1
|
Qi X, Yang Y, Xiong D, Lin B, Wu S, Chen M, Jiang Z, Zhang Q. IL-37 Inhibits Inflammation of Lacrimal Gland in Dry Eye Mice via the IL-37-PTEN-NFκB Signaling Pathway. Ocul Immunol Inflamm 2024:1-10. [PMID: 39353047 DOI: 10.1080/09273948.2024.2409371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE This study aims to investigate the role of Interleukin-37 (IL-37) in mouse models of dry eye. METHODS Two murine models of dry eye were employed in this investigation. The evaluation of the anti-inflammatory impact of IL-37 (200 μl, 10 μg/ml) on dry eye mice involved intraperitoneal injections administered once daily for 7 days. Additionally, intraperitoneal injection of VO-Ohpic trihydrate (VO, 0.25 mg/kg) in dry eye mice was performed to investigate the role of PTEN in the IL-37 anti-inflammatory signaling pathway. Tear production was assessed using phenol red cotton thread, while corneal damage was examined through sodium fluorescein staining using a slit lamp. Histological alterations in the lacrimal gland were observed through H&E staining. PAS staining was used to assess conjunctival goblet cells. The levels of NFκB-P65, p-NFκB-P65, IL-1β, IL-6, TNF-α, CD3, AQP5, α-SMA and PTEN proteins were determined via Western blotting or immunofluorescence. RESULTS Following IL-37 treatment, both dry eye models exhibited reduced corneal fluorescence staining scores and enhanced tear production. In lacrimal gland, the expression of p-NFκB-P65, IL-1β, IL-6, CD3 and TNF-α was diminished, while PTEN, AQP5, α-SMA expression increased after IL-37 treatment in both dry eye mice. However, the intraperitoneal injection of VO significantly attenuated the anti-inflammatory effect of IL-37 on dry eye mice. CONCLUSION IL-37 emerges as an anti-inflammatory mediator within the lacrimal gland of dry eye mice, exerting its effects through the IL-37-PTEN-NFκB signaling pathway.
Collapse
Affiliation(s)
- Xiaoxuan Qi
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yachun Yang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Danyu Xiong
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Buyun Lin
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sainan Wu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meihuan Chen
- The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Umetsu A, Furuhashi M, Ohguro H. Inhibition of mTOR differently modulates planar and subepithelial fibrogenesis in human conjunctival fibroblasts. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06481-2. [PMID: 39042147 DOI: 10.1007/s00417-024-06481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 07/24/2024] Open
Abstract
PURPOSE In the current investigation, the effects of the mTOR inhibitors, Rapa and Torin1 on the TGF-β2-induced conjunctival fibrogenesis were studied. STUDY DESIGN Experimental research. METHODS 2D and 3D cultures of HconF were subjected to the following analyses; (1) planar proliferation evaluated by TEER (2D), (2) Seahorse metabolic analyses (2D), (3) subepithelial proliferation evaluated by the 3D spheroids' size and hardness, and (4) the mRNA expression of ECM proteins and their regulators (2D and 3D). RESULT Rapa or Torin1 both significantly increased planar proliferation in the non-TGF-β2-treated 2D HconF cells, but in the TGF-β2-treated cells, this proliferation was inhibited by Rapa and enhanced by Torin1. Although Rapa or Torin1 did not affect cellular metabolism in the non-TGF-β2-treated HconF cells, mTOR inhibitors significantly decreased and increased the mitochondrial respiration and the glycolytic capacity, respectively, under conditions of TGF-β2-induced fibrogenesis. Subepithelial proliferation, as evidenced by the hardness of the 3D spheroids, was markedly down-regulated by both Rapa and Torin1 independent of TGF-β2. The mRNA expressions of several ECM molecules and their regulators fluctuated in the cases of 2D vs 3D and TGF-β2 untreated vs treated cultures. CONCLUSION The present findings indicate that mTOR inhibitors have the ability to increase and to reduce planar and subepithelial proliferation in HconF cells, depending on the inhibitor being used.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan.
| | - Yuri Tsugeno
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Tatsuya Sato
- Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
- Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Megumi Higashide
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Masato Furuhashi
- Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan.
| |
Collapse
|
3
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
4
|
Peng H, Lv Y, Li C, Cheng Z, He S, Wang C, Liu J. Cathepsin S inhibition in dendritic cells prevents Th17 cell differentiation in perivascular adipose tissues following vascular injury in diabetic rats. J Biochem Mol Toxicol 2023; 37:e23419. [PMID: 37341014 DOI: 10.1002/jbt.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
In the context of diabetes mellitus (DM), the circulating cathepsin S (CTSS) level is significantly higher in the cardiovascular disease group. Therefore, this study was designed to investigate the role of CTSS in restenosis following carotid injury in diabetic rats. To induce DM, 60 mg/kg of streptozotocin (STZ) in citrate buffer was injected intraperitoneally into Sprague-Dawley rats. After successful modeling of DM, wire injury of the rat carotid artery was performed, followed by adenovirus transduction. Levels of blood glucose and Th17 cell surface antigens including ROR-γt, IL-17A, IL-17F, IL-22, and IL-23 in perivascular adipose tissues (PVAT) were evaluated. For in vitro analysis, human dendritic cells (DCs) were treated with 5.6-25 mM glucose for 24 h. The morphology of DCs was observed using an optical microscope. CD4+ T cells derived from human peripheral blood mononuclear cells were cocultured with DCs for 5 days. Levels of IL-6, CTSS, ROR-γt, IL-17A, IL-17F, IL-22 and IL-23 were measured. Flow cytometry was conducted to detect DC surface biomarkers (CD1a, CD83, and CD86) and Th17 cell differentiation. The collected DCs presented a treelike shape and were positive for CD1a, CD83, and CD86. Glucose impaired DC viability at the dose of 35 mM. Glucose treatment led to an increase in CTSS and IL-6 expression in DCs. Glucose-treated DCs promoted the differentiation of Th17 cells. CTSS depletion downregulated IL-6 expression and inhibited Th17 cell differentiation in vitro and in vivo. CTSS inhibition in DCs inhibits Th17 cell differentiation in PVAT tissues from diabetic rats following vascular injury.
