyze fiber cell disorder, light scattering, and compressive biomechanical properties. Findings show that deletion of Tmod1 and/or CP49 increases lens fiber cell disorder and light scattering while impairing compressive load-bearing, with the double mutant exhibiting a distinct phenotype compared to either single mutant. Moreover, Tmod1 is in a protein complex with CP49 and filensin, indicating that the spectrin-actin network and beaded filament cytoskeleton are biochemically linked. These experiments reveal that the spectrin-actin membrane skeleton and beaded filament cytoskeleton establish a novel functional synergy critical for regulating lens fiber cell geometry, transparency, and mechanical stiffness.
Collapse
Affiliation(s)
- David S. Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Roberta B. Nowak
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nancy E. Kim
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ernest E. Arnett
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Albert C. Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Robert L. Sah
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - John I. Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Velia M. Fowler
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Fan J, Dong L, Mishra S, Chen Y, FitzGerald P, Wistow G. A role for γS-crystallin in the organization of actin and fiber cell maturation in the mouse lens. FEBS J 2012; 279:2892-904. [PMID: 22715935 PMCID: PMC3429115 DOI: 10.1111/j.1742-4658.2012.08669.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
γS-crystallin (γS) is a highly conserved component of the eye lens. To gain insights into the functional role(s) of this protein, the mouse gene (Crygs) was deleted. Although mutations in γS can cause severe cataracts, loss of function of γS in knockout (KO) mice produced no obvious lens opacity, but was associated with focusing defects. Electron microscopy showed no major differences in lens cell organization, suggesting that the optical defects are primarily cytoplasmic in origin. KO lenses were also grossly normal by light microscopy but showed evidence of incomplete clearance of cellular organelles in maturing fiber cells. Phalloidin labeling showed an unusual distribution of F-actin in a band of mature fiber cells in KO lenses, suggesting a defect in the organization or processing of the actin cytoskeleton. Indeed, in wild-type lenses, γS and F-actin colocalize along the fiber cell plasma membrane. Relative levels of F-actin and G-actin in wild-type and KO lenses were estimated from fluorescent staining profiles and from isolation of actin fractions from whole lenses. Both methods showed a two-fold reduction in the F-actin/G-actin ratio in KO lenses, whereas no difference in tubulin organization was detected. In vitro experiments showed that recombinant mouse γS can directly stabilize F-actin. This suggests that γS may have a functional role related to actin, perhaps in 'shepherding' filaments to maintain the optical properties of the lens cytoplasm and normal fiber cell maturation.
Collapse
Affiliation(s)
- Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0608, USA
| | | | | | | | | | | |
Collapse
|
21
|
Nowak RB, Fowler VM. Tropomodulin 1 constrains fiber cell geometry during elongation and maturation in the lens cortex. J Histochem Cytochem 2012; 60:414-27. [PMID: 22473940 DOI: 10.1369/0022155412440881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lens fiber cells exhibit a high degree of hexagonal packing geometry, determined partly by tropomodulin 1 (Tmod1), which stabilizes the spectrin-actin network on lens fiber cell membranes. To ascertain whether Tmod1 is required during epithelial cell differentiation to fiber cells or during fiber cell elongation and maturation, the authors quantified the extent of fiber cell disorder in the Tmod1-null lens and determined locations of disorder by confocal microscopy and computational image analysis. First, nearest neighbor analysis of fiber cell geometry in Tmod1-null lenses showed that disorder is confined to focal patches. Second, differentiating epithelial cells at the equator aligned into ordered meridional rows in Tmod1-null lenses, with disordered patches first observed in elongating fiber cells. Third, as fiber cells were displaced inward in Tmod1-null lenses, total disordered area increased due to increased sizes (but not numbers) of individual disordered patches. The authors conclude that Tmod1 is required first to coordinate fiber cell shapes and interactions during tip migration and elongation and second to stabilize ordered fiber cell geometry during maturation in the lens cortex. An unstable spectrin-actin network without Tmod1 may result in imbalanced forces along membranes, leading to fiber cell rearrangements during elongation, followed by propagation of disorder as fiber cells mature.
