1
|
von Bartheld CS, Chand A, Wang L. Prevalence and etiology of strabismus in Down syndrome: A systematic review and meta-analysis with a focus on ethnic differences in the esotropia/exotropia ratio. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.28.24318156. [PMID: 39649585 PMCID: PMC11623722 DOI: 10.1101/2024.11.28.24318156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Purpose We sought to determine the prevalence of strabismus and the esotropia/exotropia ratio in Down syndrome. Wide ranges of an increased strabismus prevalence have been reported and it is unclear by how much esotropia exceeds exotropia in people with Down syndrome. Methods We compiled in a systematic review and meta-analysis the results of over 100 studies that report the strabismus prevalence and ratio of esotropia/exotropia in cohorts of Down syndrome. We calculated the pooled global prevalence and established the geographical distribution of the strabismus prevalence and the esotropia/exotropia ratio. Results The ethnically-adjusted global prevalence of strabismus in Down syndrome is 30.2%. In subjects 15 years and older, the global prevalence is 53.2%, and the lifetime prevalence is 51.0%. In populations which normally have more esotropia than exotropia (e.g., Caucasians), Down syndrome subjects have a further increased bias towards esotropia. In populations which normally have more exotropia (e.g., West Africans, Asians and Hispanics), Down syndrome subjects have a significantly lower esotropia/exotropia ratio (3.21) than reported in Caucasians with Down syndrome (9.98). Conclusion Worldwide, about 1.81 million people with Down syndrome have strabismus: 1.42 million of them have esotropia, and 0.37 million have exotropia. Differences in the esotropia/exotropia ratio between ethnicities point to the orbital anatomy as a major contributing factor to the etiology of strabismus in Down syndrome. The narrow-set eyes (reduced orbital width) in Down syndrome favor esotropia over exotropia, especially in Caucasians, thus explaining why Down syndrome patients from different ethnicities have different prevalences of esotropia and exotropia.
Collapse
Affiliation(s)
- Christopher S. von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Avishay Chand
- Center of Biomedical Research Excellence in Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Lingchen Wang
- School of Public Health, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
2
|
Foster MJ, Chu J, Shaia J, Singh RP, Talcott KE. Prevalence and diversity of retinal disease in adults with Down syndrome. Eye (Lond) 2024:10.1038/s41433-024-03508-0. [PMID: 39613904 DOI: 10.1038/s41433-024-03508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
While epidemiologic data exists for some ophthalmic diseases in people with Down Syndrome (DS), like strabismus and amblyopia, no studies explore the prevalence of retinal disease in people with DS on a large scale. This study utilized a literature review and exploratory epidemiology analysis to examine patterns of retinal disease in people with DS. To evaluate previous studies on physiology and/or anatomy in retinal models representing DS or in the retinas of people with DS, all relevant terms related to Down Syndrome, retina, and retinal diseases were searched in PubMed and Scopus. Data from the health platform TriNetX was then utilized to determine the prevalence and prevalence odds ratio (POR) of retinal disorders, including diabetic retinopathy and age-related macular degeneration (AMD), within the U.S. adult population with DS. The final literature review included 28 of 535 screened studies and found that a DS diagnosis was associated with atypical retinal vascularization, retinal thickening, and abnormal neuronal development. Of 55,198,979 individuals included in the population study, 97,795 (0.18%) had a recorded DS diagnosis. Compared to the population without DS, the population with DS had significantly increased PORs for any retinal diagnosis (3.78, 95% CI 3.63-3.93), for 16 of 18 recorded individual retinal diagnoses, and for 4 of 5 major diagnostic categories, including diabetic retinopathy (2.56, 95% CI 2.33-2.82) and macular degeneration (4.01, 95% CI 3.42-4.71). The conclusion is that retinal anomalies common to people with DS likely contribute to higher rates of recorded retinal disease. However, future studies should evaluate this relationship.
