1
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
Gamal El-Deen AM, Abd El-Hamid SM, Farrag EA. Serum brain-derived neurotrophic factor and macular perfusion in type 2 diabetes mellitus using optical coherence tomography angiography. Taiwan J Ophthalmol 2024; 14:422-430. [PMID: 39430362 PMCID: PMC11488803 DOI: 10.4103/tjo.tjo-d-22-00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/29/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE To investigate the relationship between serum brain-derived neurotrophic factor (BDNF) and changes in macular perfusion in different stages of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA). MATERIALS AND METHODS The study was conducted on 72 eyes of people with type 2 diabetes mellitus (DM). They were divided into five groups based on their DR stage: no DR (nDR), mild and moderate nonproliferative DR, severe nonproliferative DR, active proliferative DR (aPDR), and stable PDR. The presence or absence of diabetic maculopathy was also used to categorize the cases. All patients underwent a complete history, ophthalmological examination, OCTA imaging, and evaluation of BDNF and glycated hemoglobin A1c levels. RESULTS The mean blood BDNF levels in the aPDR group were considerably lower than those in the nDR group (P = 0.023). In comparison to eyes without maculopathy, eyes with maculopathy had considerably decreased mean blood BDNF levels (P = 0.0004). Comparing NPDR and PDR groups to nDR as well as NPDR and PDR, a substantial decrease in average and parafoveal vessel density (VD) of the retina and choriocapillaries was seen (P = 0.02). The Foveal Avascular Zone (FAZ) acircularity index and VD were found to be significantly impacted by deteriorating DR (P = 0.001 and 0.017, respectively). It was discovered that there is a positive correlation between BDNF and the FAZ fractal dimension (P = 0.03). In diabetic eyes, there was a statistically favorable correlation between BDNF levels and best corrected visual acuity (P = 0.002). Furthermore, there was a negative relationship between DM duration and BDNF (P = 0.021). CONCLUSION Serum BDNF levels decreased with the progression of DR and in patients with maculopathy. BDNF was found to be related to macular perfusion, particularly in the fovea.
Collapse
Affiliation(s)
| | | | - Enas Ahmed Farrag
- Department of Clinical Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Sato K, Takada N, Fujioka A, Himori N, Yokoyama Y, Tsuda S, Omodaka K, Kirihara T, Ishikawa M, Kunikata H, Nakazawa T. Reduced Plasma BDNF Levels in Normal Tension Glaucoma Compared to Open Angle Glaucoma. J Glaucoma 2023; 32:734-737. [PMID: 37343190 PMCID: PMC10453350 DOI: 10.1097/ijg.0000000000002257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/06/2023] [Indexed: 06/23/2023]
Abstract
PRCIS The study suggests that a low level of systemic BDNF may contribute to the pathogenesis of glaucoma in an IOP-independent manner. AIMS To evaluate differences in systemic brain-derived neurotrophic factor (BDNF) levels between primary open angle glaucoma (POAG) patients and normal tension glaucoma (NTG) patients. METHODS This study collected blood samples from 260 NTG patients, 220 age-matched POAG patients, and 120 age-matched cataract patients (as controls). BDNF levels were measured with an antibody-conjugated bead assay system (Luminex). RESULTS We found that plasma BDNF levels in the NTG group were significantly lower than in the POAG and cataract control groups. There was no significant difference between the POAG and cataract groups. CONCLUSION This result suggests that a low level of systemic BDNF may contribute to the pathogenesis of glaucoma in an IOP-independent manner.
Collapse
Affiliation(s)
- Kota Sato
- Departments of Ophthalmology
- Advanced Ophthalmic Medicine
| | | | | | - Noriko Himori
- Departments of Ophthalmology
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Miyagi
| | | | | | | | - Tomoko Kirihara
- Ophthalmic Innovation Center, Santen Pharmaceutical Co., Ltd, Osaka, Japan
| | | | | | - Toru Nakazawa
- Departments of Ophthalmology
- Advanced Ophthalmic Medicine
- Ophthalmic Imaging and Information Analytics
- Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
5
|
Gao J, Provencio I, Liu X. Intrinsically photosensitive retinal ganglion cells in glaucoma. Front Cell Neurosci 2022; 16:992747. [PMID: 36212698 PMCID: PMC9537624 DOI: 10.3389/fncel.2022.992747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a group of eye diseases afflicting more than 70 million people worldwide. It is characterized by damage to retinal ganglion cells (RGCs) that ultimately leads to the death of the cells and vision loss. The diversity of RGC types has been appreciated for decades, and studies, including ours, have shown that RGCs degenerate and die in a type-specific manner in rodent models of glaucoma. The type-specific loss of RGCs results in differential damage to visual and non-visual functions. One type of RGC, the intrinsically photosensitive retinal ganglion cell (ipRGC), expressing the photopigment melanopsin, serves a broad array of non-visual responses to light. Since its discovery, six subtypes of ipRGC have been described, each contributing to various image-forming and non-image-forming functions such as circadian photoentrainment, the pupillary light reflex, the photic control of mood and sleep, and visual contrast sensitivity. We recently demonstrated a link between type-specific ipRGC survival and behavioral deficits in a mouse model of chronic ocular hypertension. This review focuses on the type-specific ipRGC degeneration and associated behavioral changes in animal models and glaucoma patients. A better understanding of how glaucomatous insult impacts the ipRGC-based circuits will have broad impacts on improving the treatment of glaucoma-associated non-visual disorders.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Claes M, Geeraerts E, Plaisance S, Mentens S, Van den Haute C, De Groef L, Arckens L, Moons L. Chronic Chemogenetic Activation of the Superior Colliculus in Glaucomatous Mice: Local and Retrograde Molecular Signature. Cells 2022; 11:1784. [PMID: 35681479 PMCID: PMC9179903 DOI: 10.3390/cells11111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022] Open
Abstract
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.
Collapse
Affiliation(s)
- Marie Claes
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | | | - Stephanie Mentens
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Chris Van den Haute
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- KU Leuven Viral Vector Core, 3000 Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| |
Collapse
|
7
|
Lambuk L, Mohd Lazaldin MA, Ahmad S, Iezhitsa I, Agarwal R, Uskoković V, Mohamud R. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front Pharmacol 2022; 13:875662. [PMID: 35668928 PMCID: PMC9163364 DOI: 10.3389/fphar.2022.875662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are neurons of the visual system that are responsible for transmitting signals from the retina to the brain via the optic nerve. Glaucoma is an optic neuropathy characterized by apoptotic loss of RGCs and degeneration of optic nerve fibers. Risk factors such as elevated intraocular pressure and vascular dysregulation trigger the injury that culminates in RGC apoptosis. In the event of injury, the survival of RGCs is facilitated by neurotrophic factors (NTFs), the most widely studied of which is brain-derived neurotrophic factor (BDNF). Its production is regulated locally in the retina, but transport of BDNF retrogradely from the brain to retina is also crucial. Not only that the interruption of this retrograde transport has been detected in the early stages of glaucoma, but significantly low levels of BDNF have also been detected in the sera and ocular fluids of glaucoma patients, supporting the notion that neurotrophic deprivation is a likely mechanism of glaucomatous optic neuropathy. Moreover, exogenous NTF including BDNF administration was shown reduce neuronal loss in animal models of various neurodegenerative diseases, indicating the possibility that exogenous BDNF may be a treatment option in glaucoma. Current literature provides an extensive insight not only into the sources, transport, and target sites of BDNF but also the intracellular signaling pathways, other pathways that influence BDNF signaling and a wide range of its functions. In this review, the authors discuss the neuroprotective role of BDNF in promoting the survival of RGCs and its possible application as a therapeutic tool to meet the challenges in glaucoma management. We also highlight the possibility of using BDNF as a biomarker in neurodegenerative disease such as glaucoma. Further we discuss the challenges and future strategies to explore the utility of BDNF in the management of glaucoma.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Igor Iezhitsa
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Renu Agarwal
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, United States
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, United States
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
8
|
Calkins DJ, Yu-Wai-Man P, Newman NJ, Taiel M, Singh P, Chalmey C, Rogue A, Carelli V, Ancian P, Sahel JA. Biodistribution of intravitreal lenadogene nolparvovec gene therapy in nonhuman primates. Mol Ther Methods Clin Dev 2021; 23:307-318. [PMID: 34729378 PMCID: PMC8526752 DOI: 10.1016/j.omtm.2021.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
Lenadogene nolparvovec (Lumevoq) gene therapy was developed to treat Leber hereditary optic neuropathy (LHON) caused by the m.11778G > A in MT-ND4 that affects complex I of the mitochondrial respiratory chain. Lenadogene nolparvovec is a replication-defective, single-stranded DNA recombinant adeno-associated virus vector 2 serotype 2, containing a codon-optimized complementary DNA encoding the human wild-type MT-ND4 subunit protein. Lenadogene nolparvovec was administered by unilateral intravitreal injection in MT-ND4 LHON patients in two randomized, double-masked, and sham-controlled phase III clinical trials (REVERSE and RESCUE), resulting in bilateral improvement of visual acuity. These and other earlier results suggest that lenadogene nolparvovec may travel from the treated to the untreated eye. To investigate this possibility further, lenadogene nolparvovec was unilaterally injected into the vitreous body of the right eye of healthy, nonhuman primates. Viral vector DNA was quantifiable in all eye and optic nerve tissues of the injected eye and was detected at lower levels in some tissues of the contralateral, noninjected eye, and optic projections, at 3 and 6 months after injection. The results suggest that lenadogene nolparvovec transfers from the injected to the noninjected eye, thus providing a potential explanation for the bilateral improvement of visual function observed in the LHON patients.