Collapse
Affiliation(s)
- Hongyu Peng
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Yuan Lv
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Changjiang Li
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Zichao Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Songyuan He
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Qi X, Huang Q, Wang S, Qiu L, Chen X, Ouyang K, Chen Y. Identification of the shared mechanisms and common biomarkers between Sjögren's syndrome and atherosclerosis using integrated bioinformatics analysis. Front Med (Lausanne) 2023; 10:1185303. [PMID: 37727764 PMCID: PMC10506082 DOI: 10.3389/fmed.2023.1185303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Background Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by exocrine and extra-glandular symptoms. The literature indicates that SS is an independent risk factor for atherosclerosis (AS); however, its pathophysiological mechanism remains undetermined. This investigation aimed to elucidate the crosstalk genes and pathways influencing the pathophysiology of SS and AS via bioinformatic analysis of microarray data. Methods Microarray datasets of SS (GSE40611) and AS (GSE28829) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were acquired using R software's "limma" packages, and the functions of common DEGs were determined using Gene Ontology and Kyoto Encyclopedia analyses. The protein-protein interaction (PPI) was established using the STRING database. The hub genes were assessed via cytoHubba plug-in and validated by external validation datasets (GSE84844 for SS; GSE43292 for AS). Gene set enrichment analysis (GSEA) and immune infiltration of hub genes were also conducted. Results Eight 8 hub genes were identified using the intersection of four topological algorithms in the PPI network. Four genes (CTSS, IRF8, CYBB, and PTPRC) were then verified as important cross-talk genes between AS and SS with an area under the curve (AUC) ≥0.7. Furthermore, the immune infiltration analysis revealed that lymphocytes and macrophages are essentially linked with the pathogenesis of AS and SS. Moreover, the shared genes were enriched in multiple metabolisms and autoimmune disease-related pathways, as evidenced by GSEA analyses. Conclusion This is the first study to explore the common mechanism between SS and AS. Four key genes, including CTSS, CYBB, IRF8, and PTPRC, were associated with the pathogenesis of SS and AS. These hub genes and their correlation with immune cells could be a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
- Medical College, Shantou University, Shantou, China
| | - Qianwen Huang
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shijia Wang
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liangxian Qiu
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiongbiao Chen
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanjun Chen
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
7
|
Cathepsin S Knockdown Suppresses Endothelial Inflammation, Angiogenesis, and Complement Protein Activity under Hyperglycemic Conditions In Vitro by Inhibiting NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065428. [PMID: 36982499 PMCID: PMC10049538 DOI: 10.3390/ijms24065428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Hyperglycemia plays a key role in the development of microvascular complications, endothelial dysfunction (ED), and inflammation. It has been demonstrated that cathepsin S (CTSS) is activated in hyperglycemia and is involved in inducing the release of inflammatory cytokines. We hypothesized that blocking CTSS might alleviate the inflammatory responses and reduce the microvascular complications and angiogenesis in hyperglycemic conditions. In this study, we treated human umbilical vein endothelial cells (HUVECs) with high glucose (HG; 30 mM) to induce hyperglycemia and measured the expression of inflammatory cytokines. When treated with glucose, hyperosmolarity could be linked to cathepsin S expression; however, many have mentioned the high expression of CTSS. Thus, we made an effort to concentrate on the immunomodulatory role of the CTSS knockdown in high glucose conditions. We validated that the HG treatment upregulated the expression of inflammatory cytokines and CTSS in HUVEC. Further, siRNA treatment significantly downregulated CTSS expression along with inflammatory marker levels by inhibiting the nuclear factor-kappa B (NF-κB) mediated signaling pathway. In addition, CTSS silencing led to the decreased expression of vascular endothelial markers and downregulated angiogenic activity in HUVECs, which was confirmed by a tube formation experiment. Concurrently, siRNA treatment reduced the activation of complement proteins C3a and C5a in HUVECs under hyperglycemic conditions. These findings show that CTSS silencing significantly reduces hyperglycemia-induced vascular inflammation. Hence, CTSS may be a novel target for preventing diabetes-induced microvascular complications.
Collapse
|
8
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
9
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
10
|
Sequí-Sabater JM, Beretta L. Defining the Role of Monocytes in Sjögren's Syndrome. Int J Mol Sci 2022; 23:ijms232112765. [PMID: 36361554 PMCID: PMC9654893 DOI: 10.3390/ijms232112765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Sjögren's syndrome is one of the most prevalent autoimmune diseases after rheumatoid arthritis, with a preference for middle age, and is characterised by exocrine glandular involvement leading to xerostomia and xerophthalmia. It can have systemic implications with vascular, neurological, renal, and pulmonary involvement, and in some cases, it may evolve to non-Hodgkin's lymphoma. For a long time, B- and T-lymphocytes have been the focus of research and have been considered key players in Sjögren's syndrome pathogenesis and evolution. With the development of new technologies, including omics, more insights have been found on the different signalling pathways that lead to inflammation and activation of the immune system. New evidence indicates that a third actor linking innate and adaptive immunity plays a leading role in the Sjögren's syndrome play: the monocyte. This review summarises the recent insights from transcriptomic, proteomic, and epigenetic studies that help us to understand more about the Sjögren's syndrome pathophysiology and redefine the involvement of monocytes in this disease.