Collapse
|
22
|
Shi Y, De Maria A, Bennett T, Shiels A, Bassnett S. A role for epha2 in cell migration and refractive organization of the ocular lens. Invest Ophthalmol Vis Sci 2012; 53:551-9. [PMID: 22167091 DOI: 10.1167/iovs.11-8568] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The Epha2 receptor is a surprisingly abundant component of the membrane proteome of vertebrate lenses. In humans, genetic studies have linked mutations in EPHA2 to inherited and age-related forms of cataract, but the function of Epha2 in the lens is obscure. To gain insights into the role of Epha2, a comparative analysis of lenses from wild-type and Epha2(-/-) mice was performed. METHODS Epha2 distribution was examined using immunocytochemistry and Western blot analysis. Lens optical quality was assessed by laser refractometry. Confocal microscopy was used to analyze cellular phenotypes. RESULTS In wild-type lenses, Epha2 was expressed by lens epithelial cells and elongating fibers but was degraded during the later stages of fiber differentiation. Epha2-null lenses retained their transparency, but two key optical parameters, lens shape and internal composition, were compromised in Epha2(-/-) animals. Epha2-null lenses were smaller and more spherical than age-matched wild-type lenses, and laser refractometry revealed a significant decrease in refractive power of the outer cell layers of mutant lenses. In the absence of Epha2, fiber cells deviated from their normal course and terminated at sutures that were no longer centered on the optical axis. Patterning defects were also noted at the level of individual cells. Wild-type fiber cells had hexagonal cross-sectional profiles with membrane protrusions extending from the cell vertices. In contrast, Epha2(-/-) cells had irregular profiles, and protrusions extended from all membrane surfaces. CONCLUSIONS These studies indicate that Epha2 is not required for transparency but does play an indispensable role in the cytoarchitecture and refractive quality of the lens.
Collapse
Affiliation(s)
- Yanrong Shi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
23
|
Maddala R, Skiba NP, Lalane R, Sherman DL, Brophy PJ, Rao PV. Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers. Dev Biol 2011; 357:179-90. [PMID: 21745462 PMCID: PMC3164832 DOI: 10.1016/j.ydbio.2011.06.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/06/2023]
Abstract
Transparency of the ocular lens depends on symmetric packing and membrane organization of highly elongated hexagonal fiber cells. These cells possess an extensive, well-ordered cortical cytoskeleton to maintain cell shape and to anchor membrane components. Periaxin (Prx), a PDZ domain protein involved in myelin sheath stabilization, is also a component of adhaerens plaques in lens fiber cells. Here we show that Prx is expressed in lens fibers and exhibits maturation dependent redistribution, clustering discretely at the tricellular junctions in mature fiber cells. Prx exists in a macromolecular complex with proteins involved in membrane organization including ankyrin-B, spectrin, NrCAM, filensin, ezrin and desmoyokin. Importantly, Prx knockout mouse lenses were found to be softer and more easily deformed than normal lenses, revealing disruptions in fiber cell hexagonal packing, membrane skeleton and membrane stability. These observations suggest a key role for Prx in maturation, packing, and membrane organization of lens fiber cells. Hence, there may be functional parallels between the roles of Prx in membrane stabilization of the myelin sheath and the lens fiber cell.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Robert Lalane
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Diane L. Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC. USA
| |
Collapse
|
24
|
Castorino JJ, Gallagher-Colombo SM, Levin AV, Fitzgerald PG, Polishook J, Kloeckener-Gruissem B, Ostertag E, Philp NJ. Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane. Invest Ophthalmol Vis Sci 2011; 52:6774-84. [PMID: 21778275 DOI: 10.1167/iovs.10-6579] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE SLC16A12 encodes an orphan member of the monocarboxylate transporter family, MCT12. A nonsense mutation in SLC16A12 (c.643C>T; p.Q215X) causes juvenile cataract with a dominant inheritance pattern. In the present study, in vitro and in vivo experimental models were used to gain insight into how the SLC16A12 (c.643C>T) mutation leads to cataract formation. METHODS MCT12 peptide antibodies were generated and used to examine the expression of MCT12 in the lens using immuno-confocal microscopy. To determine whether loss of Slc16a12 resulted in cataract formation, a Slc16a12 hypomorphic rat generated by transposon insertional mutagenesis was characterized using RT-PCR, slit lamp microscopy and histologic methods. Exogenous expression of MCT12 and MCT12:214Δ, a mimic of the mutant allele, were used to assess protein expression and trafficking. RESULTS MCT12 protein was detected in the lens epithelium and secondary fiber cells at postnatal day 1. In the Slc16a12(TKO) rat, complete loss of MCT12 did not result in any detectable ocular phenotype. Exogenous expression of MCT12-GFP and MCT12:214Δ-GFP revealed that the full-length protein was trafficked to the plasma membrane (PM), whereas the truncated protein was retained in the endoplasmic reticulum (ER). When both MCT12 and MCT12:214Δ were coexpressed, to mimic the heterozygous patient genotype, the truncated protein was retained in the ER whereas full-length MCT12 was trafficked to the PM. Furthermore, MCT12 was identified as another MCT isoform that requires CD147 for trafficking to the cell surface. CONCLUSIONS These data support a model whereby the SLC16A12 (c.643C>T) mutation causes juvenile cataract by a defect in protein trafficking rather than by haploinsufficiency.
