1
|
Dalrymple AN, Jones ST, Fallon JB, Shepherd RK, Weber DJ. Overcoming failure: improving acceptance and success of implanted neural interfaces. Bioelectron Med 2025; 11:6. [PMID: 40083033 PMCID: PMC11907899 DOI: 10.1186/s42234-025-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improving the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades and improving the health and quality of life of many patient populations. Despite these successes, implanted neural interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsulation of the device. This review describes the challenges faced by developers of neural interface systems, particularly devices already in use in humans. The mechanical and technological failure modes of each component of an implant system is described. The acute and chronic reactions to devices in the peripheral and central nervous system and how they affect system performance are depicted. Further, physical challenges such as micro and macro movements are reviewed. The clinical implications of device failures are summarized and a guide for determining the severity of complication was developed and provided. Common methods to diagnose and examine mechanical, technological, and biological failure modes at various stages of development and testing are outlined, with an emphasis on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface systems.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA.
- NERVES Lab, University of Utah, Salt Lake City, UT, USA.
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Sonny T Jones
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- NERVES Lab, University of Utah, Salt Lake City, UT, USA
| | - James B Fallon
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Robert K Shepherd
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Song Y, Liao Y, Liu T, Chen Y, Wang F, Zhou Z, Zhang W, Li J. Microglial repopulation restricts ocular inflammation and choroidal neovascularization in mice. Front Immunol 2024; 15:1366841. [PMID: 38711521 PMCID: PMC11070532 DOI: 10.3389/fimmu.2024.1366841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-β-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yuefeng Liao
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Tong Liu
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yanxian Chen
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Experimental Ophthalmology, School of Optometry, The Hong Kong Polytechnic University, HongKong, Hong Kong SAR, China
| | - Fei Wang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zixia Zhou
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weili Zhang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Jinying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Henze D, Majdi JA, Cohen ED. Effect of epiretinal electrical stimulation on the glial cells in a rabbit retinal eyecup model. Front Neurosci 2024; 18:1290829. [PMID: 38318467 PMCID: PMC10839094 DOI: 10.3389/fnins.2024.1290829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction We examined how pulse train electrical stimulation of the inner surface of the rabbit retina effected the resident glial cells. We used a rabbit retinal eyecup preparation model, transparent stimulus electrodes, and optical coherence tomography (OCT). The endfeet of Müller glia processes line the inner limiting membrane (ILM). Methods To examine how epiretinal electrode stimulation affected the Müller glia, we labeled them post stimulation using antibodies against soluble glutamine synthetase (GS). After 5 min 50 Hz pulse train stimulation 30 μm from the surface, the retina was fixed, immunostained for Müller glia, and examined using confocal microscopic reconstruction. Stimulus pulse charge densities between 133-749 μC/cm2/ph were examined. Results High charge density stimulation (442-749 μC/cm2/ph) caused significant losses in the GS immunofluorescence of the Müller glia endfeet under the electrode. This loss of immunofluorescence was correlated with stimuli causing ILM detachment when measured using OCT. Müller cells show potassium conductances at rest that are blocked by barium ions. Using 30 msec 20 μA stimulus current pulses across the eyecup, the change in transretinal resistance was examined by adding barium to the Ringer. Barium caused little change in the transretinal resistance, suggesting under low charge density stimulus pulse conditions, the Müller cell radial conductance pathway for these stimulus currents was small. To examine how epiretinal electrode stimulation affected the microglia, we used lectin staining 0-4 h post stimulation. After stimulation at high charge densities 749 μC/cm2/ph, the microglia under the electrode appeared rounded, while the local microglia outside the electrode responded to the stimulated retina by process orientation inwards in a ring by 30 min post stimulation. Discussion Our study of glial cells in a rabbit eyecup model using transparent electrode imaging suggests that epiretinal electrical stimulation at high pulse charge densities, can injure the Müller and microglia cells lining the inner retinal surface in addition to ganglion cells.
Collapse
Affiliation(s)
- Dean Henze
- University of San Diego, San Diego, CA, United States
| | - Joseph A. Majdi
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, MD, United States
| | - Ethan D. Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, MD, United States
| |
Collapse
|
4
|
Wiest MRJ, Gunzinger JM, Hamann T, Fasler K, Said S, Bajka A, Muth DR, Barthelmes D, Blaser F, Zweifel SA. Natural Course of Solar and Laser-Associated Retinal and Macular Injuries at a Primary Care Hospital in Switzerland. Klin Monbl Augenheilkd 2023; 240:516-521. [PMID: 37164408 DOI: 10.1055/a-2021-7724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Solar and laser-associated retinopathies are rare occurrences. The two retinopathies are both photo-induced but differ in the involved intensity and duration of exposure. The purpose of this study was to evaluate the clinical features and natural course of these two entities, with a focus on the changes in the outer retina over time. PATIENTS AND METHODS This retrospective analysis assessed patients with solar or laser maculopathy seen at the Department of Ophthalmology of the University Hospital Zurich in Switzerland over the last 10 years. Visual acuity (VA; Snellen) and optical coherence tomography (OCT) findings were reviewed and analyzed at baseline and last follow-up visit. Areas of damaged outer retina, identified on en face OCT images as hyporeflective areas, were tagged and compared between visits. Descriptive analysis was performed by calculating mean values ± standard deviation (SD). Statistical evaluation was done using the Wilcoxon signed rank test. A p value < 0.05 was considered statistically significant. RESULTS Five patients with solar retinopathy and six patients with laser-associated retinopathy were identified. In the solar retinopathy group, mean VA at baseline was 0.80 (SD ± 0.37) and improved to 0.90 (SD ± 0.36). This was not statistically significant (p = 0.066). In the laser-associated retinopathy group, mean VA at baseline was 0.89 (SD ± 0.18) and improved to 1.03 (SD ± 0.09), which was not statistically significant either (p = 0.063). At baseline, in OCT cross-sections, initial changes were observed in the interdigitation, myoid, and ellipsoid zone, as well as the outer nuclear layer and the Henle fiber layer. At follow-up, most cases presented an alteration in the residual ellipsoid zone, with the degree of the aforementioned alterations depending on the size of the initial defect. A decrease of the hyporeflective alterations measured in en face OCT scans was observed in both groups but was only statistically significant in the laser-associated retinopathy group (p = 0.018 versus p = 0.172). CONCLUSIONS OCT can help to detect and monitor solar and laser-associated retinal injuries. Most injuries are minor, with good functional restitution. Minor changes in the ellipsoid zone often persist, even in cases with full visual recovery.
Collapse
Affiliation(s)
| | | | - Timothy Hamann
- Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
| | - Katrin Fasler
- Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
| | - Sadiq Said
- Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
| | - Anahita Bajka
- Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Frank Blaser
- Ophthalmology, University Hospital of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
6
|
Taylor AW, Hsu S, Ng TF. The Role of Retinal Pigment Epithelial Cells in Regulation of Macrophages/Microglial Cells in Retinal Immunobiology. Front Immunol 2021; 12:724601. [PMID: 34484232 PMCID: PMC8414138 DOI: 10.3389/fimmu.2021.724601] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022] Open
Abstract
The ocular tissue microenvironment is immune privileged and uses several mechanisms of immunosuppression to prevent the induction of inflammation. Besides being a blood-barrier and source of photoreceptor nutrients, the retinal pigment epithelial cells (RPE) regulate the activity of immune cells within the retina. These mechanisms involve the expression of immunomodulating molecules that make macrophages and microglial cells suppress inflammation and promote immune tolerance. The RPE have an important role in ocular immune privilege to regulate the behavior of immune cells within the retina. Reviewed is the current understanding of how RPE mediate this regulation and the changes seen under pathological conditions.