Collapse
Affiliation(s)
- Jose Miguel Sequí-Sabater
- Rheumatology Department, Reina Sofía University Hospital, Menéndez Pidal Ave., 14005 Córdoba, Spain
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, Menéndez Pidal Ave., 14005 Córdoba, Spain
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico di Milano, Francesco Sforza St. 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
11
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
12
|
Montavon B, Winter LE, Gan Q, Arasteh A, Montaño AM. Mucopolysaccharidosis Type IVA: Extracellular Matrix Biomarkers in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:829111. [PMID: 35620518 PMCID: PMC9127057 DOI: 10.3389/fcvm.2022.829111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (CVD) in Mucopolysaccharidosis Type IVA (Morquio A), signified by valvular disease and cardiac hypertrophy, is the second leading cause of death and remains untouched by current therapies. Enzyme replacement therapy (ERT) is the gold-standard treatment for MPS disorders including Morquio A. Early administration of ERT improves outcomes of patients from childhood to adulthood while posing new challenges including prognosis of CVD and ERT's negligible effect on cardiovascular health. Thus, having accurate biomarkers for CVD could be critical. Here we show that cathepsin S (CTSS) and elastin (ELN) can be used as biomarkers of extracellular matrix remodeling in Morquio A disease. We found in a cohort of 54 treatment naïve Morquio A patients and 74 normal controls that CTSS shows promising attributes as a biomarker in young Morquio A children. On the other hand, ELN shows promising attributes as a biomarker in adolescent and adult Morquio A. Plasma/urine keratan sulfate (KS), and urinary glycosaminoglycan (GAG) levels were significantly higher in Morquio A patients (p < 0.001) which decreased with age of patients. CTSS levels did not correlate with patients' phenotypic severity but differed significantly between patients (median range 5.45-8.52 ng/mL) and normal controls (median range 9.61-15.9 ng/mL; p < 0.001). We also studied α -2-macroglobulin (A2M), C-reactive protein (CRP), and circulating vascular cell adhesion molecule-1 (sVCAM-1) in a subset of samples to understand the relation between ECM biomarkers and the severity of CVD in Morquio A patients. Our experiments revealed that CRP and sVCAM-1 levels were lower in Morquio A patients compared to normal controls. We also observed a strong inverse correlation between urine/plasma KS and CRP (p = 0.013 and p = 0.022, respectively) in Morquio A patients as well as a moderate correlation between sVCAM-1 and CTSS in Morquio A patients at all ages (p = 0.03). As the first study to date investigating CTSS and ELN levels in Morquio A patients and in the normal population, our results establish a starting point for more elaborate studies in larger populations to understand how CTSS and ELN levels correlate with Morquio A severity.
Collapse
Affiliation(s)
- Brittany Montavon
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Linda E. Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | | | - Adriana M. Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
13
|
Kakan SS, Edman MC, Yao A, Okamoto CT, Nguyen A, Hjelm BE, Hamm-Alvarez SF. Tear miRNAs Identified in a Murine Model of Sjögren's Syndrome as Potential Diagnostic Biomarkers and Indicators of Disease Mechanism. Front Immunol 2022; 13:833254. [PMID: 35309364 PMCID: PMC8931289 DOI: 10.3389/fimmu.2022.833254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The tear miRNAome of the male NOD mouse, a model of ocular symptoms of Sjögren's syndrome (SS), was analyzed to identify unique miRNAs. Methods Male NOD mice, aged 12-14 weeks, were used to identify tear miRNAs associated with development of autoimmune dacryoadenitis. Age- and sex-matched male BALB/c mice served as healthy controls while age-matched female NOD mice that do not develop the autoimmune dacryoadenitis characteristic of SS were used as additional controls. Total RNA was isolated from stimulated tears pooled from 5 mice per sample and tear miRNAs were sequenced and analyzed. Putative miRNA hits were validated in additional mouse cohorts as well as in tears of SS patients versus patients with another form of dry eye disease, meibomian gland disease (MGD) using qRT-PCR. The pathways influenced by the validated hits were identified using Ingenuity Pathway Analysis. Results In comparison to tears from both healthy (male BALB/c) and additional control (female NOD) mice, initial analy1sis identified 7 upregulated and 7 downregulated miRNAs in male NOD mouse tears. Of these, 8 were validated by RT-qPCR in tears from additional mouse cohorts. miRNAs previously implicated in SS pathology included mmu-miR-146a/b-5p, which were significantly downregulated, as well as mmu-miR-150-5p and mmu-miR-181a-5p, which were upregulated in male NOD mouse tears. All other validated hits including the upregulated miR-181b-5p and mmu-miR-203-3p, as well as the downregulated mmu-miR-322-5p and mmu-miR-503-5p, represent novel putative indicators of autoimmune dacryoadenitis in SS. When compared to tears from patients with MGD, miRNAs hsa-miR-203a-3p, hsa-miR-181a-5p and hsa-miR-181b-5p were also significantly increased in tears of SS patients. Conclusions A panel of differentially expressed miRNAs were identified in tears of male NOD mice, with some preliminary validation in SS patients, including some never previously linked to SS. These may have potential utility as indicators of ocular symptoms of SS; evaluation of the pathways influenced by these dysregulated miRNAs may also provide further insights into SS pathogenesis.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Alexander Yao
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Annie Nguyen
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Yu Z, Li J, Govindarajan G, Hamm-Alvarez S, Alam J, Li DQ, de Paiva CS. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res 2022; 214:108895. [PMID: 34910926 PMCID: PMC8908478 DOI: 10.1016/j.exer.2021.108895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - Jinmiao Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Sarah Hamm-Alvarez
- Department of Ophthalmology and Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - De-Quan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
15
|
Phenylephrine increases tear cathepsin S secretion in healthy murine lacrimal gland acinar cells through an alternative secretory pathway. Exp Eye Res 2021; 211:108760. [PMID: 34487726 DOI: 10.1016/j.exer.2021.108760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Little is known about the relationship between stimulation of lacrimal gland (LG) tear protein secretion by parasympathetic versus sympathetic nerves, particularly whether the spectrum of tear proteins evoked through each innervation pathway varies. We have previously shown that activity and abundance of cathepsin S (CTSS), a cysteine protease, is greatly increased in tears of Sjögren's syndrome (SS) patients and in tears from the male NOD mouse of autoimmune dacryoadenitis that recapitulates SS-associated dry eye disease. Beyond the increased synthesis of CTSS detected in the diseased NOD mouse LG, increased tear CTSS secretion in NOD mouse tears was recently linked to increased exocytosis from a novel endolysosomal secretory pathway. Here, we have compared secretion and trafficking of CTSS in healthy mouse LG acinar cells stimulated with either the parasympathetic acetylcholine receptor agonist, carbachol (CCh), or the sympathetic α1-adrenergic agonist, phenylephrine (PE). In situ secretion studies show that PE significantly increases CTSS activity and protein in tears relative to CCh stimulation by 1.2-fold (***, p = 0.0009) and ∼5-fold (*, p-0.0319), respectively. A similar significant increase in CTSS activity with PE relative to CCh is observed when cultured LGAC are stimulated in vitro. CCh stimulation significantly elevates intracellular [Ca2+], an effect associated with increases in the size of Rab3D-enriched vesicles consistent with compound fusion, and subsequently decreases in their intensity of labeling consistent with their exocytosis. PE stimulation induces a lower [Ca2+] response and has minimal effects on Rab3D-enriched SV diameter or the intensity of Rab3D-enriched SV labeling. LG deficient in Rab3D exhibit a higher sensitivity to PE stimulation, and secrete more CTSS activity. Significant increases in the colocalization of endolysosomal vesicle markers (Lamp1, Lamp2, Rab7) with the subapical actin suggestive of fusion of endolysosomal vesicles at the apical membrane occur both with CCh and PE stimulation, but PE demonstrates increased colocalization. In conclusion, the α1-adrenergic agonist, PE, increases CTSS secretion into tears through a pathway independent of the exocytosis of Rab3D-enriched mature SV, possibly representing an alternative endolysosomal secretory pathway.