Collapse
Affiliation(s)
- David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Nancy J. Newman
- Departments of Ophthalmology, Neurology, and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Magali Taiel
- GenSight Biologics, 74 rue du Faubourg Saint Antoine, 75012 Paris, France
| | | | | | | | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica, Neurologica, Bologna, Italy
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - José A. Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Fondation Ophtalmologique A. de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France
| |
Collapse
|
9
|
Adelman SA, Oikawa K, Senthilkumar G, Trane RM, Teixeira LB, McLellan GJ. Mapping retinal ganglion cell somas in a large-eyed glaucoma model. Mol Vis 2021; 27:608-621. [PMID: 34924741 PMCID: PMC8645189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/17/2021] [Indexed: 10/27/2022] Open
Abstract
Purpose The purpose of this study was to identify a robust, representative region of interest (ROI) for studies of retinal ganglion cell (RGC) soma loss in feline congenital glaucoma (FCG), a spontaneous, large-eyed glaucoma model. Methods Seven FCG and three wild-type (wt) eyes were collected from 10 adult cats of both sexes. Eyes enucleated postmortem were immediately fixed overnight in 4% paraformaldehyde and then stored in 0.1 M PBS at 4 °C. The retinas were wholemounted, Nissl stained with cresyl violet, and imaged using light microscopy. Somas of RGCs were manually identified according to long-established morphological criteria and quantified using a semiautomated method; their coordinates were used to create density maps and plots of the retinal topography. The RGC axon counts for the corresponding eyes were obtained from glutaraldehyde-fixed, resin-embedded optic nerve cross-sections stained with 0.1% p-phenylenediamine (PPD) using a semiautomated counting method. Correlations between total optic nerve axons and RGC soma counts were assessed by linear regression. A k-means cluster algorithm was used to identify a retinal ROI, with further definition using a probability density algorithm. Results Interindividual variability in RGC total soma counts was more pronounced in FCG cats (mean = 83,244, range: 0-155,074) than in wt cats (mean = 117,045, range: 97,373-132,972). In general, RGC soma counts were lower in FCG cats than they were in wt cats. RGC axon counts in the optic nerve cross-sections were lower than, but strongly correlated to, the total RGC soma count across all cats (in wt and FCG retinas; R2 = 0.88) and solely FCG eyes (R2 = 0.92). The k-means cluster algorithm indicated a region of the greatest mean difference between the normal wt retinas and FCG-affected retinas within the temporal retina, incorporating the region of the area centralis. Conclusions As in other species, RGC soma count and topography are heterogeneous between individual cats, but we identified an ROI in the temporal retina for future studies of RGC soma loss or preservation in a large-eyed model of congenital glaucoma. Many of the methods refined and established to facilitate studies in this FCG model will be broadly applicable to studies in other large-eyed models.
Collapse
Affiliation(s)
- Sara A. Adelman
- Department of Surgical Sciences, School of Veterinary Medicine
| | - Kazuya Oikawa
- Department of Surgical Sciences, School of Veterinary Medicine,Department of Ophthalmology & Visual Sciences, School of Medicine and Public Health
| | - Gopika Senthilkumar
- Department of Ophthalmology & Visual Sciences, School of Medicine and Public Health
| | - Ralph Møller Trane
- Department of Ophthalmology & Visual Sciences, School of Medicine and Public Health
| | - Leandro B.C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Gillian J. McLellan
- Department of Surgical Sciences, School of Veterinary Medicine,Department of Ophthalmology & Visual Sciences, School of Medicine and Public Health
| |
Collapse
|
10
|
Dhakal S, He L, Lyuboslavsky P, Sidhu C, Chrenek MA, Sellers JT, Boatright JH, Geisert EE, Setterholm NA, McDonald FE, Iuvone PM. A Tropomycin-Related Kinase B Receptor Activator for the Management of Ocular Blast-Induced Vision Loss. J Neurotrauma 2021; 38:2896-2906. [PMID: 34353120 PMCID: PMC8820286 DOI: 10.1089/neu.2020.7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pressure waves from explosions or other traumatic events can damage the neurons of the eye and visual centers of the brain, leading to functional loss of vision. There are currently few treatments for such injuries that can be deployed rapidly to mitigate damage. Brain-derived neurotrophic factor (BDNF) and activation of its receptor tropomycin-related kinase B (TrkB) have neuroprotective effects in a number of degeneration models. Small molecule activators of TrkB, such as N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC), cross the blood-brain and blood-retina barriers after systemic administration. We characterize the effects of blast-induced ocular trauma on retinal and visual function. We show that systemic administration of HIOC, a potent small molecule activator of the BDNF/TrkB receptor, preserves visual function in mice exposed to ocular blast injury. The HIOC treatment for one week preserves visual function for at least four months. The HIOC treatment effectively protected vision when the initial dose was administered up to 3 h after blast, but not if the initial treatment was delayed for 24 h. We provide evidence that the therapeutic effect of HIOC is mediated by activation of BDNF/TrkB receptors. The results indicate that HIOC may be useful for managing ocular blast injury and other forms of traumatic optic neuropathy.
Collapse
Affiliation(s)
- Susov Dhakal
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - Li He
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | | | - Curran Sidhu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | | | - Eldon E. Geisert
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | | | | | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Potential neuroprotective biomolecules in ophthalmology. Int Ophthalmol 2020; 41:1103-1109. [PMID: 33180279 DOI: 10.1007/s10792-020-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSES Retinal neurodegenerative diseases are responsible for a huge number of ocular problems worldwide. It seems that the progression of these diseases can be managed by the application of neuroprotective molecules particularly in the early stages. This article focuses on the most common neuroprotective bioagents under investigation in ophthalmology. METHODS We searched the web of science, PubMed and Scopus databases with these keywords: "glaucoma," "diabetic retinopathy," "age-related macular degeneration," "optic neuropathy and retinal degeneration" and/or "neuroprotection." RESULTS The most commonly utilized neuroprotective drugs for ophthalmology diseases were introduced in this study. It seems that these agents can be divided into three categories according to their mechanism of action: (A) neurotrophins, (B) decreasing effect on intraocular pressure and (C) inhibition of retinal neuron apoptosis. CONCLUSION A broad range of drugs has been illustrated in the literature for treatment of neuro-ophthalmic diseases. A good classification of the most applied drugs in this field can help specialists to prescribe the best matched drug considering the stage and progression of disease. However, controlled clinical trials are needed for better evaluation of the effects of these products.
Collapse
|
12
|
Yuan R, Yang M, Fan W, Lan J, Zhou YG. Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro. Neurosci Bull 2020; 36:972-984. [PMID: 32445021 DOI: 10.1007/s12264-020-00510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.