Collapse
Affiliation(s)
- Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Samuel Hsu
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Tat Fong Ng
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Li L, Liu J, Xu A, Heiduschka P, Eter N, Chen C. Expression of purinergic receptors on microglia in the animal model of choroidal neovascularisation. Sci Rep 2021; 11:12389. [PMID: 34117330 PMCID: PMC8196182 DOI: 10.1038/s41598-021-91989-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
To investigate the effect of P2 receptor on microglia and its inhibitor PPADS on choroidal neovascularization. Forty CX3CR1GFP/+ mice were randomly divided into 8 groups. In addition to the normal group, the rest of groups were receiving laser treatment. The retina and choroid from the second, third, fourth and fifth group of mice were taken in the 1, 4, 7, 14 days after laser treatment. The mice in the sixth and seventh group received intravitreal injection of 2 µl PPADS or PBS respectively immediately after laser treatment. The mice in the eighth group received topical application of PPADS once per day of three days. The mice in sixth, seventh and eighth group received AF and FFA examination on the fourth day after laser treatment. Immunofluorescence histochemical staining and real-time quantitative PCR were used to evaluate P2 expression and its effect on choroidal neovascularization. After laser treatment, activated microglia can express P2 receptors (P2X4, P2X7, P2Y2 and P2Y12). The expression of P2 increased on the first day after laser damage, peaked on the fourth day (tP2X4 = 6.05, tP2X7 = 2.95, tP2Y2 = 3.67, tP2Y12 = 5.98, all P < 0.01), and then decreased. After PPADS inhibition, compared with the PBS injection group, the mRNA of P2X4, P2X7, P2Y2 and P2Y12 were decreased significantly in the PPADS injection group (tP2X4 = 5.54, tP2X7 = 9.82, tP2Y2 = 3.86, tP2Y12 = 7.91, all P < 0.01) and the PPADS topical application group (tP2X4 = 3.24, tP2X7 = 5.89, tP2Y2 = 6.75, tP2Y12 = 4.97, all P < 0.01). Compared with the PBS injection group, not only the activity of microglia cells but also the leakage of CNV decreased significantly (P < 0.01) in the PPADS injection group and the PPADS topical application group. But between two PPADS groups, the leakage of CNV had no difference (P = 0.864). After laser induced CNV, activated microglia can express P2 receptors. The P2 receptor inhibitor, PPADS, can significantly affect the function of microglia and inhibit the formation of choroidal neovascularization.
Collapse
Affiliation(s)
- Lu Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, 430060, People's Republic of China.
| | - Juejun Liu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Amin Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Peter Heiduschka
- Department of Ophthalmology, University of Münster Medical School, Domagkstr. 15, 48149, Münster, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Münster Medical School, Domagkstr. 15, 48149, Münster, Germany
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, 430060, People's Republic of China
| |
Collapse
|
8
|
Yohannes AR, Jung CY, Shea KI, Wong WT, Beylin A, Cohen ED. The microglia response to electrical overstimulation of the retina imaged under a transparent stimulus electrode. J Neural Eng 2021; 18. [PMID: 33418555 DOI: 10.1088/1741-2552/abda0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE We investigated using the morphological response of retinal microglia as indicators of tissue damage from electrical overstimulation by imaging them through an optically transparent stimulus electrode. APPROACH To track the microglia, we used a transgenic mouse where the microglia expressed a water soluble green fluorescent protein (GFP). The clear stimulus electrode was placed epiretinally on the inner limiting membrane and the microglia layers were imaged using time-lapse confocal microscopy. We examined how the microglia responded both temporally and spatially to local overstimulation of the retinal tissue. Using confocal microscope vertical image stacks, the microglia under the electrode were imaged at 2.5min intervals. The retina was overstimulated for a 5 minute period using 1msec 749μC/cm2/ph biphasic current pulses and changes in the microglia morphology were followed for 1 hour post stimulation. After the imaging period, a label for cellular damage was applied to the retina. MAIN RESULTS The microglia response to overstimulation depended on their spatial location relative to the electrode lumen and could result in 3 different morphological responses. Some microglia were severely injured and became a series of immotile ball-like fluorescent processes. Other microglia survived, and reacted rapidly to the injury by extending filopodia oriented toward the damage zone. This response was seen in inner retinal microglia outside the stimulus electrode edge. A third effect, seen with the deeper outer microglia under the electrode, was a fading of their fluorescent image which appeared to be due to optical scatter caused by overstimulation-induced retinal edema. SIGNIFICANCE The microglial morphological responses to electrical overstimulation injury occur rapidly and can show both direct and indirect effects of the stimulus electrode injury. The microglia injury pattern closely follows models of the electric field distribution under thinly insulated disc electrodes.
Collapse
Affiliation(s)
- Alula R Yohannes
- Division of Biomedical Physics, Center for Dev. and Rad. Health, FDA, Bldg. 62 Rm 1204, Silver Spring, Maryland, MD 20993-0002, UNITED STATES
| | - Christopher Yi Jung
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, MD 21250, UNITED STATES
| | - Katherine I Shea
- CDER/Division of Applied Regulatory Science, US Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, MD 20993-0002, UNITED STATES
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, 6 Center Drive, Bethesda, Maryland, MD 20814, UNITED STATES
| | - Alexander Beylin
- Office of Product Quality and Evaluation, Center for Dev. and Rad. Health, FDA, Silver Spring, Maryland, UNITED STATES
| | - Ethan D Cohen
- Division of Biomedical Physics, Center for Dev. and Rad. Health, FDA, Office of Science and Engineering Labs, Bld 62 White Oak Fed Res Ctr., 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, UNITED STATES
| |
Collapse
|
9
|
Castanos MV, Zhou DB, Linderman RE, Allison R, Milman T, Carroll J, Migacz J, Rosen RB, Chui TYP. Imaging of Macrophage-Like Cells in Living Human Retina Using Clinical OCT. Invest Ophthalmol Vis Sci 2021; 61:48. [PMID: 32574351 PMCID: PMC7416910 DOI: 10.1167/iovs.61.6.48] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose To image retinal macrophages at the vitreoretinal interface in the living human retina using a clinical optical coherence tomography (OCT) device. Methods Eighteen healthy controls and three patients with retinopathies were imaged using a clinical spectral-domain OCT. In controls, 10 sequential scans were collected at three different locations: (1) ∼9 degrees temporal to the fovea, (2) the macula, and (3) the optic nerve head (ONH). Intervisit repeatability was evaluated by imaging the temporal retina twice on the same day and 3 days later. Only 10 scans at the temporal retina were obtained from each patient. A 3-µm OCT reflectance (OCT-R) slab located above the inner limiting membrane (ILM) surface was averaged. Results In controls, ramified macrophage-like cells with regular spatial separation were visualized in the temporal and ONH OCT-R images; however, cell structures were not resolvable at the macula. Interim changes in cell position suggestive of cell translocation were observed between images collected on the same day and those collected 3 days later. There was considerable variation in cell density and nearest-neighbor distance (NND) across controls. Mean ± SD cell densities measured at the temporal and ONH were 78 ± 23 cells/mm2 and 57 ± 16 cells/mm2, respectively. Similarly, mean ± SD NNDs measured at the temporal and ONH were 74.3 ± 13.3 µm and 93.3 ± 20.0 µm, respectively. Nonuniform spatial distribution and altered morphology of the cells were identified in patients with retinopathies. Conclusions Our findings showed regular spatial separation and ramified morphology of macrophage-like cells on the ILM surface with cell translocation over time in controls. Their distribution and morphology suggest an origin of macrophage-like cells such as microglia or hyalocytes.