Collapse
|
16
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Tear Proteases and Protease Inhibitors: Potential Biomarkers and Disease Drivers in Ocular Surface Disease. Eye Contact Lens 2021; 46 Suppl 2:S70-S83. [PMID: 31369467 DOI: 10.1097/icl.0000000000000641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tears are highly concentrated in proteins relative to other biofluids, and a notable fraction of tear proteins are proteases and protease inhibitors. These components are present in a delicate equilibrium that maintains ocular surface homeostasis in response to physiological and temporal cues. Dysregulation of the activity of protease and protease inhibitors in tears occurs in ocular surface diseases including dry eye and infection, and ocular surface conditions including wound healing after refractive surgery and contact lens (CL) wear. Measurement of these changes can provide general information regarding ocular surface health and, increasingly, has the potential to give specific clues regarding disease diagnosis and guidance for treatment. Here, we review three major categories of tear proteases (matrix metalloproteinases, cathepsins, and plasminogen activators [PAs]) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, cystatins, and PA inhibitors), and the changes in these factors associated with dry eye, infection and allergy, refractive surgery, and CLs. We highlight suggestions for development of these and other protease/protease inhibitor biomarkers in this promising field.
Collapse
|
18
|
Mak ST, Lam CW, Ng DSC, Chong KKL, Yuen HKL. Oculoplastic surgical simulation using goat sockets. Orbit 2021; 41:292-296. [PMID: 33427549 DOI: 10.1080/01676830.2021.1872091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To describe a reproducible and easily available goat socket model for training of various oculoplastic operations, and to evaluate trainees' perception of this training model in terms of their learning progress and satisfaction.Methods: Goat sockets including orbital rim and eye with eyelids were harvested in form of a split-head model. Ophthalmology residents underwent individual surgical training using the goat socket model, supervised by an oculoplastic attending. Participants completed a questionnaire in form of a 5-point Likert Scale to evaluate their learning progress and satisfaction.Outcome Measures: Types of oculoplastic operations performed using the goat socket models, and participants' rating of their learning progress and satisfaction were reported.Results: A wide range of oculoplastic operations including both eyelid and orbital operations could be simulated because of similarities of the goat eye model to the human eye anatomy. Fifteen ophthalmic trainees participated in surgical training using the goat eye model. All (100%) participants agreed that surgical simulation using the goat socket model increased their skills in surgical instrumentation and carrying out surgical steps, and their confidence in operating on patients. Most (87%) agreed the model resembled reasonably well compared to surgeries in human, and 93% would recommend training with the model to fellow resident ophthalmologists before operating on human patients.Conclusions: Oculoplastic surgical training using goat sockets is simple, readily available, and inexpensive. Trainee users showed promising feedback and positive learning progress using the goat socket model.