Collapse
Affiliation(s)
- Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jian Lan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
13
|
Schneider CL, Prentiss EK, Busza A, Matmati K, Matmati N, Williams ZR, Sahin B, Mahon BZ. Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. Proc Biol Sci 2020; 286:20182733. [PMID: 30963844 PMCID: PMC6408898 DOI: 10.1098/rspb.2018.2733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Damage to the optic radiations or primary visual cortex leads to blindness in all or part of the contralesional visual field. Such damage disconnects the retina from its downstream targets and, over time, leads to trans-synaptic retrograde degeneration of retinal ganglion cells. To date, visual ability is the only predictor of retinal ganglion cell degeneration that has been investigated after geniculostriate damage. Given prior findings that some patients have preserved visual cortex activity for stimuli presented in their blind field, we tested whether that activity explains variability in retinal ganglion cell degeneration over and above visual ability. We prospectively studied 15 patients (four females, mean age = 63.7 years) with homonymous visual field defects secondary to stroke, 10 of whom were tested within the first two months after stroke. Each patient completed automated Humphrey visual field testing, retinotopic mapping with functional magnetic resonance imaging, and spectral-domain optical coherence tomography of the macula. There was a positive relation between ganglion cell complex (GCC) thickness in the blind field and early visual cortex activity for stimuli presented in the blind field. Furthermore, residual visual cortex activity for stimuli presented in the blind field soon after the stroke predicted the degree of retinal GCC thinning six months later. These findings indicate that retinal ganglion cell survival after ischaemic damage to the geniculostriate pathway is activity dependent.
Collapse
Affiliation(s)
- Colleen L Schneider
- 1 Department of Brain and Cognitive Sciences, University of Rochester , Rochester, NY 14627 , USA.,2 Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry , Rochester, NY 14642 , USA.,3 Department of Psychology, Carnegie Mellon University , Pittsburgh, PA 15206 , USA
| | - Emily K Prentiss
- 4 Department of Neurology, University of Rochester Medical Center , Rochester, NY 14642 , USA
| | - Ania Busza
- 4 Department of Neurology, University of Rochester Medical Center , Rochester, NY 14642 , USA
| | - Kelly Matmati
- 7 Department of Neurology, Rochester Regional Health , Rochester, NY 14621 , USA
| | - Nabil Matmati
- 7 Department of Neurology, Rochester Regional Health , Rochester, NY 14621 , USA
| | - Zoë R Williams
- 4 Department of Neurology, University of Rochester Medical Center , Rochester, NY 14642 , USA.,5 Department of Ophthalmology, University of Rochester Medical Center , Rochester, NY 14642 , USA.,6 Department of Neurosurgery, University of Rochester Medical Center , Rochester, NY 14642 , USA
| | - Bogachan Sahin
- 4 Department of Neurology, University of Rochester Medical Center , Rochester, NY 14642 , USA
| | - Bradford Z Mahon
- 3 Department of Psychology, Carnegie Mellon University , Pittsburgh, PA 15206 , USA.,4 Department of Neurology, University of Rochester Medical Center , Rochester, NY 14642 , USA.,6 Department of Neurosurgery, University of Rochester Medical Center , Rochester, NY 14642 , USA.,8 Center for Visual Science, University of Rochester , Rochester, NY 14642 , USA
| |
Collapse
|
14
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Geeraerts E, Claes M, Dekeyster E, Salinas-Navarro M, De Groef L, Van den Haute C, Scheyltjens I, Baekelandt V, Arckens L, Moons L. Optogenetic Stimulation of the Superior Colliculus Confers Retinal Neuroprotection in a Mouse Glaucoma Model. J Neurosci 2019; 39:2313-2325. [PMID: 30655352 PMCID: PMC6433760 DOI: 10.1523/jneurosci.0872-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/15/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs) in the eye, which ultimately results in visual impairment or even blindness. Because current therapies often fail to halt disease progression, there is an unmet need for novel neuroprotective therapies to support RGC survival. Various research lines suggest that visual target centers in the brain support RGC functioning and survival. Here, we explored whether increasing neuronal activity in one of these projection areas could improve survival of RGCs in a mouse glaucoma model. Prolonged activation of an important murine RGC target area, the superior colliculus (SC), was established via a novel optogenetic stimulation paradigm. By leveraging the unique channel kinetics of the stabilized step function opsin (SSFO), protracted stimulation of the SC was achieved with only a brief light pulse. SSFO-mediated collicular stimulation was confirmed by immunohistochemistry for the immediate-early gene c-Fos and behavioral tracking, which both demonstrated consistent neuronal activity upon repeated stimulation. Finally, the neuroprotective potential of optogenetic collicular stimulation was investigated in mice of either sex subjected to a glaucoma model and a 63% reduction in RGC loss was found. This work describes a new paradigm for optogenetic collicular stimulation and a first demonstration that increasing target neuron activity can increase survival of the projecting neurons.SIGNIFICANCE STATEMENT Despite glaucoma being a leading cause of blindness and visual impairment worldwide, no curative therapies exist. This study describes a novel paradigm to reduce retinal ganglion cell (RGC) degeneration underlying glaucoma. Building on previous observations that RGC survival is supported by the target neurons to which they project and using an innovative optogenetic approach, we increased neuronal activity in the mouse superior colliculus, a main projection target of rodent RGCs. This proved to be efficient in reducing RGC loss in a glaucoma model. Our findings establish a new optogenetic paradigm for target stimulation and encourage further exploration of the molecular signaling pathways mediating retrograde neuroprotective communication.
Collapse
Affiliation(s)
- Emiel Geeraerts
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Eline Dekeyster
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Manuel Salinas-Navarro
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
- Viral Vector Core Leuven, KU Leuven, 3000 Leuven, Belgium, and
| | - Isabelle Scheyltjens
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology; KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology; KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium,
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Huang HM, Huang CC, Tsai MH, Poon YC, Chang YC. Systemic 7,8-Dihydroxyflavone Treatment Protects Immature Retinas Against Hypoxic-Ischemic Injury via Müller Glia Regeneration and MAPK/ERK Activation. Invest Ophthalmol Vis Sci 2019; 59:3124-3135. [PMID: 30025123 DOI: 10.1167/iovs.18-23792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Perinatal hypoxic-ischemic (HI) injury causes significant damages in the immature retina. The brain-derived neurotrophic factor is well known for its neuroprotective role but has limited clinical applications. A selective agonist of tyrosine kinase receptor B, 7,8-dihydroxyflavone (DHF), is a powerful therapeutic tool, when administered systemically. However, it remains unclear whether DHF treatment can protect the immature retinas against HI injury. Methods Postnatal (P) day 7 rat pups were intraperitoneally injected with DHF or vehicle 2 hours before and 18 hours after being subjected to HI injury. The outcomes were assessed at various timepoints after injury by electroretinography and histologic examinations. Neurogenesis was assessed by double-labeling of retinal sections with 5-bromo-2'-deoxyuridine and different neuronal markers. Results At P8, 24-hours postinjury, brain-derived neurotrophic factor mRNA levels in the retina decreased significantly. DHF treatment partially protected immature retinas at both histologic and functional levels between P14 and P30 but did not prevent apoptosis, inflammation, or damage of the blood-retinal barrier (BRB) at P8. On the other hand, DHF treatment promoted the survival of proliferating inner retinal cells, including Müller glia, and enhanced their transdifferentiation to bipolar cells at P17. Moreover, DHF treatment rescued the levels of extracellular signal-regulated kinase (ERK) phosphorylation, which were significantly decreased after injury. The neuroprotective effects of DHF were markedly eliminated by inhibition of ERK phosphorylation. Conclusions Early systemic DHF treatment has neuroprotective effects against HI injury in immature retinas, possibly via promoting neurogenesis through the tyrosine kinase receptor B/ERK signaling pathway. Chinese Abstract.