Collapse
|
10
|
Su N, März S, Plagemann T, Cao J, Schnittler HJ, Eter N, Heiduschka P. Occurrence of Transmembrane Protein 119 in the Retina is Not Restricted to the Microglia: An Immunohistochemical Study. Transl Vis Sci Technol 2019; 8:29. [PMID: 31853425 PMCID: PMC6908137 DOI: 10.1167/tvst.8.6.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Recently, a new marker protein for microglial cells in the brain was postulated, transmembrane protein 119 (TMEM119), raising the hope for a new opportunity to reliably and unambiguously detect microglial cells in histologic sections. It was of interest whether TMEM119 also was a reliable microglial marker in the retina. Methods Anti-TMEM119 antibodies of two providers were used to label microglia in the murine retina, and labeling properties were compared to those of antibodies against Iba1 and CD11b. As an example of a pathologic situation, labeling for TMEM119 was also performed in eyes treated by an argon laser as an experimental model for choroidal neovascularization. Results TMEM119 immunoreactivity (IR) was found on microglial cells in the naïve retina. However, specificity and sensitivity of TMEM119 IR varied clearly depending on the source of the antibody, age of the mouse, and location of retinal microglia. After laser treatment, however, microglial cells lost their IR for TMEM119 at the site of the laser spot. Moreover, other cells became positive for TMEM119; for example, Müller cells. Conclusions TMEM119 is a useful marker for the microglia in the brain. However, retinal microglia shows variable IR for TMEM119, and the microglia is not the only cell showing TMEM IR. Therefore, TMEM119 appears not to be applicable as a general marker for the retinal microglia in pathologic situations. Translational Relevance Reliable detection and quantification of microglial cells is of high importance to study disease mechanisms and effects of therapeutic approaches in the retina.
Collapse
Affiliation(s)
- Nan Su
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Erqi District, Zhengzhou, People's Republic of China.,University of Münster Eye Hospital, Münster, Germany
| | - Sigrid März
- Institute of Anatomy and Vascular Biology, Münster, Germany
| | | | - Jiahui Cao
- Institute of Anatomy and Vascular Biology, Münster, Germany
| | | | - Nicole Eter
- University of Münster Eye Hospital, Münster, Germany
| | | |
Collapse
|
11
|
In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury. Proc Natl Acad Sci U S A 2019; 116:16603-16612. [PMID: 31350349 PMCID: PMC6697899 DOI: 10.1073/pnas.1903336116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microglia, the resident macrophages of the central nervous system, are critical for synaptic pruning and maintenance and for mitigating injury and neurodegeneration. Determining whether microglia–neuron interactions are beneficial in specific instances has been difficult, largely because of the local and transient nature of the interactions. Using simultaneous optical coherence tomography/scanning laser ophthalmoscopy (SLO) and adaptive optics SLO retinal imaging in mice, we show interactions of microglia and photoreceptors over time scales from seconds to months during injury, degeneration, and repair. In vivo optical assessment of photoreceptor signaling in a large neuronal field encompassing the injured area allows us to relate the time course of these microglia movements to that of the tissue remodeling and functional recovery. Microglia respond to damage and microenvironmental changes within the central nervous system by morphologically transforming and migrating to the lesion, but the real-time behavior of populations of these resident immune cells and the neurons they support have seldom been observed simultaneously. Here, we have used in vivo high-resolution optical coherence tomography (OCT) and scanning laser ophthalmoscopy with and without adaptive optics to quantify the 3D distribution and dynamics of microglia in the living retina before and after local damage to photoreceptors. Following photoreceptor injury, microglia migrated both laterally and vertically through the retina over many hours, forming a tight cluster within the area of visible damage that resolved over 2 wk. In vivo OCT optophysiological assessment revealed that the photoreceptors occupying the damaged region lost all light-driven signaling during the period of microglia recruitment. Remarkably, photoreceptors recovered function to near-baseline levels after the microglia had departed the injury locus. These results demonstrate the spatiotemporal dynamics of microglia engagement and restoration of neuronal function during tissue remodeling and highlight the need for mechanistic studies that consider the temporal and structural dynamics of neuron–microglia interactions in vivo.
Collapse
|
12
|
Hanhart J, Weill Y, Rozenman Y. In Vivo Study of the Long Term Structural Changes Induced by Macular Argon Laser. Curr Eye Res 2017; 43:511-516. [PMID: 29283694 DOI: 10.1080/02713683.2017.1419572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To assess the long-term structural changes induced by macular argon laser using en face optical coherence tomography (OCT). MATERIALS AND METHODS We reviewed the charts and OCT pictures of patients who had undergone macular laser for diabetic macular edema at least four years ago. Clinical parameters were recorded for each eye, including laser settings. We obtained En face pictures, that were flattened at the RPE (retinal pigment epithelium) plane. We then measured the retinal surface covered by laser marks and the maximal diameter of the largest identified lesion at this plane. The most superficial level of neurosensory retinal damage as well as the total retinal thickness at this location were measured from the RPE. We also measured the distance between the RPE and the deeper plane at which laser marks were detected. RESULTS 21 eyes of 16-patients were analyzed. The mean age (±SD) was 61.7 ± 15.5 years. Patients had undergone macular laser 6.5 ± 2.8 years prior to entering our study. In 16 eyes the most superficial laser marks were detected at the inner plexiform/inner nuclear layers. The level of neurosensory retinal damage was 159 ± 48 microns over the RPE (62.6 ± 18.3% of the retinal thickness). The deepest level at which laser marks were retrieved was 125 ± 110 microns below the RPE. The growth of laser marks was correlated to time (Pearson's correlation coefficient = 0.23; p = 0.1). CONCLUSIONS Argon laser marks gradually expand in the horizontal and vertical axes. The damage induced by argon laser in the neurosensory retina often reaches inner layers.
Collapse
Affiliation(s)
- Joel Hanhart
- a Department of Ophthalmology , Shaare Zedek Medical Center , Jerusalem , Israel
| | - Yishay Weill
- a Department of Ophthalmology , Shaare Zedek Medical Center , Jerusalem , Israel
| | - Yaakov Rozenman
- a Department of Ophthalmology , Shaare Zedek Medical Center , Jerusalem , Israel
| |
Collapse
|
13
|
2016 Glenn A. Fry Award Lecture: Mechanisms and Potential Treatments of Early Age-Related Macular Degeneration. Optom Vis Sci 2017; 94:939-945. [DOI: 10.1097/opx.0000000000001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
14
|
Karlstetter M, Kopatz J, Aslanidis A, Shahraz A, Caramoy A, Linnartz-Gerlach B, Lin Y, Lückoff A, Fauser S, Düker K, Claude J, Wang Y, Ackermann J, Schmidt T, Hornung V, Skerka C, Langmann T, Neumann H. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Mol Med 2017; 9:154-166. [PMID: 28003336 PMCID: PMC5286381 DOI: 10.15252/emmm.201606627] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Age‐related macular degeneration (AMD) is a major cause of blindness in the elderly population. Its pathophysiology is linked to reactive oxygen species (ROS) and activation of the complement system. Sialic acid polymers prevent ROS production of human mononuclear phagocytes via the inhibitory sialic acid‐binding immunoglobulin‐like lectin‐11 (SIGLEC11) receptor. Here, we show that low‐dose intravitreal injection of low molecular weight polysialic acid with average degree of polymerization 20 (polySia avDP20) in humanized transgenic mice expressing SIGLEC11 on mononuclear phagocytes reduced their reactivity and vascular leakage induced by laser coagulation. Furthermore, polySia avDP20 prevented deposition of the membrane attack complex in both SIGLEC11 transgenic and wild‐type animals. In vitro, polySia avDP20 showed two independent, but synergistic effects on the innate immune system. First, polySia avDP20 prevented tumor necrosis factor‐α, vascular endothelial growth factor A, and superoxide production by SIGLEC11‐positive phagocytes. Second, polySia avDP20 directly interfered with complement activation. Our data provide evidence that polySia avDP20 ameliorates laser‐induced damage in the retina and thus is a promising candidate to prevent AMD‐related inflammation and angiogenesis.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.,Therapeutic Research Group Ophthalmology, Bayer Pharma AG, Wuppertal, Germany
| | - Jens Kopatz
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Aslanidis
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Anahita Shahraz
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Albert Caramoy
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bettina Linnartz-Gerlach
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Yuchen Lin
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Anika Lückoff
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Sascha Fauser
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Katharina Düker
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Janine Claude
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Yiner Wang
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johannes Ackermann
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tobias Schmidt
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany.,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christine Skerka
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Abstract
The innate immune system is activated in a number of degenerative and inflammatory retinal disorders such as age-related macular degeneration (AMD). Retinal microglia, choroidal macrophages, and recruited monocytes, collectively termed 'retinal mononuclear phagocytes', are critical determinants of ocular disease outcome. Many publications have described the presence of these cells in mouse models for retinal disease; however, only limited aspects of their behavior have been uncovered, and these have only been uncovered using a single detection method. The workflow presented here describes a comprehensive analysis strategy that allows characterization of retinal mononuclear phagocytes in vivo and in situ. We present standardized working steps for scanning laser ophthalmoscopy of microglia from MacGreen reporter mice (mice expressing the macrophage colony-stimulating factor receptor GFP transgene throughout the mononuclear phagocyte system), quantitative analysis of Iba1-stained retinal sections and flat mounts, CD11b-based retinal flow cytometry, and qRT-PCR analysis of key microglia markers. The protocol can be completed within 3 d, and we present data from retinas treated with laser-induced choroidal neovascularization (CNV), bright white-light exposure, and Fam161a-associated inherited retinal degeneration. The assays can be applied to any of the existing mouse models for retinal disorders and may be valuable for documenting immune responses in studies for immunomodulatory therapies.