Collapse
Affiliation(s)
- Michael J Foster
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Ophthalmology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jeffrey Chu
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jacqueline Shaia
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Martin Hospitals, Cleveland Clinic Florida, Stuart, FL, USA
- Cleveland Clinic Cole Eye Institute, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Katherine E Talcott
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Cole Eye Institute, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Liu J, Chen S, Huang G, Wen P, Zhou X, Wu Y. Trisomy 21-driven metabolite alterations are linked to cellular injuries in Down syndrome. Cell Mol Life Sci 2024; 81:112. [PMID: 38433139 PMCID: PMC10909777 DOI: 10.1007/s00018-024-05127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 01/14/2024] [Indexed: 03/05/2024]
Abstract
Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted cardiogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21's metabolic implications within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.
Collapse
Affiliation(s)
- Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Guiping Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Pengju Wen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Yueheng Wu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Akoto T, Li JJ, Estes AJ, Karamichos D, Liu Y. The Underlying Relationship between Keratoconus and Down Syndrome. Int J Mol Sci 2022; 23:ijms231810796. [PMID: 36142709 PMCID: PMC9503764 DOI: 10.3390/ijms231810796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Keratoconus (KC) is one of the most significant corneal disorders worldwide, characterized by the progressive thinning and cone-shaped protrusion of the cornea, which can lead to severe visual impairment. The prevalence of KC varies greatly by ethnic groups and geographic regions and has been observed to be higher in recent years. Although studies reveal a possible link between KC and genetics, hormonal disturbances, environmental factors, and specific comorbidities such as Down Syndrome (DS), the exact cause of KC remains unknown. The incidence of KC ranges from 0% to 71% in DS patients, implying that as the worldwide population of DS patients grows, the number of KC patients may continue to rise significantly. As a result, this review aims to shed more light on the underlying relationship between KC and DS by examining the genetics relating to the cornea, central corneal thickness (CCT), and mechanical forces on the cornea, such as vigorous eye rubbing. Furthermore, this review discusses KC diagnostic and treatment strategies that may help detect KC in DS patients, as well as the available DS mouse models that could be used in modeling KC in DS patients. In summary, this review will provide improved clinical knowledge of KC in DS patients and promote additional KC-related research in these patients to enhance their eyesight and provide suitable treatment targets.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Jiemin J. Li
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2015
| |
Collapse
|
5
|
Consorti A, Di Marco I, Sansevero G. Physical Exercise Modulates Brain Physiology Through a Network of Long- and Short-Range Cellular Interactions. Front Mol Neurosci 2021; 14:710303. [PMID: 34489641 PMCID: PMC8417110 DOI: 10.3389/fnmol.2021.710303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the effects of sedentary lifestyles have emerged as a critical aspect of modern society. Interestingly, recent evidence demonstrated that physical exercise plays an important role not only in maintaining peripheral health but also in the regulation of central nervous system function. Many studies have shown that physical exercise promotes the release of molecules, involved in neuronal survival, differentiation, plasticity and neurogenesis, from several peripheral organs. Thus, aerobic exercise has emerged as an intriguing tool that, on one hand, could serve as a therapeutic protocol for diseases of the nervous system, and on the other hand, could help to unravel potential molecular targets for pharmacological approaches. In the present review, we will summarize the cellular interactions that mediate the effects of physical exercise on brain health, starting from the factors released in myocytes during muscle contraction to the cellular pathways that regulate higher cognitive functions, in both health and disease.