Collapse
Affiliation(s)
- Hsiu-Mei Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, No.1, Tainan City, Taiwan.,Department of Pediatrics, Taipei Medical University, College of Medicine, Taipei City, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Yi-Chieh Poon
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| |
Collapse
|
17
|
Ali Shariati M, Kumar V, Yang T, Chakraborty C, Barres BA, Longo FM, Liao YJ. A Small Molecule TrkB Neurotrophin Receptor Partial Agonist as Possible Treatment for Experimental Nonarteritic Anterior Ischemic Optic Neuropathy. Curr Eye Res 2018; 43:1489-1499. [PMID: 30273053 PMCID: PMC10710940 DOI: 10.1080/02713683.2018.1508726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) and activation of its high affinity receptor tropomyosin kinase (Trk) B promote retinal ganglion cells (RGCs) survival following injury. In this study, we tested the effects of LM22A-4, a small molecule TrkB receptor-specific partial agonist, on RGC survival in vitro and in experimental nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years. METHODS We assessed drug effects on immunopanned, cultured RGCs and calculated RGC survival and assessed TrkB receptor activation by mitogen-activated protein (MAP) kinase translocation. To assess effects in vivo, we induced murine AION and treated the animals with one intravitreal injection and three-week systemic treatment. We measured drug effects using serial spectral-domain optical coherence tomography (OCT) and quantified retinal Brn3A+ RGC density three weeks after ischemia. RESULTS In vitro, LM22A-4 significantly increased the survival of cultured RGCs at day 2 (95% CI control: 8.4-13.6; LM22A-4: 23.7-30.3; BDNF: 24.3-29.9; P ≤ 0.0001), similar to the effect of the endogenous TrkB receptor ligand BDNF. There was also significant nuclear and cytoplasmic translocation of MAP kinase (95% CI control: 0.9-6.8; LM22A-4: 38.8-84.4; BDNF: 64.0-93.0; P = 0.0002), a known downstream event of TrkB receptor activation. Following AION, LM22A-4 treatment led to significant preservation of the ganglion cell complex (95% CI: AION-PBS: 66.8-70.7%; AION-LM22A-4: 70.0-73.1; P = 0.03) and total retinal thickness (95% CI: AION-PBS: 185-196%; AION-LM22A-4: 195-203; P = 0.002) as measured by OCT compared with non-treated eyes. There was also significant rescue of the Brn3A+ RGC density on morphometric analysis of whole mount retinae (95% CI control: 2360-2629; AION-PBS: 1647-2008 cells/mm2; AION-LM22A-4: 1958-2216 cells/mm2; P = 0.02). CONCLUSIONS TrkB receptor partial agonist LM22A-4 promoted survival of cultured RGCs in vitro by TrkB receptor activation, and treatment in vivo led to increased survival of RGCs after optic nerve ischemia, providing support that LM22A-4 may be effective therapy to treat ischemic optic neuropathy. ABBREVIATIONS AION: anterior ischemic optic neuropathy, BDNF: Brain-derived neurotrophic factor, GCC: ganglion cell complex, MAP: mitogen-activated protein, OCT: spectral-domain optical coherence tomography, OD: right eye, ON: optic nerve, ONH: optic nerve head, OS: left eye, RGC: retinal ganglion cell; Trk: tropomyosin kinase.
Collapse
Affiliation(s)
- Mohammad Ali Shariati
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Varun Kumar
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Tao Yang
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | | | - Ben Anthony Barres
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Frank Michael Longo
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Yaping Joyce Liao
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
18
|
Mysona BA, Zhao J, Smith S, Bollinger KE. Relationship between Sigma-1 receptor and BDNF in the visual system. Exp Eye Res 2018; 167:25-30. [PMID: 29031856 PMCID: PMC5757370 DOI: 10.1016/j.exer.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Glaucoma is an incurable optic neuropathy characterized by dysfunction and death of retinal ganglion cells (RGCs). Brain derived neurotrophic factor (BDNF) is an essential neurotrophin that supports RGC function and survival. Despite BDNF's importance, our knowledge of molecular mechanisms that modulate BDNF processing and secretion is incomplete. Sigma-1 receptor (S1R) is associated with increased BDNF in hippocampus and with BDNF secretion by brain-derived astrocytes and neuronal cell lines. Much less is known about the relationship between S1R and BDNF in the visual system. Here, we examine how S1R activation and deletion alter expression of mature BDNF (mBDNF) and proBDNF in retina and cultured optic nerve head (ONH) astrocytes. For S1R activation, the S1R agonist (+)-pentazocine (PTZ, 0.5 mg/kg) was administered by intraperitoneal injection to C57BL/6J mice, 3 times per week, for 5 weeks. Expression of proBDNF and mBDNF was also examined in S1R knockout and age-matched C57BL/6J mice. In vitro, cultured ONH astrocytes were treated with 3 μM PTZ for 24 h followed by collection of media and ONH astrocyte lysates. Results showed that treatment with (+)-PTZ increased mBDNF protein in both retina and hippocampus. In contrast, S1R deletion was associated with retinal mBDNF deficits. In ONH astrocytes S1R agonist (+)-PTZ significantly increased levels of secreted BDNF and proBDNF in cell lysates. These findings support a role for S1R in the modulation of BDNF levels within the retina and optic nerve head. Treatment with S1R agonists might provide benefit in diseases such as glaucoma by increasing BDNF levels from endogenous sources.
Collapse
Affiliation(s)
- Barbara A Mysona
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Jing Zhao
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Sylvia Smith
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Kathryn E Bollinger
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
19
|
Feng L, Chen H, Yi J, Troy JB, Zhang HF, Liu X. Long-Term Protection of Retinal Ganglion Cells and Visual Function by Brain-Derived Neurotrophic Factor in Mice With Ocular Hypertension. Invest Ophthalmol Vis Sci 2017; 57:3793-802. [PMID: 27421068 PMCID: PMC4961002 DOI: 10.1167/iovs.16-19825] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose Glaucoma, frequently associated with elevated intraocular pressure (IOP), is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Brain-derived neurotrophic factor (BDNF) has been studied as a candidate for neuroprotection in rodent models of experimental glaucoma, yet it remains to be determined whether BDNF exerts long-term protection for subtype RGCs and vision against chronic IOP elevation. Methods We induced modest and sustained IOP elevation by laser illumination and microbead injection in mice. Using a tamoxifen-induced Cre recombinase system, BDNF was upregulated in the mouse retina when sustained IOP elevation was induced. We then examined whether overexpression of BDNF protected RGCs and vision during the period of ocular hypertension. Given that BDNF modulates axon growth and dendritic formation in a subtype-dependent manner, we tested whether BDNF protects RGC dendritic structure against the hypertensive insult also in a subtype-dependent manner. Results Sustained IOP elevation was induced and lasted up to 6 months. Overexpression of BDNF delayed progressive RGC and axon loss in hypertensive eyes. Brain-derived neurotrophic factor overexpression also helped to preserve acuity against the chronic hypertensive insult. We classified RGCs into ON and ON–OFF subtypes based on their dendritic lamination pattern in the inner plexiform layer and found that BDNF prevented ON–RGC dendritic degeneration in mice with sustained ocular hypertension. Conclusions Our data demonstrated that BDNF can protect the dendritic fields of ON RGCs and reduce RGC and vision loss in mice with sustained ocular hypertension.
Collapse
Affiliation(s)
- Liang Feng
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States 2Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| | - Hui Chen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Ji Yi
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - John B Troy
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Hao F Zhang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States 3Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Il
| | - Xiaorong Liu
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States 2Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| |
Collapse
|
20
|
Lambert WS, Carlson BJ, Formichella CR, Sappington RM, Ahlem C, Calkins DJ. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma. Front Neurosci 2017; 11:45. [PMID: 28223915 PMCID: PMC5293777 DOI: 10.3389/fnins.2017.00045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright degeneration, and preventing these deficits is efficacious at abating subsequent progression. HE3286 is a synthetic sterol derivative that has shown therapeutic promise in models of inflammatory disease and neurodegenerative disease. We examined the efficacy of HE3286 oral delivery in preventing loss of anterograde transport in an inducible model of glaucoma (microbead occlusion). Adult rats received HE3286 (20 or 100 mg/kg) or vehicle daily via oral gavage for 4 weeks. Microbead occlusion elevated IOP ~30% in all treatment groups, and elevation was not affected by HE3286 treatment. In the vehicle group, elevated IOP reduced anterograde axonal transport to the superior colliculus, the most distal site in the optic projection, by 43% (p = 0.003); HE3286 (100 mg/kg) prevented this reduction (p = 0.025). HE3286 increased brain-derived neurotrophic factor (BDNF) in the optic nerve head and retina, while decreasing inflammatory and pathogenic proteins associated with elevated IOP compared to vehicle treatment. Treatment with HE3286 also increased nuclear localization of the transcription factor NFκB in collicular and retinal neurons, but decreased NFκB in glial nuclei in the optic nerve head. Thus, HE3286 may have a neuroprotective influence in glaucoma, as well as other chronic neurodegenerations.