Collapse
|
16
|
Ebneter A, Kokona D, Jovanovic J, Zinkernagel MS. Dramatic Effect of Oral CSF-1R Kinase Inhibitor on Retinal Microglia Revealed by In Vivo Scanning Laser Ophthalmoscopy. Transl Vis Sci Technol 2017; 6:10. [PMID: 28458957 PMCID: PMC5407246 DOI: 10.1167/tvst.6.2.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 03/01/2017] [Indexed: 11/24/2022] Open
Abstract
This report provides sound evidence that the small molecule pharmaceutical PLX5622, a highly selective CSF-1R kinase inhibitor, crosses the blood-retina barrier and suppresses microglia activity. Members of this class of drug are in advanced clinical development stages and may represent a novel approach to modulate ocular inflammatory processes.
Collapse
Affiliation(s)
- Andreas Ebneter
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Despina Kokona
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Jovanovic
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Toguri JT, Caldwell M, Kelly MEM. Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain. Front Pharmacol 2016; 7:304. [PMID: 27695415 PMCID: PMC5024674 DOI: 10.3389/fphar.2016.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues. The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states. Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited. Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time. This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis. Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain.
Collapse
Affiliation(s)
- James T. Toguri
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
| | - Meggie Caldwell
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
| | - Melanie E. M. Kelly
- Department of Pharmacology, Dalhousie University, HalifaxNS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, HalifaxNS, Canada
- Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, HalifaxNS, Canada
| |
Collapse
|
18
|
Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci Rep 2016; 6:33356. [PMID: 27624537 PMCID: PMC5022039 DOI: 10.1038/srep33356] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Microglia act as the resident immune cells of the central nervous system, including the retina. In response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic phenotype and play a potentially harmful role by eliciting the expression and release of pro-inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased in number compared with the control at all ages analyzed. As the rats became older, a higher number of amoeboid MHC-II(+) cells were observed in the P23H retina, which correlated with an increase in the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, retinal neuroinflammation persists throughout the rat's life span even after photoreceptor depletion. Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative process may provide better retinal fitness so the remaining cells could still be used as targets of cellular or gene therapies.
Collapse
|
19
|
Meyer JH, Fang PP, Krohne TU, Harmening WM, Holz FG, Schmitz-Valckenberg S. Optische-Kohärenztomographie-Angiographie (OCT‑A) bei Ratten. Ophthalmologe 2016; 114:140-147. [DOI: 10.1007/s00347-016-0309-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Taylor AW. Ocular Immune Privilege and Transplantation. Front Immunol 2016; 7:37. [PMID: 26904026 PMCID: PMC4744940 DOI: 10.3389/fimmu.2016.00037] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
Allografts are afforded a level of protection from rejection within immune-privileged tissues. Immune-privileged tissues involve mechanisms that suppress inflammation and promote immune tolerance. There are anatomical features, soluble factors, membrane-associated proteins, and alternative antigen-presenting cells (APC) that contribute to allograft survival in the immune-privileged tissue. This review presents the current understanding of how the mechanism of ocular immune privilege promotes tolerogenic activity by APC, and T cells in response to the placement of foreign antigen within the ocular microenvironment. Discussed will be the unique anatomical, cellular, and molecular mechanisms that lessen the chance for graft destroying immune responses within the eye. As more is understood about the molecular mechanisms of ocular immune privilege greater is the potential for using these molecular mechanisms in therapies to prevent allograft rejection.
Collapse
Affiliation(s)
- Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
21
|
Liyanage SE, Fantin A, Villacampa P, Lange CA, Denti L, Cristante E, Smith AJ, Ali RR, Luhmann UF, Bainbridge JW, Ruhrberg C. Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization--Brief Report. Arterioscler Thromb Vasc Biol 2015; 36:19-24. [PMID: 26603154 PMCID: PMC4684248 DOI: 10.1161/atvbaha.115.306681] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Ocular neovascularization (ONV) is a pathological feature of sight-threatening human diseases, such as diabetic retinopathy and age-related macular degeneration. Macrophage depletion in mouse models of ONV reduces the formation of pathological blood vessels, and myeloid cells are widely considered an important source of the vascular endothelial growth factor A (VEGF). However, the importance of VEGF or its upstream regulators hypoxia-inducible factor-1α (HIF1α) and hypoxia-inducible factor-2α (HIF2α) as myeloid-derived regulators of ONV remains to be determined.
Collapse
Affiliation(s)
- Sidath E Liyanage
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alessandro Fantin
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Pilar Villacampa
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Clemens A Lange
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Laura Denti
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Enrico Cristante
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alexander J Smith
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Robin R Ali
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ulrich F Luhmann
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - James W Bainbridge
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Christiana Ruhrberg
- From the Divisions of Genetics (S.E.L., P.V., C.A.L., E.C., A.J.S., R.R.A., U.F.L., J.W.B.) and Cell Biology (A.F., L.D., C.R.), UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
22
|
Crespo-Garcia S, Reichhart N, Hernandez-Matas C, Zabulis X, Kociok N, Brockmann C, Joussen AM, Strauss O. In vivo analysis of the time and spatial activation pattern of microglia in the retina following laser-induced choroidal neovascularization. Exp Eye Res 2015. [PMID: 26213305 DOI: 10.1016/j.exer.2015.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microglia play a major role in retinal neovascularization and degeneration and are thus potential targets for therapeutic intervention. In vivo assessment of microglia behavior in disease models can provide important information to understand patho-mechanisms and develop therapeutic strategies. Although scanning laser ophthalmoscope (SLO) permits the monitoring of microglia in transgenic mice with microglia-specific GFP expression, there are fundamental limitations in reliable identification and quantification of activated cells. Therefore, we aimed to improve the SLO-based analysis of microglia using enhanced image processing with subsequent testing in laser-induced neovascularization (CNV). CNV was induced by argon laser in MacGreen mice. Microglia was visualized in vivo by SLO in the fundus auto-fluorescence (FAF) mode and verified ex vivo using retinal preparations. Three image processing algorithms based on different analysis of sequences of images were tested. The amount of recorded frames was limiting the effectiveness of the different algorithms. Best results from short recordings were obtained with a pixel averaging algorithm, further used to quantify spatial and temporal distribution of activated microglia in CNV. Morphologically, different microglia populations were detected in the inner and outer retinal layers. In CNV, the peak of microglia activation occurred in the inner layer at day 4 after laser, lacking an acute reaction. Besides, the spatial distribution of the activation changed by the time over the inner retina. No significant time and spatial changes were observed in the outer layer. An increase in laser power did not increase number of activated microglia. The SLO, in conjunction with enhanced image processing, is suitable for in vivo quantification of microglia activation. This surprisingly revealed that laser damage at the outer retina led to more reactive microglia in the inner retina, shedding light upon a new perspective to approach the immune response in the retina in vivo.