Collapse
Affiliation(s)
- Alan Consorti
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
- NEUROFARBA, University of Florence, Florence, Italy
| | | | | |
Collapse
|
6
|
Victorino DB, Scott-McKean JJ, Johnson MW, Costa ACS. Quantitative Analysis of Retinal Structure and Function in Two Chromosomally Altered Mouse Models of Down Syndrome. Invest Ophthalmol Vis Sci 2020; 61:25. [PMID: 32416604 PMCID: PMC7405684 DOI: 10.1167/iovs.61.5.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Ophthalmic disorders are among the most prevalent Down syndrome (DS) comorbidities. Therefore, when studying mouse models of DS, ignoring how vision is affected can lead to misinterpretation of results from assessments dependent on the integrity of the visual system. Here, we used imaging and electroretinography (ERG) to study eye structure and function in two important mouse models of DS: Ts65Dn and Dp(16)1Yey/+. Methods Cornea and anterior segment were examined with a slit-lamp. Thickness of retinal layers was quantified by optical coherence tomography (OCT). Eye and lens dimensions were measured by magnetic resonance imaging (MRI). Retinal vasculature parameters were assessed by bright field and fluorescent imaging, and by retinal flat-mount preparations. Ganzfeld ERG responses to flash stimuli were used to assess retinal function in adult mice. Results Total retinal thickness is significantly increased in Ts65Dn and Dp(16)1Yey/+ compared with control mice, because of increased thickness of inner retinal layers, including the inner nuclear layer (INL). Increased retinal vessel caliber was found in both chromosomally altered mice when compared with controls. ERG responses in Ts65Dn and Dp(16)1Yey/+ mice showed subtle alterations compared with controls. These, however, seemed to be unrelated to the thickness of the INL, but instead dependent on the anesthetic agent used (ketamine, tribromoethanol, or urethane). Conclusions We provide evidence of retinal alterations in Ts65Dn and Dp(16)1Yey/+ mice that are similar to those reported in persons with DS. Our ERG results are also a reminder that consideration should be given to the choice of anesthetic agents in such experiments.
Collapse
|
7
|
From Basic Visual Science to Neurodevelopmental Disorders: The Voyage of Environmental Enrichment-Like Stimulation. Neural Plast 2019; 2019:5653180. [PMID: 31198418 PMCID: PMC6526521 DOI: 10.1155/2019/5653180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/06/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Genes and environmental stimuli cooperate in the regulation of brain development and formation of the adult neuronal architecture. Genetic alterations or exposure to perturbing environmental conditions, therefore, can lead to altered neural processes associated with neurodevelopmental disorders and brain disabilities. In this context, environmental enrichment emerged as a promising and noninvasive experimental treatment for favoring recovery of cognitive and sensory functions in different neurodevelopmental disorders. The aim of this review is to depict, mainly through the much explicative examples of amblyopia, Down syndrome, and Rett syndrome, the increasing interest in the potentialities and applications of enriched environment-like protocols in the field of neurodevelopmental disorders and the understanding of the molecular mechanisms underlying the beneficial effects of these protocols, which might lead to development of pharmacological interventions.
Collapse
|
8
|
Contestabile A, Magara S, Cancedda L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci 2017; 11:54. [PMID: 28326014 PMCID: PMC5339239 DOI: 10.3389/fncel.2017.00054] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.
Collapse
Affiliation(s)
- Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Salvatore Magara
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT)Genova, Italy; Dulbecco Telethon InstituteGenova, Italy
| |
Collapse
|
9
|
Cramer NP, Xu X, F Haydar T, Galdzicki Z. Altered intrinsic and network properties of neocortical neurons in the Ts65Dn mouse model of Down syndrome. Physiol Rep 2015; 3:3/12/e12655. [PMID: 26702072 PMCID: PMC4760451 DOI: 10.14814/phy2.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022] Open
Abstract
All individuals with Down syndrome (DS) have a varying but significant degree of cognitive disability. Although hippocampal deficits clearly play an important role, behavioral studies also suggest that deficits within the neocortex contribute to somatosensory deficits and impaired cognition in DS. Using thalamocortical slices from the Ts65Dn mouse model of DS, we investigated the intrinsic and network properties of regular spiking neurons within layer 4 of the somatosensory cortex. In these neurons, the membrane capacitance was increased and specific membrane resistance decreased in slices from Ts65Dn mice. Examination of combined active and passive membrane properties suggests that trisomic layer 4 neurons are less excitable than those from euploid mice. The frequencies of excitatory and inhibitory spontaneous synaptic activities were also reduced in Ts65Dn neurons. With respect to network activity, spontaneous network oscillations (Up states) were shorter and less numerous in the neocortex from Ts65Dn mice when compared to euploid. Up states evoked by electrical stimulation of the ventrobasal nucleus (VBN) of the thalamus were similarly affected in Ts65Dn mice. Additionally, monosynaptic EPSCs and polysynaptic IPSCs evoked by VBN stimulation were significantly delayed in layer 4 regular spiking neurons from Ts65Dn mice. These results indicate that, in the Ts65Dn model of DS, the overall electrophysiological properties of neocortical neurons are altered leading to aberrant network activity within the neocortex. Similar changes in DS individuals may contribute to sensory and cognitive dysfunction and therefore may implicate new targets for cognitive therapies in this developmental disorder.