Collapse
Affiliation(s)
- Shiu Ting Mak
- Department of Ophthalmology, United Christian Hospital, Kowloon, Hong Kong.,Quality and Safety Office, Kowloon East Cluster, Hospital Authority, Kowloon, Hong Kong
| | - Chun Wah Lam
- Hong Kong Eye Hospital, Kowloon, Hong Kong.,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Danny S C Ng
- Hong Kong Eye Hospital, Kowloon, Hong Kong.,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Kelvin K L Chong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, New Territories, Hong Kong
| | - Hunter K L Yuen
- Hong Kong Eye Hospital, Kowloon, Hong Kong.,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| |
Collapse
|
19
|
Jing Y, Shi J, Lu B, Zhang W, Yang Y, Wen J, Hu R, Yang Z, Wang X. Association of Circulating Cathepsin S and Cardiovascular Disease Among Patients With Type 2 Diabetes: A Cross-Sectional Community-Based Study. Front Endocrinol (Lausanne) 2021; 12:615913. [PMID: 33746900 PMCID: PMC7973458 DOI: 10.3389/fendo.2021.615913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cathepsin S, as an adipokine, was reported to play a critical role in various disease, including atherosclerosis and diabetes. The present study aims to elucidate the relationship between circulating cathepsin S and cardiovascular disease (CVD) in patients with type 2 diabetes. METHODS A total of 339 type 2 diabetes individuals were enrolled in this cross-sectional community-based study. Basic information, medical and laboratory data were collected. Serum cathepsin S levels were assessed by ELISA. RESULTS Compared to the CVD (-) group, levels of serum cathepsin S were significantly higher in the CVD (+) group, with the median 23.68 ng/ml (18.54-28.02) and 26.81 ng/ml (21.19-37.69) respectively (P < 0.001). Moreover, patients with acute coronary syndrome (ACS) had substantially higher levels of serum cathepsin S than those with stable angina pectoris (SAP), with the median 34.65 ng/ml (24.33-42.83) and 25.52 ng/ml (20.53-31.47) respectively (P < 0.01). The spearman correlation analysis showed that circulating cathepsin S was correlated with several cardiovascular risk factors. The univariate and multivariate logistic regression analysis revealed that circulating cathepsin S was an independent risk factor for CVD (all P < 0.001) after adjustment for potential confounders. Restricted cubic spline analysis showed circulating cathepsin S had a linearity association with CVD. In addition, receiver operating characteristic (ROC) curve analysis demonstrated that the area under curve (AUC) values of cathepsin S was 0.80 (95% CI: 0.75-0.84, P < 0.001), with the optimal cutoff value of cathepsin 26.28 ng/ml. CONCLUSION Circulating cathepsin S was significantly higher in the CVD (+) group than that in the CVD (-) one among type 2 diabetes. The increased serum cathepsin S levels were associated with increased risks of CVD, even after adjusting for potential confounders. Thus, cathepsin S might be a potential diagnostic biomarker for CVD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Lu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wen
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Zhen Yang, ; Xuanchun Wang,
| | - Xuanchun Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhen Yang, ; Xuanchun Wang,
| |
Collapse
|
20
|
Trujillo-Vargas CM, Kutlehria S, Hernandez H, de Souza RG, Lee A, Yu Z, Pflugfelder SC, Singh M, de Paiva CS. Rapamycin Eyedrops Increased CD4 +Foxp3 + Cells and Prevented Goblet Cell Loss in the Aged Ocular Surface. Int J Mol Sci 2020; 21:ijms21238890. [PMID: 33255287 PMCID: PMC7727717 DOI: 10.3390/ijms21238890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED), one of the most prevalent conditions among the elderly, is a chronic inflammatory disorder that disrupts tear film stability and causes ocular surface damage. Aged C57BL/6J mice spontaneously develop DED. Rapamycin is a potent immunosuppressant that prolongs the lifespan of several species. Here, we compared the effects of daily instillation of eyedrops containing rapamycin or empty micelles for three months on the aged mice. Tear cytokine/chemokine profile showed a pronounced increase in vascular endothelial cell growth factor-A (VEGF-A) and a trend towards decreased concentration of Interferon gamma (IFN)-γ in rapamycin-treated groups. A significant decrease in inflammatory markers in the lacrimal gland was also evident (IFN-γ, IL-12, CIITA and Ctss); this was accompanied by slightly diminished Unc-51 Like Autophagy Activating Kinase 1 (ULK1) transcripts. In the lacrimal gland and draining lymph nodes, we also observed a significant increase in the CD45+CD4+Foxp3+ cells in the rapamycin-treated mice. More importantly, rapamycin eyedrops increased conjunctival goblet cell density and area compared to the empty micelles. Taken together, evidence from these studies indicates that topical rapamycin has therapeutic efficacy for age-associated ocular surface inflammation and goblet cell loss and opens the venue for new investigations on its role in the aging process of the eye.
Collapse
Affiliation(s)
- Claudia M. Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín 050010, Colombia;
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Shallu Kutlehria
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (S.K.); (M.S.)
| | - Humberto Hernandez
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Rodrigo G. de Souza
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Andrea Lee
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (S.K.); (M.S.)
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
- Correspondence: ; Tel.: +1-713-798-2124
| |
Collapse
|
21
|
Modulation of Oxidative Stress and Inflammation in the Aged Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:294-308. [PMID: 33159886 DOI: 10.1016/j.ajpath.2020.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Inflammation and oxidative stress accompany aging. This study investigated the interplay between oxidative stress and inflammation in the lacrimal gland. C57BL/6 mice were used at 2 to 3, 12, and 24 months of age. Nuclear factor erythroid derived-2-related factor 2 (Nrf2)-/- and corresponding wild-type mice were used at 2 to 3 and 12 to 13 months of age. A separate group of 15.5 to 17 months of age C57BL/6 mice received a diet containing an Nrf2 inducer (Oltipraz) for 8 weeks. Aged C57BL/6 lacrimal glands showed significantly greater lymphocytic infiltration, higher levels of MHC II, IFN-γ, IL-1β, TNF-α, and cathepsin S (Ctss) mRNA transcripts, and greater nitrotyrosine and 4-hydroxynonenal protein. Young Nrf2-/- mice showed an increase in IL-1β, IFN-γ, MHC II, and Ctss mRNA transcripts compared with young wild-type mice and greater age-related changes at 12 to 13 months of age. Oltipraz diet significantly decreased nitrotyrosine and 4-hydroxynonenal and decreased the expression of IL-1β and TNF-α mRNA transcripts, while decreasing the frequency of CD45+CD4+ cells in lacrimal glands and significantly increasing conjunctival goblet cell density compared with a standard diet. The findings provide novel insight into the development of chronic, low-grade inflammation and oxidative stress in age-related dry eye. New therapies targeting oxidative stress pathways will be valuable in treating age-related dry eye.
Collapse
|
22
|
Ohno Y, Satoh K, Shitara A, Into T, Kashimata M. Arginase 1 is involved in lacrimal hyposecretion in male NOD mice, a model of Sjögren's syndrome, regardless of dacryoadenitis status. J Physiol 2020; 598:4907-4925. [PMID: 32780506 PMCID: PMC7693353 DOI: 10.1113/jp280090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/01/2020] [Indexed: 01/14/2023] Open
Abstract
Key points Few reports have explored the possibility of involvement of non‐inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non‐dacryoadenitis‐type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status.