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Nadine Reichhart
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Carlos Hernandez-Matas
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece; Computer Science Department, University of Crete, Heraklion, Greece
| | - Xenophon Zabulis
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Norbert Kociok
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Claudia Brockmann
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Olaf Strauss
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Bosco A, Romero CO, Ambati BK, Vetter ML. In vivo dynamics of retinal microglial activation during neurodegeneration: confocal ophthalmoscopic imaging and cell morphometry in mouse glaucoma. J Vis Exp 2015:e52731. [PMID: 25992962 DOI: 10.3791/52731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microglia, which are CNS-resident neuroimmune cells, transform their morphology and size in response to CNS damage, switching to an activated state with distinct functions and gene expression profiles. The roles of microglial activation in health, injury and disease remain incompletely understood due to their dynamic and complex regulation in response to changes in their microenvironment. Thus, it is critical to non-invasively monitor and analyze changes in microglial activation over time in the intact organism. In vivo studies of microglial activation have been delayed by technical limitations to tracking microglial behavior without altering the CNS environment. This has been particularly challenging during chronic neurodegeneration, where long-term changes must be tracked. The retina, a CNS organ amenable to non-invasive live imaging, offers a powerful system to visualize and characterize the dynamics of microglia activation during chronic disorders. This protocol outlines methods for long-term, in vivo imaging of retinal microglia, using confocal ophthalmoscopy (cSLO) and CX3CR1(GFP/+) reporter mice, to visualize microglia with cellular resolution. Also, we describe methods to quantify monthly changes in cell activation and density in large cell subsets (200-300 cells per retina). We confirm the use of somal area as a useful metric for live tracking of microglial activation in the retina by applying automated threshold-based morphometric analysis of in vivo images. We use these live image acquisition and analyses strategies to monitor the dynamic changes in microglial activation and microgliosis during early stages of retinal neurodegeneration in a mouse model of chronic glaucoma. This approach should be useful to investigate the contributions of microglia to neuronal and axonal decline in chronic CNS disorders that affect the retina and optic nerve.
Collapse
Affiliation(s)
| | - Cesar O Romero
- Department of Neurobiology & Anatomy, University of Utah
| | | | | |
Collapse
|
24
|
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res 2015; 136:116-30. [PMID: 25952657 DOI: 10.1016/j.exer.2015.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The microglia are the immune cells of the central nervous system and, also the retina. They fulfil several tasks of surveillance in the healthy retina. In case of an injury or disease, microglia become activated and tries to repair the damage. However, in a lot of cases it does not work, and microglia deteriorate the situation by releasing toxic and pro-inflammatory compounds. Moreover, they further promote degenerative processes by attacking and phagocytosing damaged neurones and photoreceptors that otherwise would possibly have the chance to survive. Such deleterious action of the microglia has been observed in degeneration of retinal ganglion cells and photoreceptors, and it takes place in hereditary diseases, infections as well as in case of traumatic or light injuries. Therefore, a number of attempts has been undertaken so far to inhibit the microglia, with varying success. The task remains to study behaviour of the microglia and their interaction with other retinal cell populations in more detail with respect to released factors and expressed receptors including the time points of the corresponding events. The goal has to be to find a better balance between helpful and detrimental actions of the microglia.
Collapse
Affiliation(s)
- Lu Li
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Nicole Eter
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Peter Heiduschka
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany.
| |
Collapse
|
25
|
|
26
|
Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, Ambati BK, Vetter ML. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 2015; 8:443-55. [PMID: 25755083 PMCID: PMC4415894 DOI: 10.1242/dmm.018788] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
Microglia serve key homeostatic roles, and respond to neuronal perturbation and decline with a high spatiotemporal resolution. The course of all chronic CNS pathologies is thus paralleled by local microgliosis and microglia activation, which begin at early stages of the disease. However, the possibility of using live monitoring of microglia during early disease progression to predict the severity of neurodegeneration has not been explored. Because the retina allows live tracking of fluorescent microglia in their intact niche, here we investigated their early changes in relation to later optic nerve neurodegeneration. To achieve this, we used the DBA/2J mouse model of inherited glaucoma, which develops progressive retinal ganglion cell degeneration of variable severity during aging, and represents a useful model to study pathogenic mechanisms of retinal ganglion cell decline that are similar to those in human glaucoma. We imaged CX3CR1(+/GFP) microglial cells in vivo at ages ranging from 1 to 5 months by confocal scanning laser ophthalmoscopy (cSLO) and quantified cell density and morphological activation. We detected early microgliosis at the optic nerve head (ONH), where axonopathy first manifests, and could track attenuation of this microgliosis induced by minocycline. We also observed heterogeneous and dynamic patterns of early microglia activation in the retina. When the same animals were aged and analyzed for the severity of optic nerve pathology at 10 months of age, we found a strong correlation with the levels of ONH microgliosis at 3 to 4 months. Our findings indicate that live imaging and monitoring the time course and levels of early retinal microgliosis and microglia activation in glaucoma could serve as indicators of future neurodegeneration severity.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Cesar O Romero
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Kevin T Breen
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Alexis A Chagovetz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael R Steele
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Balamurali K Ambati
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
27
|
Aredo B, Zhang K, Chen X, Wang CXZ, Li T, Ufret-Vincenty RL. Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice. J Neuroinflammation 2015; 12:6. [PMID: 25588310 PMCID: PMC4305240 DOI: 10.1186/s12974-014-0221-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/11/2014] [Indexed: 01/02/2023] Open
Abstract
Background Microglia/macrophages (MG/MΦ) are found in the subretinal space in both mice and humans. Our goal was to study the spatial and temporal distribution, the phenotype, and gene expression of subretinal MG/MΦ in mice with normal retinas and compare them to mice with known retinal pathology. Methods We studied C57BL/6 mice with (C57BL/6N), or without (C57BL/6J) the rd8 mutation in the Crb1 gene (which, in the presence of yet unidentified permissive/modifying genes, leads to a retinal degeneration), and documented their fundus appearance and the change with aging. Immunostaining of retinal pigment epithelium (RPE) flat mounts was done for 1) Ionized calcium binding adaptor (Iba)-1, 2) FcγIII/II Receptor (CD16/CD32, abbreviated as CD16), and 3) Macrophage mannose receptor (MMR). Reverse-transcription quantitative PCR (RT-qPCR) was done for genes involved in oxidative stress, complement activation and inflammation. Results The number of yellow fundus spots correlated highly with subretinal Iba-1+ cells. The total number of subretinal MG/MΦ increased with age in the rd8 mutant mice, but not in the wild-type (WT) mice. There was a centripetal shift in the distribution of the subretinal MG/MΦ with age. Old rd8 mutant mice had a greater number of CD16+ MG/MΦ. CD16+ cells had morphological signs of activation, and this was most prominent in old rd8 mutant mice (P <1×10−8 versus old WT mice). Subretinal MG/MΦ in rd8 mutant mice also expressed iNOS and MHC-II, and had ultrastructural signs of activation. Finally, rd8 mutant mouse RPE/ MG/MΦ RNA isolates showed an upregulation of Ccl2, CFB, C3, NF-kβ, CD200R and TNF-alpha. The retinas of rd8 mutant mice showed upregulation of HO-1, C1q, C4, and Nrf-2. Conclusions When compared to C57BL/6J mice, C57BL/6N mice demonstrate increased accumulation of subretinal MG/MΦ, displaying phenotypical, morphological, and gene-expression characteristics consistent with a pro-inflammatory shift. These changes become more prominent with aging and are likely due to the combination of the rd8 mutation and yet unidentified permissive/modulatory genes in the C57BL/6N mice. In contrast, aging leads to a scavenging phenotype in the C57BL/6J subretinal microglia/macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0221-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bogale Aredo
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| | - Kaiyan Zhang
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA. .,Current address: Department of Ophthalmology, Hainan Provincial People's Hospital, Haikou, Hainan, 570203, PR China.