Collapse
Affiliation(s)
- Nathan P Cramer
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xiufen Xu
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Begenisic T, Sansevero G, Baroncelli L, Cioni G, Sale A. Early environmental therapy rescues brain development in a mouse model of Down syndrome. Neurobiol Dis 2015; 82:409-419. [PMID: 26244989 DOI: 10.1016/j.nbd.2015.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/26/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023] Open
Abstract
Down syndrome (DS), the most common genetic disorder associated with intellectual disabilities, is an untreatable condition characterized by a number of developmental defects and permanent deficits in the adulthood. Ts65Dn mice, the major animal model for DS, display severe cognitive and synaptic plasticity defects closely resembling the human phenotype. Here, we employed a multidisciplinary approach to investigate, for the first time in developing Ts65Dn mice, the effects elicited by early environmental enrichment (EE) on brain maturation and function. We report that exposure to EE resulted in a robust increase in maternal care levels displayed by Ts65Dn mothers and led to a normalization of declarative memory abilities and hippocampal plasticity in trisomic offspring. The positive effects of EE on Ts65Dn phenotype were not limited to the cognitive domain, but also included a rescue of visual system maturation. The beneficial EE effects were accompanied by increased BDNF and correction of over-expression of the GABA vesicular transporter vGAT. These findings highlight the beneficial impact of early environmental stimuli and their potential for application in the treatment of major functional deficits in children with DS.
Collapse
Affiliation(s)
| | | | | | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris, University of Pisa, Calambrone, I-56100 Pisa, Italy
| | | |
Collapse
|
11
|
Liu HQ, Wei JK, Li B, Wang MS, Wu RQ, Rizak JD, Zhong L, Wang L, Xu FQ, Shen YY, Hu XT, Zhang YP. Divergence of dim-light vision among bats (order: Chiroptera) as estimated by molecular and electrophysiological methods. Sci Rep 2015; 5:11531. [PMID: 26100095 PMCID: PMC5155579 DOI: 10.1038/srep11531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
Dim-light vision is present in all bats, but is divergent among species. Old-World fruit bats (Pteropodidae) have fully developed eyes; the eyes of insectivorous bats are generally degraded, and these bats rely on well-developed echolocation. An exception is the Emballonuridae, which are capable of laryngeal echolocation but prefer to use vision for navigation and have normal eyes. In this study, integrated methods, comprising manganese-enhanced magnetic resonance imaging (MEMRI), f-VEP and RNA-seq, were utilized to verify the divergence. The results of MEMRI showed that Pteropodidae bats have a much larger superior colliculus (SC)/ inferior colliculus (IC) volume ratio (3:1) than insectivorous bats (1:7). Furthermore, the absolute visual thresholds (log cd/m(2)•s) of Pteropodidae (-6.30 and -6.37) and Emballonuridae (-3.71) bats were lower than those of other insectivorous bats (-1.90). Finally, genes related to the visual pathway showed signs of positive selection, convergent evolution, upregulation and similar gene expression patterns in Pteropodidae and Emballonuridae bats. Different results imply that Pteropodidae and Emballonuridae bats have more developed vision than the insectivorous bats and suggest that further research on bat behavior is warranted.