Abstract Lacrimal fluid (tears) is important for preservation of the ocular surface, and thus lacrimal hyposecretion in Sjögren's syndrome (SS) leads to reduced quality of life. However, the cause(s) of lacrimal hyposecretion remains unknown, even though many studies have been conducted from the perspective of inflammation. Here, we hypothesized that a non‐inflammatory factor induces lacrimal hyposecretion in SS pathology, and to elucidate such a factor, we conducted transcriptome analysis of the lacrimal glands in male non‐obese diabetic (NOD) mice as an SS model. The NOD mice showed inflammatory cell infiltration and decreased pilocarpine‐induced tear secretion at and after 6 weeks of age compared to age‐matched BALB/c mice. RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated, whereas many genes relating to inflammation were upregulated, in the lacrimal glands of male NOD mice after onset of lacrimal hyposecretion and dacryoadenitis (lacrimal gland inflammation). Changes in the level of arginase 1 expression were confirmed by real‐time RT‐PCR and western blot analysis. Furthermore, non‐dacryoadenitis‐type NOD mice were used to investigate the relationships among arginase 1 expression, lacrimal hyposecretion and dacryoadenitis. Interestingly, these NOD mice retained the phenotype of dacryoadenitis with regard to tear secretion and arginase 1 expression level. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. In conclusion, a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status. These results shed light on the pathophysiological role of arginase 1 in SS (dry eye). Few reports have explored the possibility of involvement of non‐inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA‐sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non‐dacryoadenitis‐type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non‐inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan.,Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Akiko Shitara
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
23
|
Kakan SS, Janga SR, Cooperman B, Craig DW, Edman MC, Okamoto CT, Hamm-Alvarez SF. Small RNA Deep Sequencing Identifies a Unique miRNA Signature Released in Serum Exosomes in a Mouse Model of Sjögren's Syndrome. Front Immunol 2020; 11:1475. [PMID: 32849505 PMCID: PMC7396589 DOI: 10.3389/fimmu.2020.01475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and loss of function of moisture-producing exocrine glands as well as systemic inflammation. SS diagnosis is cumbersome, subjective and complicated by manifestation of symptoms that overlap with those of other rheumatic and ocular diseases. Definitive diagnosis averages 4–5 years and this delay may lead to irreversible tissue damage. Thus, there is an urgent need for diagnostic biomarkers for earlier detection of SS. Extracellular vesicles called exosomes carry functional small non-coding RNAs which play a critical role in maintaining cellular homeostasis via transcriptional and translational regulation of mRNA. Alterations in levels of specific exosomal miRNAs may be predictive of disease status. Here, we have assessed serum exosomal RNA using next generation sequencing in a discovery cohort of the NOD mouse, a model of early-intermediate SS, to identify dysregulated miRNAs that may be indicative of SS. We found five miRNAs upregulated in serum exosomes of NOD mice with an adjusted p < 0.05—miRNA-127-3p, miRNA-409-3p, miRNA-410-3p, miRNA-541-5p, and miRNA-540-5p. miRNAs 127-3p and 541-5p were also statistically significantly upregulated in a validation cohort of NOD mice. Pathway analysis and existing literature indicates that differential expression of these miRNAs may dysregulate pathways involved in inflammation. Future studies will apply these findings in a human cohort to understand how they are correlated with manifestations of SS as well as understanding their functional role in systemic autoimmunity specific to SS.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth R Janga
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Cooperman
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - David W Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Fu R, Guo H, Janga S, Choi M, Klinngam W, Edman MC, Hamm-Alvarez SF. Cathepsin S activation contributes to elevated CX3CL1 (fractalkine) levels in tears of a Sjögren's syndrome murine model. Sci Rep 2020; 10:1455. [PMID: 31996771 PMCID: PMC6989636 DOI: 10.1038/s41598-020-58337-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
Autoimmune dacryoadenitis and altered lacrimal gland (LG) secretion are features of Sjögren's syndrome (SS). Activity of cathepsin S (CTSS), a cysteine protease, is significantly and specifically increased in SS patient tears. The soluble chemokine, CX3CL1 (fractalkine), is cleaved from membrane-bound CX3CL1 by proteases including CTSS. We show that CX3CL1 is significantly elevated by 2.5-fold in tears (p = 0.0116) and 1.4-fold in LG acinar cells (LGAC)(p = 0.0026) from male NOD mice, a model of autoimmune dacryoadenitis in SS, relative to BALB/c controls. Primary mouse LGAC and human corneal epithelial cells (HCE-T cells) exposed to interferon-gamma, a cytokine elevated in SS, showed up to 9.6-fold (p ≤ 0.0001) and 25-fold (p ≤ 0.0001) increases in CX3CL1 gene expression, and 1.9-fold (p = 0.0005) and 196-fold (p ≤ 0.0001) increases in CX3CL1 protein expression, respectively. Moreover, exposure of HCE-T cells to recombinant human CTSS at activity equivalent to that in SS patient tears increased cellular CX3CL1 gene and protein expression by 2.8-fold (p = 0.0021) and 5.1-fold (p ≤ 0.0001), while increasing CX3CL1 in culture medium by 5.8-fold (p ≤ 0.0001). Flow cytometry demonstrated a 4.5-fold increase in CX3CR1-expressing immune cells (p ≤ 0.0001), including increased T-cells and macrophages, in LG from NOD mice relative to BALB/c. CTSS-mediated induction/cleavage of CX3CL1 may contribute to ocular surface and LG inflammation in SS.