| | - Xiao Chen
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA. .,Current address: Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, PR China.
| | - Cynthia Xin-Zhao Wang
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| | - Tao Li
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| | - Rafael L Ufret-Vincenty
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| |
Collapse
|
28
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Jobling AI, Guymer RH, Vessey KA, Greferath U, Mills SA, Brassington KH, Luu CD, Aung KZ, Trogrlic L, Plunkett M, Fletcher EL. Nanosecond laser therapy reverses pathologic and molecular changes in age‐related macular degeneration without retinal damage. FASEB J 2014; 29:696-710. [DOI: 10.1096/fj.14-262444] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- A. I. Jobling
- Department of Anatomy and NeuroscienceThe University of MelbourneVictoriaAustralia
| | - R. H. Guymer
- Centre for Eye Research AustraliaUniversity of MelbourneRoyal Victorian Eye and Ear HospitalVictoriaAustralia
| | - K. A. Vessey
- Department of Anatomy and NeuroscienceThe University of MelbourneVictoriaAustralia
| | - U. Greferath
- Department of Anatomy and NeuroscienceThe University of MelbourneVictoriaAustralia
| | - S. A. Mills
- Department of Anatomy and NeuroscienceThe University of MelbourneVictoriaAustralia
| | - K. H. Brassington
- Centre for Eye Research AustraliaUniversity of MelbourneRoyal Victorian Eye and Ear HospitalVictoriaAustralia
| | - C. D. Luu
- Centre for Eye Research AustraliaUniversity of MelbourneRoyal Victorian Eye and Ear HospitalVictoriaAustralia
| | - K. Z. Aung
- Centre for Eye Research AustraliaUniversity of MelbourneRoyal Victorian Eye and Ear HospitalVictoriaAustralia
| | - L. Trogrlic
- Department of Anatomy and NeuroscienceThe University of MelbourneVictoriaAustralia
| | | | - E. L. Fletcher
- Department of Anatomy and NeuroscienceThe University of MelbourneVictoriaAustralia
| |
Collapse
|
30
|
Alt C, Runnels JM, Teo GS, Lin CP. In vivo tracking of hematopoietic cells in the retina of chimeric mice with a scanning laser ophthalmoscope. INTRAVITAL 2014. [DOI: 10.4161/intv.23561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 2014; 34:10511-27. [PMID: 25100586 DOI: 10.1523/jneurosci.0405-14.2014] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Microglia are morphologically dynamic cells that rapidly extend their processes in response to various stimuli including extracellular ATP. In this study, we tested the hypothesis that stimulation of neuronal NMDARs trigger ATP release leading to communication with microglia. We used acute mouse hippocampal brain slices and two-photon laser scanning microscopy to study microglial dynamics and developed a novel protocol for fixation and immunolabeling of microglia processes. Similar to direct topical ATP application in vivo, short multiple applications of NMDA triggered transient microglia process outgrowth that was reversible and repeatable indicating that this was not due to excitotoxic damage. Stimulation of NMDAR was required as NMDAR antagonists, but not blockers of AMPA/kainate receptors or voltage-gated sodium channels, prevented microglial outgrowth. We report that ATP release, secondary to NMDAR activation, was the key mediator of this neuron-microglia communication as both blocking purinergic receptors and inhibiting hydrolysis of ATP to prevent locally generated gradients abolished outgrowth. Pharmacological and genetic analyses showed that the NMDA-triggered microglia process extension was independent of Pannexin 1, the ATP releasing channels, ATP release from astrocytes via connexins, and nitric oxide generation. Finally, using whole-cell patch clamping we demonstrate that activation of dendritic NMDAR on single neurons is sufficient to trigger microglia process outgrowth. Our results suggest that dendritic neuronal NMDAR activation triggers ATP release via a Pannexin 1-independent manner that induces outgrowth of microglia processes. This represents a novel uncharacterized form of neuron-microglial communication mediated by ATP.
Collapse
|
32
|
Krause TA, Alex AF, Engel DR, Kurts C, Eter N. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization. PLoS One 2014; 9:e94313. [PMID: 24714223 PMCID: PMC3979804 DOI: 10.1371/journal.pone.0094313] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/15/2014] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF). Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source of VEGF in laser-induced choroidal neovascularization but suggest that the therapeutic efficacy of CCR2-inhibition might be limited.
Collapse
Affiliation(s)
- Torsten A Krause
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Anne F Alex
- Department of Ophthalmology, University of Münster, Münster, Germany
| | - Daniel R Engel
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Münster, Münster, Germany
| |
Collapse
|
33
|
Abstract
Resveratrol is a polyphenol with various properties. Oncological studies have shown an excellent anti-carcinogenic effect. Due to many overlaps between tumor-mediating signaling pathways and those which mediate neovascularization and proliferation in retinal diseases, this review intends to focus on studies about the application of resveratrol in diseases of the eye fundus in vitro and in vivo. Resveratrol has been well investigated in cell culture studies and animal models. Ophthalmological in vitro and in vivo investigations have shown a large variety of possible effects without toxic side effects and antiproliferative and immune modulatory effects in particular were observed. There is general consensus that the target protein of resveratrol is NF-κB. Clinical studies are needed to confirm these effects observed in cell culture and animal models. The exact mechanism of resveratrol remains unknown and seems to vary between cell types, tissues and the pathophysiological environment.
Collapse
|
34
|
Ramos de Carvalho JE, Verbraak FD, Aalders MC, van Noorden CJ, Schlingemann RO. Recent advances in ophthalmic molecular imaging. Surv Ophthalmol 2013; 59:393-413. [PMID: 24529711 DOI: 10.1016/j.survophthal.2013.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022]
Abstract
The aim of molecular imaging techniques is the visualization of molecular processes and functional changes in living animals and human patients before morphological changes occur at the cellular and tissue level. Ophthalmic molecular imaging is still in its infancy and has mainly been used in small animals for pre-clinical research. The goal of most of these pre-clinical studies is their translation into ophthalmic molecular imaging techniques in clinical care. We discuss various molecular imaging techniques and their applications in ophthalmology.