Collapse
Affiliation(s)
- He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jing-Kuan Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rui-Qi Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Joshua D. Rizak
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Zhong
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
| | - Lu Wang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
| | - Fu-Qiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yong-Yi Shen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, 515041, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| |
Collapse
|
12
|
Fernandez F, Reeves RH. Assessing cognitive improvement in people with Down syndrome: important considerations for drug-efficacy trials. Handb Exp Pharmacol 2015; 228:335-80. [PMID: 25977089 DOI: 10.1007/978-3-319-16522-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental research over just the past decade has raised the possibility that learning deficits connected to Down syndrome (DS) might be effectively managed by medication. In the current chapter, we touch on some of the work that paved the way for these advances and discuss the challenges associated with translating them. In particular, we highlight sources of phenotypic variability in the DS population that are likely to impact performance assessments. Throughout, suggestions are made on how to detect meaningful changes in cognitive-adaptive function in people with DS during drug treatment. The importance of within-subjects evaluation is emphasized.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,
| | | |
Collapse
|
13
|
Purpura G, Tinelli F, Bargagna S, Bozza M, Bastiani L, Cioni G. Effect of early multisensory massage intervention on visual functions in infants with Down syndrome. Early Hum Dev 2014; 90:809-13. [PMID: 25463825 DOI: 10.1016/j.earlhumdev.2014.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Down syndrome is a frequent cause of intellectual disability, with severe impact on the quality of life of affected individuals and their families, and high social costs. Intervention programs should start soon after birth but no consensus exists on specific types and timing of early interventions in this population. AIM This pilot study explores the effects of an early multi-sensory intervention, based on body massage, on the development of visual function in infants with Down syndrome. METHOD Infants were randomly allocated to either a massage or a control group. Intervention consisted of only standard care (Control Group) or standard care plus infant massage (Massaged Group). Visual acuity was assessed by Teller Acuity Cards and stereopsis by the Frisby Stereopsis Screening Test at 5, 6, 9 and 12 months. RESULTS Massaged Group Infants showed a significantly higher visual acuity at 6 months of age and an accelerated development up to at least 12 months; compared to Controls, stereopsis had an earlier onset in the Massaged Group followed by a faster maturation. CONCLUSION Environmental enrichment, in the tested form of infant massage, seems to affect maturation of visual functions in human infants, also in the presence of a genetic disability, when applied during a period of high brain plasticity.
Collapse
Affiliation(s)
- Giulia Purpura
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Pisa, Italy
| | - Stefania Bargagna
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Pisa, Italy
| | - Margherita Bozza
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Pisa, Italy
| | - Luca Bastiani
- Section of Epidemiology, CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy.
| |
Collapse
|
14
|
Abstract
Down syndrome (DS), which results from an extra copy of chromosome 21 (trisomy 21), is the most common genetically defined cause of intellectual disability. Although no pharmacotherapy aimed at counteracting the cognitive and adaptive deficits associated with this genetic disorder has been approved at present, there have been several new promising studies on pharmacological agents capable of rescuing learning/memory deficits seen in mouse models of DS. Here, we will review the available mouse models for DS and provide a comprehensive, albeit not exhaustive review of the following preclinical research strategies: (1) SOD1 and antioxidant agents; (2) APP and γ-secretase inhibitors; (3) DYRK1A and the polyphenol epigallocatechin gallate (EGCG); (4) GIRK2 and fluoxetine; (5) adrenergic receptor agonists; (6) modulation of GABAA and GABAB receptors; (7) agonism of the hedgehog signaling pathway; (8) nerve growth factor (NGF) and other neurotrophic factors; (9) anticholinesterase (AChE) agents; and (10) antagonism of NMDA receptors. Finally, we will review briefly five different strategies in DS that have led to clinical studies that either have been concluded or are currently underway: (1) antioxidant therapy; (2) AChE therapy; (3) green tea extract therapy; (4) RG1662 therapy; and (5) memantine therapy. These are exciting times in DS research. Within a decade or so, it is well into the realm of possibility that new forms of pharmacotherapies might become valuable tools in the armamentarium of developmental clinicians, as adjutants to more traditional and proven forms of habilitative interventions aimed at improving the quality of life of individuals with DS.