Collapse
Affiliation(s)
- Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Srikanth Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
25
|
Lu X, Li N, Zhao L, Guo D, Yi H, Yang L, Liu X, Sun D, Nian H, Wei R. Human umbilical cord mesenchymal stem cells alleviate ongoing autoimmune dacryoadenitis in rabbits via polarizing macrophages into an anti-inflammatory phenotype. Exp Eye Res 2019; 191:107905. [PMID: 31891674 DOI: 10.1016/j.exer.2019.107905] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) exhibit beneficial effects on autoimmune dacryoadenitis. However, the underlying mechanisms are not fully understood. In this study, we investigated the therapeutic effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) on rabbit autoimmune dacryoadenitis, an animal model of Sjögren's syndrome (SS) dry eye, and explored whether the effects of MSCs were related to their modulation on macrophage polarization. We have showed that systemic infusion of hUC-MSCs after disease onset efficiently diminished the chronic inflammation in diseased LGs and improved the clinical symptoms. Further analysis revealed that hUC-MSC treatment significantly inhibited the expression of pro-inflammatory M1 macrophage markers iNOS, TNF-α and IL-6, and promoted the expression of anti-inflammatory M2 macrophage markers Arg1, CD206, IL-10, IL-4 and TGF-β in LGs. Mechanistically, hUC-MSCs activated AKT pathway in macrophages, resulting in upregulation of M2-associated molecule Arg1, which was partly abolished by PI3K inhibitor, LY294002. Together, our data indicated that hUC-MSCs can skew macrophages into an M2 phenotype via affecting AKT pathway. These data may provide a new insight into the mechanisms of hUC-MSCs in the therapy of SS dry eye.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Di Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huanfa Yi
- Central Laboratory of the Eastern Division, The First Hospital, Jilin University, Changchun, China
| | - Liyuan Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute, And Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
26
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
27
|
Klinngam W, Janga SR, Lee C, Ju Y, Yarber F, Shah M, Guo H, Wang D, MacKay JA, Edman MC, Hamm-Alvarez SF. Inhibition of Cathepsin S Reduces Lacrimal Gland Inflammation and Increases Tear Flow in a Mouse Model of Sjögren's Syndrome. Sci Rep 2019; 9:9559. [PMID: 31267034 PMCID: PMC6606642 DOI: 10.1038/s41598-019-45966-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Cathepsin S (CTSS) is highly increased in Sjögren's syndrome (SS) patients tears and in tears and lacrimal glands (LG) of male non-obese diabetic (NOD) mice, a murine model of SS. To explore CTSS's utility as a therapeutic target for mitigating ocular manifestations of SS in sites where CTSS is increased in disease, the tears and the LG (systemically), the peptide-based inhibitor, Z-FL-COCHO (Z-FL), was administered to 14-15 week male NOD mice. Systemic intraperitoneal (i.p.) injection for 2 weeks significantly reduced CTSS activity in tears, LG and spleen, significantly reduced total lymphocytic infiltration into LG, reduced CD3+ and CD68+ cell abundance within lymphocytic infiltrates, and significantly increased stimulated tear secretion. Topical administration of Z-FL to a different cohort of 14-15 week male NOD mice for 6 weeks significantly reduced only tear CTSS while not affecting LG and spleen CTSS and attenuated the disease-progression related reduction of basal tear secretion, while not significantly impacting lymphocytic infiltration of the LG. These findings suggest that CTSS inhibitors administered either topically or systemically can mitigate aspects of the ocular manifestations of SS.
Collapse
Affiliation(s)
- Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Srikanth R Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Frances Yarber
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mihir Shah
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Dandan Wang
- Anatomic and Clinical Pathology, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
28
|
Lee C, Guo H, Klinngam W, Janga SR, Yarber F, Peddi S, Edman MC, Tiwari N, Liu S, Louie SG, Hamm-Alvarez SF, MacKay JA. Berunda Polypeptides: Biheaded Rapamycin Carriers for Subcutaneous Treatment of Autoimmune Dry Eye Disease. Mol Pharm 2019; 16:3024-3039. [PMID: 31095909 DOI: 10.1021/acs.molpharmaceut.9b00263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The USFDA-approved immunosuppressive drug rapamycin (Rapa), despite its potency, is limited by poor bioavailability and a narrow therapeutic index. In this study, we sought to improve bioavailability of Rapa with subcutaneous (SC) administration and to test its therapeutic feasibility and practicality in a murine model of Sjögren's syndrome (SS), a systemic autoimmune disease with no approved therapies. To improve its therapeutic index, we formulated Rapa with a carrier termed FAF, a fusion of the human cytosolic FK506-binding protein 12 (FKBP12) and an elastin-like polypeptide (ELP). The resulting 97 kDa FAF (i) has minimal burst release, (ii) is "humanized", (iii) is biodegradable, (iv) solubilizes two Rapa per FAF, and (v) avoids organic solvents or amphiphilic carriers. Demonstrating high stability, FAF remained soluble and monodisperse with a hydrodynamic radius of 8 nm at physiological temperature. A complete pharmacokinetic (PK) analysis of FAF revealed that the bioavailability of SC FAF was 60%, with significantly higher blood concentration during the elimination phase compared to IV FAF. The plasma concentration of Rapa delivered by FAF was 8-fold higher with a significantly increased plasma-to-whole blood ratio relative to free Rapa, 24 h after injection. To evaluate therapeutic effects, FAF-Rapa was administered SC every other day for 2 weeks to male non-obese diabetic (NOD) mice, which develop an SS-like autoimmune-mediated lacrimal gland (LG) inflammation and other characteristic features of SS. Both FAF-Rapa and free Rapa exhibited immunomodulatory effects by significantly suppressing lymphocytic infiltration, gene expression of IFN-γ, MHC II, type I collagen and IL-12a, and cathepsin S (CTSS) activity in LG compared to controls. Serum chemistry and histopathological analyses in major organs revealed no apparent toxicity of FAF-Rapa. Given its improved PK and equipotent therapeutic efficacy compared to free Rapa, FAF-Rapa is of further interest for systemic treatments for autoimmune diseases like SS.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Srikanth R Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Frances Yarber
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Nishant Tiwari
- Department of Pathology, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Siyu Liu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Stan G Louie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States.,Department of Biomedical Engineering, Viterbi School of Engineering , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
29
|
Affiliation(s)
- Toshio Odani
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Klinngam W, Fu R, Janga SR, Edman MC, Hamm-Alvarez SF. Cathepsin S Alters the Expression of Pro-Inflammatory Cytokines and MMP-9, Partially through Protease-Activated Receptor-2, in Human Corneal Epithelial Cells. Int J Mol Sci 2018; 19:E3530. [PMID: 30423938 PMCID: PMC6274678 DOI: 10.3390/ijms19113530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Cathepsin S (CTSS) activity is increased in tears of Sjögren's syndrome (SS) patients. This elevated CTSS may contribute to ocular surface inflammation. Human corneal epithelial cells (HCE-T cells) were treated with recombinant human CTSS at activity comparable to that in SS patient tears for 2, 4, 8, and 24 h. Acute CTSS significantly increased HCE-T cell gene and protein expression of interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) from 2 to 4 h, while matrix metalloproteinase 9 (MMP-9), CTSS, and protease-activated receptor-2 (PAR-2) were increased by chronic CTSS (24 h). To investigate whether the increased pro-inflammatory cytokines and proteases were induced by CTSS activation of PAR-2, HCE-T cells were transfected with PAR-2 siRNA, reducing cellular PAR-2 by 45%. Cells with reduced PAR-2 expression showed significantly reduced release of IL-6, TNF-α, IL-1β, and MMP-9 into culture medium in response to acute CTSS, while IL-6, TNF-α, and MMP-9 were reduced in culture medium, and IL-6 and MMP-9 in cell lysates, after chronic CTSS. Moreover, cells with reduced PAR-2 expression showed reduced ability of chronic CTSS to induce gene expression of pro-inflammatory cytokines and proteases. CTSS activation of PAR-2 may represent a potential therapeutic target for amelioration of ocular surface inflammation in SS patients.