Collapse
Affiliation(s)
- John J Castorino
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fudge DS, McCuaig JV, Van Stralen S, Hess JF, Wang H, Mathias RT, FitzGerald PG. Intermediate filaments regulate tissue size and stiffness in the murine lens. Invest Ophthalmol Vis Sci 2011; 52:3860-7. [PMID: 21345981 DOI: 10.1167/iovs.10-6231] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To define the contributions of the beaded filament (BF), a lens-specific intermediate filament (IF), to lens morphology and biomechanics. METHODS Wild-type and congenic CP49 knockout (KO) mice were compared by using electrophysiological, biomechanical, and morphometric approaches, to determine changes that occurred because of the absence of this cytoskeletal structure. RESULTS Electrophysiological assessment established that the fiber cells lacking the lens-specific IFs were indistinguishable from wild-type fiber cells. The CP49 KO mice exhibited lower stiffness, and an unexpected higher resilience than the wild-type lenses. The absence of these filaments resulted in lenses that were smaller, and exhibited a higher ratio of lens:lens nucleus size. Finally, lens shape differed as well, with the CP49 KO showing a higher ratio of axial:equatorial diameter. CONCLUSIONS Previous work has shown that BFs are necessary in maintaining fiber cell and lens structural phenotypes with age, and that absence of these filaments results in a loss of lens clarity. This work demonstrates that several tissue-level properties that are critical to lens function are also dependent, at least in part, on the presence of these lens-specific IFs.
Collapse
Affiliation(s)
- Douglas S Fudge
- Department. of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Farley EK, Gale E, Chambers D, Li M. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis. Neural Dev 2011; 6:17. [PMID: 21527010 PMCID: PMC3105949 DOI: 10.1186/1749-8104-6-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current) and less than 0.5% (current + DNA), respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.
Collapse
Affiliation(s)
- Emma K Farley
- MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK.
| | | | | | | |
Collapse
|
27
|
Nowak RB, Fischer RS, Zoltoski RK, Kuszak JR, Fowler VM. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens. ACTA ACUST UNITED AC 2009; 186:915-28. [PMID: 19752024 PMCID: PMC2753162 DOI: 10.1083/jcb.200905065] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased gammaTM levels, loss of F-actin from membranes, and disrupted distribution of beta2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and gammaTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin-actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Lens intermediate filaments. Exp Eye Res 2008; 88:165-72. [PMID: 19071112 DOI: 10.1016/j.exer.2008.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 12/12/2022]
Abstract
The ocular lens assembles two separate intermediate filament systems sequentially with differentiation. Canonical 8-11 nm IFs composed of Vimentin are assembled in lens epithelial cells and younger fiber cells, while the fiber cell-specific beaded filaments are switched on as fiber cell elongation initiates. Some of the key features of both filament systems are reviewed.
Collapse
|
29
|
Yoon KH, FitzGerald PG. Periplakin interactions with lens intermediate and beaded filaments. Invest Ophthalmol Vis Sci 2008; 50:1283-9. [PMID: 19029034 DOI: 10.1167/iovs.08-2894] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The lens assembles two systems of intermediated filaments-vimentin intermediate filament (IF) and highly divergent, lens-specific beaded filament (BF)-sequentially as epithelial cells differentiate into fiber cells. The goal of this study was to identify linker proteins that integrate the different lens IF into the biology of the lens fiber cells. METHODS Antibodies to periplakin were used in coimmunoprecipitation studies to identify proteins that complex with BF and IF in detergent extracts of mouse lens. GST-periplakin fusion proteins were used to confirm coimmunoprecipitation RESULTS Yeast two-hybrid analysis was used to establish direct linkage between periplakin and BF/IF proteins and to narrow down binding domains. Immunocytochemistry was used to establish spatial and temporal coexpression of periplakin and BF/IF. results. Periplakin is found complexed to BF and IF in the lens. The COOH terminus of periplakin was shown to have a strong affinity for the CP49 rod 2 domain but not its head or rod 1 domains. Low-level affinity was seen between the filensin rod domain and periplakin. Periplakin localization in lens overlapped with BF and IF. CONCLUSIONS Despite divergence in primary sequence, predicted secondary structure, and filament structure, CP49 has conserved the capacity to bind a common IF linker protein, periplakin, and shares that binding capacity with the other major lens IF protein, vimentin. This suggests that mutations in periplakin have the potential to emulate the cataract seen in lenses with defective BF proteins.
Collapse
Affiliation(s)
- Kyoung-hye Yoon
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, USA
| | | |
Collapse
|