Collapse
|
15
|
Laguna A, Barallobre MJ, Marchena MÁ, Mateus C, Ramírez E, Martínez-Cue C, Delabar JM, Castelo-Branco M, de la Villa P, Arbonés ML. Triplication of DYRK1A causes retinal structural and functional alterations in Down syndrome. Hum Mol Genet 2013; 22:2775-84. [PMID: 23512985 DOI: 10.1093/hmg/ddt125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Down syndrome (DS) results from the triplication of approximately 300 human chromosome 21 (Hsa21) genes and affects almost all body organs. Children with DS have defects in visual processing that may have a negative impact on their daily life and cognitive development. However, there is little known about the genes and pathogenesis underlying these defects. Here, we show morphometric in vivo data indicating that the neural retina is thicker in DS individuals than in the normal population. A similar thickening specifically affecting the inner part of the retina was also observed in a trisomic model of DS, the Ts65Dn mouse. Increased retinal size and cellularity in this model correlated with abnormal retinal function and resulted from an impaired caspase-9-mediated apoptosis during development. Moreover, we show that mice bearing only one additional copy of Dyrk1a have the same retinal phenotype as Ts65Dn mice and normalization of Dyrk1a gene copy number in Ts65Dn mice completely rescues both, morphological and functional phenotypes. Thus, triplication of Dyrk1a is necessary and sufficient to cause the retinal phenotype described in the trisomic model. Our data demonstrate for the first time the implication of DYRK1A overexpression in a developmental alteration of the central nervous system associated with DS, thereby providing insights into the aetiology of neurosensorial dysfunction in a complex disease.
Collapse
Affiliation(s)
- Ariadna Laguna
- Department of Developmental Biology, Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kida E, Rabe A, Walus M, Albertini G, Golabek AA. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 2013. [DOI: 10.1016/j.expneurol.2012.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Begenisic T, Spolidoro M, Braschi C, Baroncelli L, Milanese M, Pietra G, Fabbri ME, Bonanno G, Cioni G, Maffei L, Sale A. Environmental enrichment decreases GABAergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of Down syndrome. Front Cell Neurosci 2011; 5:29. [PMID: 22207837 PMCID: PMC3245647 DOI: 10.3389/fncel.2011.00029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/12/2011] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice.
Collapse
|
18
|
Costa ACS. An assessment of the vestibulo-ocular reflex (VOR) in persons with Down syndrome. Exp Brain Res 2011; 214:199-213. [DOI: 10.1007/s00221-011-2820-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/29/2011] [Indexed: 12/01/2022]
|
19
|
Brain plasticity and disease: a matter of inhibition. Neural Plast 2011; 2011:286073. [PMID: 21766040 PMCID: PMC3134991 DOI: 10.1155/2011/286073] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/04/2011] [Indexed: 12/15/2022] Open
Abstract
One major goal in Neuroscience is the development of strategies promoting neural plasticity in the adult central nervous system, when functional recovery from brain disease and injury is limited. New evidence has underscored a pivotal role for cortical inhibitory circuitries in regulating plasticity both during development and in adulthood. This paper summarizes recent findings showing that the inhibition-excitation balance controls adult brain plasticity and is at the core of the pathogenesis of neurodevelopmental disorders like autism, Down syndrome, and Rett syndrome.
Collapse
|
20
|
Abstract
Down syndrome (DS) is a developmental disorder caused by a third chromosome 21 in humans (Trisomy 21), leading to neurological deficits and cognitive impairment. Studies in mouse models of DS suggest that cognitive deficits in the adult are associated with deficits in synaptic learning and memory mechanisms, but it is unclear whether alterations in the early wiring and refinement of neuronal circuits contribute to these deficits. Here, we show that early developmental refinement of visual circuits is perturbed in mouse models of Down syndrome. Specifically, we find excessive eye-specific segregation of retinal axons in the dorsal lateral geniculate nucleus. Indeed, the degree of refinement scales with defects in the "Down syndrome critical region" (DSCR) in a dose-dependent manner. We further identify Dscam (Down syndrome cell adhesion molecule), a gene within the DSCR, as a regulator of eye-specific segregation of retinogeniculate projections. Although Dscam is not the sole gene in the DSCR contributing to enhanced refinement in trisomy, Dscam dosage clearly regulates cell spacing and dendritic fasciculation in a specific class of retinal ganglion cells. Thus, altered developmental refinement of visual circuits that occurs before sensory experience is likely to contribute to visual impairment in individuals with Down syndrome.
Collapse
|