Collapse
Affiliation(s)
- Wendi S Lambert
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Brian J Carlson
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Cathryn R Formichella
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Rebecca M Sappington
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | | | - David J Calkins
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| |
Collapse
|
21
|
Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice. eNeuro 2017; 4:eN-NWR-0331-16. [PMID: 28101532 PMCID: PMC5240030 DOI: 10.1523/eneuro.0331-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/18/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin essential for neuron survival and function, plays an important role in neuroprotection during neurodegenerative diseases. In this study, we examined whether a modest increase of retinal BDNF promotes retinal ganglion cell (RGC) survival after acute injury of the optic nerve in mice. We adopted an inducible Cre-recombinase transgenic system to up-regulate BDNF in the mouse retina and then examined RGC survival after optic nerve crush by in vivo imaging. We focused on one subtype of RGC with large soma expressing yellow fluorescent protein transgene that accounts for ∼11% of the total SMI-32-positive RGCs. The median survival time of this subgroup of SMI-32 cells was 1 week after nerve injury in control mice but 2 weeks when BDNF was up-regulated. Interestingly, we found that the survival time for RGCs taken as a whole was 2 weeks, suggesting that these large-soma RGCs are especially vulnerable to optic nerve crush injury. We also studied changes in axon number using confocal imaging, confirming first the progressive loss reported previously for wild-type mice and demonstrating that BDNF up-regulation extended axon survival. Together, our results demonstrate that the time course of RGC loss induced by optic nerve injury is type specific and that overexpression of BDNF prolongs the survival of one subgroup of SMI-32-positive RGCs.
Collapse
|
22
|
Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF. Glaucoma: the retina and beyond. Acta Neuropathol 2016; 132:807-826. [PMID: 27544758 PMCID: PMC5106492 DOI: 10.1007/s00401-016-1609-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Over 60 million people worldwide are diagnosed with glaucomatous optic neuropathy, which is estimated to be responsible for 8.4 million cases of irreversible blindness globally. Glaucoma is associated with characteristic damage to the optic nerve and patterns of visual field loss which principally involves the loss of retinal ganglion cells (RGCs). At present, intraocular pressure (IOP) presents the only modifiable risk factor for glaucoma, although RGC and vision loss can continue in patients despite well-controlled IOP. This, coupled with the present inability to diagnose glaucoma until relatively late in the disease process, has led to intense investigations towards the development of novel techniques for the early diagnosis of disease. This review outlines our current understanding of the potential mechanisms underlying RGC and axonal loss in glaucoma. Similarities between glaucoma and other neurodegenerative diseases of the central nervous system are drawn before an overview of recent developments in techniques for monitoring RGC health is provided, including recent progress towards the development of RGC specific contrast agents. The review concludes by discussing techniques to assess glaucomatous changes in the brain using MRI and the clinical relevance of glaucomatous-associated changes in the visual centres of the brain.
Collapse
Affiliation(s)
| | - Laura Crawley
- Western Eye Hospital, Imperial College Healthcare NHS Trust, 153-173 Marylebone Road, London, UK
| | | | - Fatimah Javaid
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK.
- Western Eye Hospital, Imperial College Healthcare NHS Trust, 153-173 Marylebone Road, London, UK.
| |
Collapse
|
23
|
Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: Therapeutic implications for glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:69-81. [PMID: 28751923 DOI: 10.1080/17469899.2017.1259566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neuroprotective therapeutics are needed to treat glaucoma, an optic neuropathy that results in death of retinal ganglion cells (RGCs). AREAS COVERED The BDNF/TrkB pathway is important for RGC survival. Temporal and spatial alterations in the BDNF/TrkB pathway occur in development and in response to acute optic nerve injury and to glaucoma. In animal models, BDNF supplementation is successful at slowing RGC death after acute optic nerve injury and in glaucoma, however, the BDNF/TrkB signaling is not the only pathway supporting long term RGC survival. EXPERT COMMENTARY Much remains to be discovered about the interaction between retrograde, anterograde, and retinal BDNF/TrkB signaling pathways in both neurons and glia. An ideal therapeutic agent for glaucoma likely has several modes of action that target multiple mechanisms of neurodegeneration including the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- B A Mysona
- Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Augusta University Department of Cellular Biology and Anatomy, Health Sciences Campus, 1120 15th Street, Augusta, GA 30912, USA,
| | - J Zhao
- Medical College of Georgia, Department of Ophthalmology at Augusta University, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| | - K E Bollinger
- Medical College of Georgia, Department of Ophthalmology at Augusta University, Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| |
Collapse
|
24
|
Liu R, Wang Y, Pu M, Gao J. Effect of alpha lipoic acid on retinal ganglion cell survival in an optic nerve crush model. Mol Vis 2016; 22:1122-1136. [PMID: 27703307 PMCID: PMC5040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/21/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This study was conducted to determine whether alpha lipoic acid (ALA) promotes the survival of retinal ganglion cells (RGCs) in a rat model of optic nerve crush (ONC) injury and to investigate the neuroprotective mechanisms of ALA in the retina in this ONC injury model. METHODS Adult male Sprague-Dawley rats (180-220 g) were subjected to ONC injury surgery. ALA (63 mg/kg) was injected intravenously 1 day before or after the ONC injury. Animals were euthanized after 10 days, and the number of ganglion cells positive for RNA-binding protein with multiple splicing (Rbpms), which is an RGC marker, were counted on the whole mount retinas. In addition, immunofluorescence and immunoblotting were performed to examine the localization and levels of erythropoietin receptor (EPOR) and neurotrophin-4/5 (NT4/5) in the retinas in all experimental groups. To determine whether the EPO/EPOR signaling pathway was involved in the ALA antioxidant pathway, the rats were subjected to ruxolitinib (INCB018424, 0.25 mg/kg, bid, intraperitoneal, i.p.) treatment after the animals were injected intravenously with ALA 1 day before ONC injury. RESULTS The average number of Rbpms-positive cells/mm2 in the control group (sham-operated group), the ONC group, the ALA-ONC group, and the ONC-ALA group retinas was 2219±28, 418±8, 848±22, and 613±18/mm2, respectively. The ALA-ONC and ONC-ALA groups showed a statistically significantly increased RGC survival rate compared to the ONC group. There were statistical differences in the RGC survival rates between the ALA-ONC (39%) and ONC-ALA groups (28%; p<0.05). Immunofluorescent labeling showed that EPOR and NT4/5 expression was significant in the retinal ganglion cell layer (GCL). At the same time, western blot analysis revealed that ALA induced upregulation of EPOR protein and NT4/5 protein expression in the retina after ONC injury. However, INCB018424 reversed the protective effects of ALA on the ONC retinas. CONCLUSIONS ALA has neuroprotective effects on RGCs after ONC injury. Moreover, prophylactic administration of ALA may have a stronger neuroprotective effect against ONC-induced damage. Based on these data, we also conclude that the endogenous EPO/EPOR signaling pathway may contribute to the protective effects of ALA in the retina after ONC injury.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Yanling Wang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Jie Gao
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
25
|
Wang Y, Wang W, Liu J, Huang X, Liu R, Xia H, Brecha NC, Pu M, Gao J. Protective Effect of ALA in Crushed Optic Nerve Cat Retinal Ganglion Cells Using a New Marker RBPMS. PLoS One 2016; 11:e0160309. [PMID: 27504635 PMCID: PMC4978478 DOI: 10.1371/journal.pone.0160309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023] Open
Abstract
In this study we first sought to determine whether RNA-binding protein with multiple splicing (RBPMS) can serve as a specific marker for cat retina ganglion cells (RGCs) using retrograde labeling and immunohistochemistry staining. RBPM was then used as an RGC marker to study RGC survival after optic nerve crush (ONC) and alpha-lipoic acid (ALA) treatment in cats. ALA treatment yielded a peak density of RBPMS-alpha cells within the peak isodensity zone (>60/mm2) which did not differ from ONC retinas. The area within the zone was significantly enlarged (control: 2.3%, ONC: 0.06%, ONC+ALA: 0.1%). As for the 10-21/mm2 zone, ALA treatment resulted in a significant increase in area (control: 34.5%, ONC: 12.1%, ONC+ALA: 35.9%). ALA can alleviate crush-induced RGC injury.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Wenyao Wang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Jessica Liu
- Department of Neurobiology and Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, California, United States of America
- Jules Stein Eye Institute, UCLA, Los Angeles, California, United States of America
- UCLA College of Life Sciences, University of California, Los Angeles, CA, United States of America
| | - Xin Huang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Ruixing Liu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Huika Xia
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Nicholas C. Brecha
- Department of Neurobiology and Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, California, United States of America
- Jules Stein Eye Institute, UCLA, Los Angeles, California, United States of America
- UCLA College of Life Sciences, University of California, Los Angeles, CA, United States of America
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Jie Gao
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Foldvari M, Chen DW. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy. Neural Regen Res 2016; 11:875-7. [PMID: 27482199 PMCID: PMC4962568 DOI: 10.4103/1673-5374.184448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Regeneration of damaged retinal ganglion cells (RGC) and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufficient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also discuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efficient and representative in vitro models for rapid and reliable screening in the drug development process.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
27
|
Central visual pathways in glaucoma: evidence for distal mechanisms of neuronal self-repair. J Neuroophthalmol 2016; 35 Suppl 1:S29-37. [PMID: 26274834 DOI: 10.1097/wno.0000000000000291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As in other age-related neurodegenerative diseases, progression of neurodegeneration in glaucoma involves early axonopathy. In glaucoma, this is marked by degradation of active transport along retinal ganglion cell (RGC) axons projecting from the retina to the brain. In experimental systems, transport degradation occurs first in the most distal site in the RGC projection, the superior colliculus (SC) of the midbrain. Even as degradation progresses from one retinotopic sector to the next, important structures in the affected sectors persist, including synapses from RGC axon terminals onto SC neurons. This structural persistence is accompanied by focally increased brain-derived neurotrophic factor in hypertrophic SC astrocyte glia and defines a therapeutic window of opportunity. Thus, central brain structures in glaucoma may respond to disease-relevant stress by induction of mechanisms useful for maintaining retinal signals.