Collapse
Affiliation(s)
- J Emanuel Ramos de Carvalho
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frank D Verbraak
- Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice C Aalders
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Zhong C, Wang J, Li B, Xiang H, Ultsch M, Coons M, Wong T, Chiang NY, Clark S, Clark R, Quintana L, Gribling P, Suto E, Barck K, Corpuz R, Yao J, Takkar R, Lee WP, Damico-Beyer LA, Carano RD, Adams C, Kelley RF, Wang W, Ferrara N. Development and Preclinical Characterization of a Humanized Antibody Targeting CXCL12. Clin Cancer Res 2013; 19:4433-45. [DOI: 10.1158/1078-0432.ccr-13-0943] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Abstract
The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided.
Collapse
|
37
|
Lenassi E, Troeger E, Wilke R, Tufail A, Hawlina M, Jeffery G, Webster AR. Laser clearance of drusen deposit in patients with autosomal dominant drusen (p.Arg345Trp in EFEMP1). Am J Ophthalmol 2013; 155:190-8. [PMID: 23036572 DOI: 10.1016/j.ajo.2012.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To assess whether laser treatment to the retinal pigment epithelium anterior to drusen in eyes of patients with EFEMP1-related maculopathy affects visual acuity, deposit volume, and retinal sensitivity. DESIGN Prospective, interventional case series. METHODS In 11 patients with autosomal dominant drusen and confirmed disease-causing EFEMP1 mutation, the worse-seeing eye was treated with Argon green laser (10 to 15 laser spots; 200-μm spot size, 0.1-second duration, 80 to 120 mW). Patients were examined before treatment as well as 1, 3, 6, and 12 months after the procedure. Clinical assessment included visual acuity, fundus-controlled perimetry, spectral-domain optical coherence tomography, and autofluorescence imaging. Custom-made software allowed for coregistration of fundus-controlled perimetry and spectral-domain optical coherence tomography data sets. The main outcome measures were change in visual acuity, retinal sensitivity, and drusen volume. RESULTS The untreated eyes lost an average of 0.8 letters, whereas the treated eyes gained an average of 4.9 letters. For fundus-controlled perimetry, locus-by-locus differences in sensitivity were calculated between pretreatment and posttreatment assessments; subsequently, the overall difference in the treated and untreated eye was compared. Five patients showed significant improvement in retinal sensitivity, 5 patients showed no change, and 1 patient showed significant deterioration. An increase in mean drusen thickness was observed in the untreated eyes, but not in the treated eyes (P = .0322). The thickness of the drusen correlated with retinal sensitivity (ρ = -0.49; P < .0001). Safety was demonstrated and no adverse events were observed. CONCLUSIONS Low-energy laser treatment is safe and may be effective in the treatment of autosomal dominant drusen. Further evaluation with long-term assessment is required to confirm the benefits.
Collapse
|
38
|
Luhmann UFO, Carvalho LS, Robbie SJ, Cowing JA, Duran Y, Munro PMG, Bainbridge JWB, Ali RR. Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Exp Eye Res 2012; 107:80-7. [PMID: 23232206 PMCID: PMC3562441 DOI: 10.1016/j.exer.2012.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/28/2022]
Abstract
Monocytes, macrophages, dendritic cells and microglia play critical roles in the local immune response to acute and chronic tissue injury and have been implicated in the pathogenesis of age-related macular degeneration. Defects in Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling cause enhanced accumulation of bloated subretinal microglia/macrophages in senescent mice and this phenomenon is reported to result in the acceleration of age-related retinal degeneration. The purpose of this study was to determine whether defects in CCL2-CCR2 and CX3CL1-CX3CR1 signalling pathways, alone or in combination, cause age-dependent retinal degeneration. We tested whether three chemokine knockout mouse lines, Ccl2(-/-), Cx3cr1(-/-) and Ccl2(-/-)/Cx3cr1(-/-), in comparison to age-matched C57Bl/6 control mice show differences in subretinal macrophage accumulation and loss of adjacent photoreceptor cells at 12-14 months of age. All mouse lines are derived from common parental strains and do not carry the homozygous rd8 mutation in the Crb1 gene that has been a major confounding factor in previous reports. We quantified subretinal macrophages by counting autofluorescent lesions in fundus images obtained by scanning laser ophthalmoscopy (AF-SLO) and by immunohistochemistry for Iba1 positive cells. The accumulation of subretinal macrophages was enhanced in Ccl2(-/-), but not in Cx3cr1(-/-) or Ccl2(-/-)/Cx3cr1(-/-) mice. We identified no evidence of retinal degeneration in any of these mouse lines by TUNEL staining or semithin histology. In conclusion, CCL2-CCR2 and/or CX3CL1-CX3CR1 signalling defects may differentially affect the trafficking of microglia and macrophages in the retina during ageing, but do not appear to cause age-related retinal degeneration in mice.
Collapse
Affiliation(s)
- Ulrich F O Luhmann
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V9EL London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kozai TDY, Vazquez AL, Weaver CL, Kim SG, Cui XT. In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J Neural Eng 2012; 9:066001. [PMID: 23075490 DOI: 10.1088/1741-2560/9/6/066001] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Penetrating cortical neural probe technologies allow investigators to record electrical signals in the brain. Implantation of probes results in acute tissue damage, and microglia density increases around implanted devices over weeks. However, the mechanisms underlying this encapsulation are not well understood in the acute temporal domain. The objective here was to evaluate dynamic microglial response to implanted probes using two-photon microscopy. APPROACH Using two-photon in vivo microscopy, cortical microglia ∼200 µm below the surface of the visual cortex were imaged every minute in mice with green fluorescent protein-expressing microglia. MAIN RESULTS Following probe insertion, nearby microglia immediately extended processes toward the probe at (1.6 ± 1.3) µm min(-1) during the first 30-45 min, but showed negligible cell body movement for the first 6 h. Six hours following probe insertion, microglia at distances <130.0 µm (p = 0.5) from the probe surface exhibit morphological characteristics of transitional stage (T-stage) activation, similar to the microglial response observed with laser-induced blood-brain barrier damage. T-stage morphology and microglia directionality indexes were developed to characterize microglial response to implanted probes. Evidence suggesting vascular reorganization after probe insertion and distant vessel damage was also observed hours after probe insertion. SIGNIFICANCE A precise temporal understanding of the cellular response to microelectrode implantation will facilitate the search for molecular cues initiating and attenuating the reactive tissue response.
Collapse
|
40
|
Nimmerjahn A. Surgical implantation of a head plate in mice in preparation for in vivo two-photon imaging of microglia. Cold Spring Harb Protoc 2012; 2012:2012/5/pdb.prot069278. [PMID: 22550297 DOI: 10.1101/pdb.prot069278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microglia are the primary immune effector cells of the brain parenchyma. They are distributed throughout the brain at various densities. Two-photon fluorescence microscopy, together with expression of fluorescent proteins in microglia, has enabled study of these fascinating cells in vivo. Imaging studies have shown, for example, that microglia continually survey their cellular environment and immediately respond to injury. However, we still know very little about their roles in various parts of the developing and adult brain or their diverse effector functions in aging and different disease states. Experimental procedures have been developed for minimally invasive short- and long-term two-photon imaging of microglial cells in cortical regions of the intact mouse brain. This protocol describes the initial preparation of the mice by surgical implantation of a head plate.
Collapse
|
41
|
Abstract
Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.
Collapse
|
42
|
Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signalling. PLoS One 2012; 7:e35551. [PMID: 22545116 PMCID: PMC3335860 DOI: 10.1371/journal.pone.0035551] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/21/2012] [Indexed: 12/15/2022] Open
Abstract
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2(-/-)/Crb1(Rd8/RD8), Cx3cr1(-/-)/Crb1(Rd8/RD8) and CCl2(-/-)/Cx3cr1(-/-)/Crb1(Rd8/RD8) mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling.