Collapse
|
28
|
Afarid M, Torabi-Nami M, Zare B. Neuroprotective and restorative effects of the brain-derived neurotrophic factor in retinal diseases. J Neurol Sci 2016; 363:43-50. [PMID: 27000219 DOI: 10.1016/j.jns.2016.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/16/2016] [Accepted: 02/10/2016] [Indexed: 01/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin proposed to be implicated in ameliorating the course of some neurodegenerative disorders. Given the fact that retina is considered as an out-pouching of the central nervous system, its related diseases have long been suggested to receive protective influence from this signaling molecule. The role of BDNF in retinal neurorestoration, neuroprotection and oxidative stress has extensively been tested over the past two decades. Nonetheless, almost the entire related literature root in animal studies and clinical research on this topic is lacking. Although much of the evidence have validated the protective properties of BDNF against various retinal cell diseases, bringing such insights into clinical context would depend on further well-designed research. The present review is an attempt to categorize and discuss the available evidence with regard to the BDNF and retinal diseases.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Department of Ophthalmology, Poostchi Eye Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Torabi-Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bijan Zare
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man. Exp Eye Res 2015; 141:171-8. [DOI: 10.1016/j.exer.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/13/2023]
|
30
|
Mesenchymal stem cells secrete brain-derived neurotrophic factor and promote retinal ganglion cell survival after traumatic optic neuropathy. J Craniofac Surg 2015; 26:548-52. [PMID: 25723663 DOI: 10.1097/scs.0000000000001348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The study aimed to investigate whether intravitreal injection of mesenchymal stem cells (MSCs) cultivated in vitro could increase the number of survived retinal ganglion cells (RGCs) after traumatic optic neuropathy and sought to identify potential mechanisms underlying such growth. METHODS The right eye of 24 cats in the MSC transplantation group accepted intravitreal injection of MSCs, and the other 24 cats in the phosphate buffer (PBS) control group received isotonic saline after traumatic optic neuropathy. The RGCs' survival rate in separated retinal and brain-derived neurotrophic factor (BDNF) expression were observed by Dil labeling and Enzyme-Linked Immuno Sorbent Assay (ELISA), respectively, at 3, 7, 14, and 28 days after transplantation. RESULTS Quantitative analysis showed that RGCs were significantly attenuated at 3, 7, 14, and 28 days after transplantation in both areas of the retina (peripheral, P7d = 0.0011, P14d < 0.001, P28d < 0.001; central, P3d = 0.0437, P7d = 0.0067, P14d < 0.001, P28d < 0.001). Mean density of RGCs in the MSC transplantation group was significantly higher than that of the PBS control group after 14 days of treatment (P < 0.001). The homogenates BDNF (hBDNF) in the MSC transplantation group was obviously higher than that in the PBS control group at 14 and 28 days (P < 0.05). CONCLUSIONS The MSCs transplanted into the retina of cats can slow down RGC apoptosis and steadily express BDNF. The MSC-mediated neuroprotection after optic nerve injury may be related to BNDF.
Collapse
|
31
|
Dekeyster E, Geeraerts E, Buyens T, Van den Haute C, Baekelandt V, De Groef L, Salinas-Navarro M, Moons L. Tackling Glaucoma from within the Brain: An Unfortunate Interplay of BDNF and TrkB. PLoS One 2015; 10:e0142067. [PMID: 26560713 PMCID: PMC4641732 DOI: 10.1371/journal.pone.0142067] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/17/2015] [Indexed: 11/18/2022] Open
Abstract
According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC) degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC) or laser induced ocular hypertension (OHT). Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF) was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), were examined in the mouse retina and superior colliculus (SC) upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in future neuroprotective strategies.
Collapse
Affiliation(s)
- Eline Dekeyster
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tom Buyens
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuel Salinas-Navarro
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
32
|
Ho LC, Wang B, Conner IP, van der Merwe Y, Bilonick RA, Kim SG, Wu EX, Sigal IA, Wollstein G, Schuman JS, Chan KC. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT. Invest Ophthalmol Vis Sci 2015; 56:3788-800. [PMID: 26066747 DOI: 10.1167/iovs.14-15552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). METHODS Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. RESULTS In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. CONCLUSIONS Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye-brain relationships and structural-physiological relationships in the visual system after ERI.
Collapse
Affiliation(s)
- Leon C Ho
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Bo Wang
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Ian P Conner
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Richard A Bilonick
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 6McGowan Institute for Regenerative
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ian A Sigal
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 5Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pi
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| |
Collapse
|
33
|
Tang AD, Makowiecki K, Bartlett C, Rodger J. Low intensity repetitive transcranial magnetic stimulation does not induce cell survival or regeneration in a mouse optic nerve crush model. PLoS One 2015; 10:e0126949. [PMID: 25993112 PMCID: PMC4438867 DOI: 10.1371/journal.pone.0126949] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 11/29/2022] Open
Abstract
Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study examined the effect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilateral intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immunohistochemistry was used to assess RGC survival (β-3 Tubulin) and axon regeneration across the injury (GAP43). Additionally, BDNF expression was quantified in a separate cohort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regeneration did not occur. At 1 week, there was no significant difference in BDNF levels in the retina or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Although LI-rTMS has been shown to induce structural and molecular plasticity in the visual system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or regeneration following a complete optic nerve crush. These results help define the therapeutic capacity and limitations of LI-rTMS in the treatment of neurotrauma.
Collapse
Affiliation(s)
- Alexander D. Tang
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Kalina Makowiecki
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Carole Bartlett
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
- * E-mail:
| |
Collapse
|
34
|
Khalin I, Alyautdin R, Kocherga G, Bakar MA. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. Int J Nanomedicine 2015; 10:3245-67. [PMID: 25995632 PMCID: PMC4425321 DOI: 10.2147/ijn.s77480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration.
Collapse
Affiliation(s)
- Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Renad Alyautdin
- Scientific Centre for Expertise of Medical Application Products, Moscow, Russia
| | - Ganna Kocherga
- Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, Ukraine
| | - Muhamad Abu Bakar
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Sharma TP, Liu Y, Wordinger RJ, Pang IH, Clark AF. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis 2015; 6:e1661. [PMID: 25719245 PMCID: PMC4669798 DOI: 10.1038/cddis.2015.22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 12/11/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6–7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG–hNRN1 prior to ONC promoted RGC survival (450%, n=3–7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG–green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5–8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5–6, P<0.05) expression was observed within the optic nerves of the AAV2–hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- T P Sharma
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Y Liu
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - R J Wordinger
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - I-H Pang
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA
| | - A F Clark
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
36
|
Khalin IV, Musina NZ, Alyautdin RN, Romanov BK, Bunatyan ND. Prospects of Using Brain-Derived Neurotrophic Factor for the Treatment of Optic-Nerve Neuropathy (A Review). Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Domenici L, Origlia N, Falsini B, Cerri E, Barloscio D, Fabiani C, Sansò M, Giovannini L. Rescue of retinal function by BDNF in a mouse model of glaucoma. PLoS One 2014; 9:e115579. [PMID: 25536045 PMCID: PMC4275209 DOI: 10.1371/journal.pone.0115579] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022] Open
Abstract
Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs) and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP) elevation that mimics primary open-angle glaucoma (POAG). IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG) and visual cortical evoked potentials (VEP). RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl); the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks) and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks) were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.
Collapse
Affiliation(s)
- Luciano Domenici
- Neuroscience Institute of the National Council of Research (CNR), Pisa, Italy; Department of Applied Clinical Sciences and Biotechnology (DISCAB), University of L'Aquila, L'Aquila, Italy
| | - Nicola Origlia
- Neuroscience Institute of the National Council of Research (CNR), Pisa, Italy
| | - Benedetto Falsini
- Institute of Ophthalmology, Policlinico Gemelli, Catholic University, Rome, Italy
| | - Elisa Cerri
- Neuroscience Institute of the National Council of Research (CNR), Pisa, Italy
| | - Davide Barloscio
- Neuroscience Institute of the National Council of Research (CNR), Pisa, Italy
| | - Carlotta Fabiani
- Neuroscience Institute of the National Council of Research (CNR), Pisa, Italy
| | - Marco Sansò
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Giovannini
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
38
|
Chan KC, Kancherla S, Fan SJ, Wu EX. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI. Invest Ophthalmol Vis Sci 2014; 56:1-9. [PMID: 25491295 DOI: 10.1167/iovs.14-14287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. METHODS Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. RESULTS Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. CONCLUSIONS High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury.
Collapse
Affiliation(s)
- Kevin C Chan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Swarupa Kancherla
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
39
|
Li HY, Ruan YW, Ren CR, Cui Q, So KF. Mechanisms of secondary degeneration after partial optic nerve transection. Neural Regen Res 2014; 9:565-74. [PMID: 25206855 PMCID: PMC4146235 DOI: 10.4103/1673-5374.130093] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 01/23/2023] Open
Abstract
Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associated with secondary degeneration including apoptosis, necrosis, autophagy, oxidative stress, excitotoxicity, derangements in ionic homeostasis and calcium influx. Glial cells, such as microglia, astrocytes and oligodendrocytes, have also been demonstrated to take part in the process of secondary injury. Partial optic nerve transection is a useful model which was established about 13 years ago. The merit of this model compared with other optic nerve injury models used for glaucoma study, including complete optic nerve transection model and optic nerve crush model, is the possibility to separate primary degeneration from secondary degeneration in location. Therefore, it provides a good tool for the study of secondary degeneration. This review will focus on the research progress of the mechanisms of secondary degeneration using partial optic nerve transection model.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Ophthalmology, the University of Hong Kong, Hong Kong Special Administrative Region, China ; State Key Laboratory of Brain and Cognitive Science, the University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yi-Wen Ruan
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Chao-Ran Ren
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Qi Cui
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Department of Ophthalmology, the University of Hong Kong, Hong Kong Special Administrative Region, China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China ; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China ; State Key Laboratory of Brain and Cognitive Science, the University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
40
|
Nicholson JD, Leiba H, Goldenberg-Cohen N. Translational Preclinical Research may Lead to Improved Medical Management of Non-Arteritic Anterior Ischemic Optic Neuropathy. Front Neurol 2014; 5:122. [PMID: 25071709 PMCID: PMC4092366 DOI: 10.3389/fneur.2014.00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022] Open
Affiliation(s)
- James D Nicholson
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Petach Tikva , Israel ; Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Hana Leiba
- Department of Ophthalmology, Kaplan Medical Center , Rehovot , Israel ; Hebrew University Hadassah Medical Center , Jerusalem , Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Petach Tikva , Israel ; Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel ; Pediatric Ophthalmology Unit, Schneider Children's Medical Center of Israel , Petach Tikva , Israel
| |
Collapse
|
41
|
Weber AJ, Harman CD. BDNF treatment and extended recovery from optic nerve trauma in the cat. Invest Ophthalmol Vis Sci 2013; 54:6594-604. [PMID: 23989190 DOI: 10.1167/iovs.13-12683] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We examined the treatment period necessary to restore retinal and visual stability following trauma to the optic nerve. METHODS Cats received unilateral optic nerve crush and no treatment (NT), treatment of the injured eye with brain-derived neurotrophic factor (BDNF), or treatment of the injured eye combined with treatment of visual cortex for 2 or 4 weeks. After 1-, 2-, 4-, or 6-week survival periods, pattern electroretinograms (PERGs) were obtained and retinal ganglion cell (RGC) survival determined. RESULTS In the peripheral retina, RGC survival for NT, eye only, and eye + cortex animals was 55%, 78%, and 92%, respectively, at 1 week, and 31%, 60%, and 93%, respectively, at 2 weeks. PERGs showed a similar pattern of improvement. After 4 weeks, RGC survival was 7%, 29%, and 53% in each group, with PERGs in the dual-treated animals similar to the 1- to 2-week animals. For area centralis (AC), the NT, eye only, and eye + cortex animals showed 47%, 78%, and 82% survival, respectively, at 2 weeks, and 13%, 54%, and 81% survival, respectively, at 4 weeks. Removing the pumps at 2 weeks resulted in ganglion cell survival levels of 76% and 74% in the AC at 4 and 6 weeks postcrush, respectively. The PERGs from 2-week treated, but 4- and 6-week survival animals were comparable to those of the 2-week animals. CONCLUSIONS Treating the entire central visual pathway is important following optic nerve trauma. Long-term preservation of central vision may be achieved with as little as 2 weeks of treatment using this approach.
Collapse
Affiliation(s)
- Arthur J Weber
- Department of Physiology, Neuroscience Training Program, Michigan State University, East Lansing, Michigan
| | | |
Collapse
|
42
|
Weber AJ. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 2013; 353:219-30. [DOI: 10.1007/s00441-013-1556-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
|
43
|
Munemasa Y, Kitaoka Y. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci 2013; 6:60. [PMID: 23316132 PMCID: PMC3540394 DOI: 10.3389/fncel.2012.00060] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022] Open
Abstract
Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON).
Collapse
Affiliation(s)
- Yasunari Munemasa
- Department of Ophthalmology, St. Marianna University School of Medicine Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
44
|
Crish SD, Dapper JD, MacNamee SE, Balaram P, Sidorova TN, Lambert WS, Calkins DJ. Failure of axonal transport induces a spatially coincident increase in astrocyte BDNF prior to synapse loss in a central target. Neuroscience 2012; 229:55-70. [PMID: 23159315 DOI: 10.1016/j.neuroscience.2012.10.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/04/2012] [Accepted: 10/24/2012] [Indexed: 01/07/2023]
Abstract
Failure of anterograde transport to distal targets in the brain is a common feature of neurodegenerative diseases. We have demonstrated in rodent models of glaucoma, the most common optic neuropathy, early loss of anterograde transport along the retinal ganglion cell (RGC) projection to the superior colliculus (SC) is retinotopic and followed by a period of persistence of RGC axon terminals and synapses through unknown molecular pathways. Here we use the DBA/2J mouse model of hereditary glaucoma and an acute rat model to demonstrate that retinotopically focal transport deficits in the SC are accompanied by a spatially coincident increase in brain-derived neurotrophic factor (BDNF), especially in hypertrophic astrocytes. These neurochemical changes occur prior to loss of RGC synapses in the DBA/2J SC. In contrast to BDNF protein, levels of Bdnf mRNA decreased with transport failure, even as mRNA encoding synaptic structures remained unchanged. In situ hybridization signal for Bdnf mRNA was the strongest in SC neurons, and labeling for the immature precursor pro-BDNF was very limited. Subcellular fractionation of SC indicated that membrane-bound BDNF decreased with age in the DBA/2J, while BDNF released from vesicles remained high. These results suggest that in response to diminished axonal function, activated astrocytes in the brain may sequester mature BDNF released from target neurons to counter stressors that otherwise would challenge survival of projection synapses.