Collapse
|
43
|
Baseline imaging reveals preexisting retinal abnormalities in mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:459-69. [PMID: 22183365 DOI: 10.1007/978-1-4614-0631-0_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Paques M, Simonutti M, Augustin S, Goupille O, El Mathari B, Sahel JA. In vivo observation of the locomotion of microglial cells in the retina. Glia 2011; 58:1663-8. [PMID: 20578032 DOI: 10.1002/glia.21037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microglial cells (MCs) are active sensors and reactive phagocytes of neural tissues. They are known to migrate and accumulate in areas of neuronal damage. Thus, microglial locomotion is an essential feature of the inflammatory reaction in neural tissue. Yet, to our knowledge there has been no report of direct in vivo observation of the migration of MCs. Here, we show that intravitreally injected cyanine dyes (DiO, DiI, and indocyanine green) are sequestrated in MCs during several months, and subsequently in vivo images of these fluorescent MCs can be obtained by confocal scanning laser ophthalmoscopy. This enabled noninvasive, time-lapse observation of the migrating behavior of MCs, both in the basal state and following laser damage. In the basal state, a slow, intermittent, random-like locomotion was observed. Following focal laser damage, MCs promptly (i.e., within 1 h) initiated centripetal, convergent migration. MCs up to 400 μm away migrated into the scar at velocities up to 7 μm/min. This early phase of centripetal migration was followed by a more prolonged phase of nontargeted locomotion around and within injured sites during at least 24 h. Cyanine-positive cells persisted within the scar during several weeks. To our knowledge, this is the first in vivo observation of the locomotion of individual MCs. Our results show that the locomotion of MCs is not limited to translocation to acutely damaged area, but may also be observed in the basal state and after completion of the recruitment of MCs into scars.
Collapse
Affiliation(s)
- Michel Paques
- Inserm, UMR_S968, Institut de la Vision, Paris, France.
| | | | | | | | | | | |
Collapse
|
45
|
Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol Aging 2011; 33:1769-76. [PMID: 21570740 DOI: 10.1016/j.neurobiolaging.2011.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/02/2011] [Accepted: 03/11/2011] [Indexed: 11/23/2022]
Abstract
Macrophages or activated microglia in the subretinal space are considered a hallmark of some retinal pathologies. We investigated the effects of age, pigmentation and CX(3)CR1 deficiency on the accumulation of macrophages/activated microglia in the outer retina of young and old Cx(3)cr1(gfp/gfp) (CX(3)CR1-deficient) or Cx(3)cr1(gfp/+) mice on either a pigmented (C57BL/6) or albino (BALB/c) background. Quantitative analysis of immunostained retinal-choroidal whole mounts revealed an increase in subretinal macrophage (SRMΦ) numbers in young Cx(3)cr1(gfp/gfp) mice compared with Cx(3)cr1(gfp/+) mice, however the increase was more marked in albino Cx(3)cr1(gfp/gfp) mice. In aged mice, large numbers of SRMΦ/activated microglia replete with autofluorescent debris were noted in both old pigmented Cx(3)cr1(gfp/gfp) and Cx(3)cr1(gfp/+) mice proving this accumulation was not CX(3)CR1-dependent. While CX(3)CR1 deficiency leads to an early onset of SRMΦ accumulation, our data reveal that this change occurs in both aged Cx(3)cr1(gfp/+) and Cx(3)cr1(gfp/gfp) pigmented mice in the absence of marked retinal degeneration and is likely a normal response to aging.
Collapse
|
46
|
Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. Age-related alterations in the dynamic behavior of microglia. Aging Cell 2011; 10:263-76. [PMID: 21108733 PMCID: PMC3056927 DOI: 10.1111/j.1474-9726.2010.00660.x] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Microglia, the primary resident immune cells of the central nervous system (CNS), exhibit dynamic behavior involving rapid process motility and cellular migration that is thought to underlie key functions of immune surveillance and tissue repair. Although age-related changes in microglial activation have been implicated in the pathogenesis of neurodegenerative diseases of aging, how dynamic behavior in microglia is influenced by aging is not fully understood. In this study, we employed live imaging of retinal microglia in situ to compare microglial morphology and behavioral dynamics in young and aged animals. We found that aged microglia in the resting state have significantly smaller and less branched dendritic arbors, and also slower process motilities, which probably compromise their ability to survey and interact with their environment continuously. We also found that dynamic microglial responses to injury were age-dependent. While young microglia responded to extracellular ATP, an injury-associated signal, by increasing their motility and becoming more ramified, aged microglia exhibited a contrary response, becoming less dynamic and ramified. In response to laser-induced focal tissue injury, aged microglia demonstrated slower acute responses with lower rates of process motility and cellular migration compared with young microglia. Interestingly, the longer term response of disaggregation from the injury site was retarded in aged microglia, indicating that senescent microglial responses, while slower to initiate, are more sustained. Together, these altered features of microglial behavior at rest and following injury reveal an age-dependent dysregulation of immune response in the CNS that may illuminate microglial contributions to age-related neuroinflammatory degeneration.
Collapse
Affiliation(s)
- Mausam R. Damani
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Aurora M. Fontainhas
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Juan Amaral
- Mechanisms of Disease Section, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Abstract
Changes in microglial cell activation and distribution are associated with neuronal decline in the central nervous system (CNS), particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb(+/SjJ) (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|
48
|
Jager MJ, Ly LV, El Filali M, Madigan MC. Macrophages in uveal melanoma and in experimental ocular tumor models: Friends or foes? Prog Retin Eye Res 2011; 30:129-46. [DOI: 10.1016/j.preteyeres.2010.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 01/05/2023]
|
49
|
Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011; 6:e15973. [PMID: 21283568 PMCID: PMC3026789 DOI: 10.1371/journal.pone.0015973] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/01/2010] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or "resting" conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates "resting" microglial morphology and behavior. METHODS We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. RESULTS Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. CONCLUSIONS Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of "resting" microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity.
Collapse
Affiliation(s)
- Aurora M. Fontainhas
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Minhua Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katharine J. Liang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shan Chen
- Unit on Retinal Neurophysiology, National Eye Institute, Bethesda, Maryland, United States of America
| | - Pradeep Mettu
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mausam Damani
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert N. Fariss
- Biological Imaging Core, Office of the Scientific Director, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei Li
- Unit on Retinal Neurophysiology, National Eye Institute, Bethesda, Maryland, United States of America
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Fletcher EL, Jobling AI, Vessey KA, Luu C, Guymer RH, Baird PN. Animal models of retinal disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:211-86. [PMID: 21377628 DOI: 10.1016/b978-0-12-384878-9.00006-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Diseases of the retina are the leading causes of blindness in the industrialized world. The recognition that animals develop retinal diseases with similar traits to humans has led to not only a dramatic improvement in our understanding of the pathogenesis of retinal disease but also provided a means for testing possible treatment regimes and successful gene therapy trials. With the advent of genetic and molecular biological tools, the association between specific gene mutations and retinal signs has been made. Animals carrying natural mutations usually in one gene now provide well-established models for a host of inherited retinal diseases, including retinitis pigmentosa, Leber congenital amaurosis, inherited macular degeneration, and optic nerve diseases. In addition, the development of transgenic technologies has provided a means by which to study the effects of these and novel induced mutations on retinal structure and function. Despite these advances, there is a paucity of suitable animal models for complex diseases, including age-related macular degeneration (AMD) and diabetic retinopathy, largely because these diseases are not caused by single gene defects, but involve complex genetics and/or exacerbation through environmental factors, epigenetic, or other modes of genetic influence. In this review, we outline in detail the available animal models for inherited retinal diseases and how this information has furthered our understanding of retinal diseases. We also examine how transgenic technologies have helped to develop our understanding of the role of isolated genes or pathways in complex diseases like AMD, diabetes, and glaucoma.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|