Collapse
Affiliation(s)
- S D Crish
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, 11425 Langford Medical Research Building IV, 2213 Garland Avenue, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sánchez-Ramos C, Bonnin-Arias C, Guerrera MC, Calavia MG, Chamorro E, Montalbano G, López-Velasco S, López-Muñiz A, Germanà A, Vega JA. Light regulates the expression of the BDNF/TrkB system in the adult zebrafish retina. Microsc Res Tech 2012; 76:42-9. [PMID: 23070877 DOI: 10.1002/jemt.22133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Abstract
The retina of the adult zebrafish express brain-derived neurotrophic factor (BDNF) and its signaling receptor TrkB. This functional system is involved in the biology of the vertebrate retina and its expression is regulated by light. This study was designed to investigate the effects of cyclic (12 h light/12 h darkness) or continuous (24 h) exposure during 10 days to white light, white-blue light, and blue light, as well as of darkness, on the expression of BDNF and TrkB in the retina. BDNF and TrkB were assessed in the retina of adult zebrafish using quantitative real-time polymerase chain reaction and immunohistochemistry. Exposure to white, white-blue, and blue light causes a decrease of BDNF mRNA and of BDNF immunostaining, independently of the pattern of light exposition. Conversely, in the same experimental conditions, the expression of TrkB mRNA was upregulated and TrkB immunostaining increased. Exposition to darkness diminished BDNF and TrkB mRNAs, and abolished the immunostaining for BDNF but not modified that for TrkB. These results demonstrate the regulation of BDNF and TrkB by light in the retina of adult zebrafish and might contribute to explain some aspects of the complex pathophysiology of light-induced retinopathies.
Collapse
Affiliation(s)
- C Sánchez-Ramos
- Departamento de Óptica II (Optometría y Visión), Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang X, Li Y, He Y, Liang HS, Liu EZ. A novel animal model of partial optic nerve transection established using an optic nerve quantitative amputator. PLoS One 2012; 7:e44360. [PMID: 22973439 PMCID: PMC3433416 DOI: 10.1371/journal.pone.0044360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/03/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress. METHODOLOGY/PRINCIPAL FINDINGS In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm² (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75/mm² (46.16% survival rate) 2 weeks post surgery; 505.03±118.67/mm² (30.52% survival rate) 4 weeks post surgery; 436.86±76.36/mm² (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74/mm² (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury. CONCLUSIONS/SIGNIFICANCE The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Neurosurgery, NO.211 Hospital of PLA, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- * E-mail: (YL); (EZL)
| | - Yan He
- Department of Pathology, Basic Medical College, Harbin Medical University, Harbin, China
| | - Hong-Sheng Liang
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - En-Zhong Liu
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University, Harbin, China
- * E-mail: (YL); (EZL)
| |
Collapse
|
47
|
Alqawlaq S, Huzil JT, Ivanova MV, Foldvari M. Challenges in neuroprotective nanomedicine development: progress towards noninvasive gene therapy of glaucoma. Nanomedicine (Lond) 2012; 7:1067-83. [PMID: 22846092 DOI: 10.2217/nnm.12.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over the past decade the application of gene therapy of retinal diseases such as glaucoma has produced promising results. However, optic nerve regeneration and restoration of vision in patients with glaucoma is still far from reality. Neuroprotective approaches in the form of gene therapy may provide significant advantages, but are still limited by many factors both at the organ and cellular levels. In general, gene delivery systems for eye diseases range from simple eye drops and ointments to more advanced bio- and nanotechnology-based systems such as muco-adhesive systems, polymers, liposomes and ocular inserts. Most of these technologies were developed for front-of-the-eye ophthalmic therapies and are not applicable as back-of-the-eye delivery systems. Currently, only the invasive intravitreal injections are capable of successfully delivering genes to the retina. Here we review the challenges and possible strategies for the noninvasive gene therapy of glaucoma including the barriers in the eye and in neural cells, and present a cross-sectional view of gene delivery as it pertains to the prevention and treatment of glaucoma.
Collapse
Affiliation(s)
- Samih Alqawlaq
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - J Torin Huzil
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Marina V Ivanova
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
48
|
Schallek JB, McLellan GJ, Viswanathan S, Ts'o DY. Retinal intrinsic optical signals in a cat model of primary congenital glaucoma. Invest Ophthalmol Vis Sci 2012; 53:1971-81. [PMID: 22395886 DOI: 10.1167/iovs.11-8299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the impact of reduced inner retinal function and breed on intrinsic optical signals in cats. METHODS Retinal intrinsic optical signals were recorded from anesthetized cats with a modified fundus camera. Near infrared light (NIR, 700-900 nm) was used to illuminate the retina while a charge-coupled device (CCD) camera captured the NIR reflectance of the retina. Visible stimuli (540 nm) evoked patterned changes in NIR retinal reflectance. NIR intrinsic signals were compared across three subject groups: two Siamese cats with primary congenital glaucoma (PCG), a control Siamese cat without glaucoma, and a control group of seven normally pigmented cats. Intraocular pressure (IOP), pattern electroretinogram, and optical coherence tomography measurements were evaluated to confirm the inner retinal deficit in PCG cats. RESULTS Stimulus-evoked, NIR retinal reflectance signals were observed in PCG cats despite severe degeneration of the nerve fiber layer and inner retinal function. The time course, spectral dependence, and spatial profile of signals imaged in PCG cats were similar to signals measured from normal and Siamese control cats. CONCLUSIONS Despite increased IOP, reduced nerve fiber layer thickness and ganglion cell function, intrinsic optical signals persist in cats affected with PCG. The mechanisms giving rise to intrinsic signals remain despite inner retinal damage. Signal strength was reduced in all Siamese cats compared to controls, suggesting that reduced intrinsic signals in PCG cats represent a difference between breeds rather than loss of ganglion cells. These results corroborated previous findings that retinal ganglion cells are not the dominant source of intrinsic optical signals of the retina.
Collapse
Affiliation(s)
- Jesse B Schallek
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | | | |
Collapse
|
49
|
Nickells RW, Howell GR, Soto I, John SWM. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 2012; 35:153-79. [PMID: 22524788 DOI: 10.1146/annurev.neuro.051508.135728] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glaucoma is a complex neurodegenerative disorder that is expected to affect 80 million people by the end of this decade. Retinal ganglion cells (RGCs) are the most affected cell type and progressively degenerate over the course of the disease. RGC axons exit the eye and enter the optic nerve by passing through the optic nerve head (ONH). The ONH is an important site of initial damage in glaucoma. Higher intraocular pressure (IOP) is an important risk factor for glaucoma, but the molecular links between elevated IOP and axon damage in the ONH are poorly defined. In this review and focusing primarily on the ONH, we discuss recent studies that have contributed to understanding the etiology and pathogenesis of glaucoma. We also identify areas that require further investigation and focus on mechanisms identified in other neurodegenerations that may contribute to RGC dysfunction and demise in glaucoma.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
50
|
Pascale A, Drago F, Govoni S. Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharmacol Res 2012; 66:19-32. [PMID: 22433276 DOI: 10.1016/j.phrs.2012.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 01/01/2023]
Abstract
The retina is theater of a number of biochemical reactions allowing, within its layers, the conversion of light impulses into electrical signals. The axons of the last neuronal elements, the ganglion cells, form the optic nerve and transfer the signals to the brain. Therefore, an appropriate cellular communication, not only within the different retinal cells, but also between the retina itself and the other brain structures, is fundamental. One of the most diffuse pathologies affecting retinal function and communication, which thus reverberates in the whole visual system, is glaucoma. This insidious disease is characterized by a progressive optic nerve degeneration and sight loss which may finally lead to irreversible blindness. Nevertheless, the progressive nature of this pathology offers an opportunity for therapeutic intervention. To better understand the cellular processes implicated in the development of glaucoma useful to envision a targeted pharmacological strategy, this manuscript first examines the complex cellular and functional organization of the retina and subsequently identifies the targets sensitive to neurodegeneration. Within this context, high ocular pressure represents a key risk factor. However, recent literature findings highlight the concept that lowering ocular pressure is not enough to prevent/slow down glaucomatous damage, suggesting the importance of combining the hypotensive treatment with other pharmacological approaches, such as the use of neuroprotectants. Therefore, this important and more novel aspect is extensively considered in this review, also emphasizing the idea that the neuroprotective strategy should be extended to the entire visual system and not restricted to the retina.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|