Collapse
Affiliation(s)
- Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
| | - Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
| | - Srikanth R Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA.
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
31
|
Ju Y, Janga SR, Klinngam W, MacKay JA, Hawley D, Zoukhri D, Edman MC, Hamm-Alvarez SF. NOD and NOR mice exhibit comparable development of lacrimal gland secretory dysfunction but NOD mice have more severe autoimmune dacryoadenitis. Exp Eye Res 2018; 176:243-251. [PMID: 30201519 PMCID: PMC6215720 DOI: 10.1016/j.exer.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The male Non-Obese Diabetic (NOD) mouse is an established model of autoimmune dacryoadenitis characteristic of Sjögren's Syndrome (SS), but development of diabetes may complicate studies. The Non-Obese Diabetes Resistant (NOR) mouse is a MHC-II matched diabetes-resistant alternative, but development of autoimmune dacryoadenitis is not well-characterized. We compare features of SS in male NOD and NOR mice at 12 and 20 weeks. Stimulated tear secretion was decreased in 12 week NOD relative to BALB/c mice (p < 0.05), while by 20 weeks both NOD and NOR showed decreased stimulated tear secretion relative to BALB/c mice (p < 0.001). Tear CTSS activity was elevated in NOD and NOR relative to BALB/c mice (p < 0.05) at 12 and 20 weeks. While NOD and NOR lacrimal glands (LG) showed increased LG lymphocytic infiltration at 12 and 20 weeks relative to BALB/c mouse LG (p < 0.05), the percentage in NOD was higher relative to NOR at each age (p < 0.05). Gene expression of CTSS, MHC II and IFN-γ in LG were significantly increased in NOD but not NOR relative to BALB/c at 12 and 20 weeks. Redistribution of the secretory effector, Rab3D in acinar cells was observed at both time points in NOD and NOR, but thinning of myoepithelial cells at 12 weeks in NOD and NOR mice was restored by 20 weeks in NOR mice. NOD and NOR mice share features of SS-like autoimmune dacryoadenitis, suggesting common disease etiology. Other findings suggest more pronounced lymphocytic infiltration in NOD mouse LG including increased pro-inflammatory factors that may be unique to this model.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Dillon Hawley
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
32
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Janga SR, Shah M, Ju Y, Meng Z, Edman MC, Hamm-Alvarez SF. Longitudinal analysis of tear cathepsin S activity levels in male non-obese diabetic mice suggests its potential as an early stage biomarker of Sjögren's Syndrome. Biomarkers 2018; 24:91-102. [PMID: 30126300 DOI: 10.1080/1354750x.2018.1514656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. OBJECTIVE To evaluate longitudinal expression of tear and tissue CTSS activity relative to other disease indicators in Non-Obese Diabetic (NOD) mice. METHODS CTSS activity was measured in tears and lacrimal glands (LG) from male 1-6 month (M) NOD and 1 and 6 M BALB/c mice. Lymphocytic infiltration was quantified by histopathology, while disease-related proteins (Rab3D, CTSS, collagen 1) were quantified using q-PCR and immunofluorescence. RESULTS In NOD LG, lymphocytic infiltration was noted by 2 M and established by 3 M (p < 0.01). IFN-ɣ, TNF-α, and MHC II expression were increased by 2 M (p < 0.01). Tear CTSS activity was significantly elevated at 2 M (p < 0.001) to a maximum of 10.1-fold by 6 M (p < 0.001). CTSS activity in LG lysates was significantly elevated by 2 M (p < 0.001) to a maximum of 14-fold by 3 M (p < 0.001). CTSS and Rab3D immunofluorescence were significantly increased and decreased maximally in LG acini by 3 M and 2 M, respectively. Comparable changes were not detected between 1 and 6 M BALB/c mouse LG, although Collagen 1 was decreased by 6 M in LG of both strains. CONCLUSION Tear CTSS activity is elevated with other early disease indicators, suggesting potential as an early stage biomarker for SS.
Collapse
Affiliation(s)
- Srikanth R Janga
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Mihir Shah
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Yaping Ju
- b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| | - Zhen Meng
- b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| | - Maria C Edman
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA
| | - Sarah F Hamm-Alvarez
- a Department of Ophthalmology, USC Keck School of Medicine , Roski Eye Institute , Los Angeles , CA , USA.,b Department of Pharmacology and Pharmaceutical Sciences , USC School of Pharmacy , Los Angeles , CA , USA
| |
Collapse
|
34
|
Impact of obesity on autoimmune arthritis and its cardiovascular complications. Autoimmun Rev 2018; 17:821-835. [PMID: 29885537 PMCID: PMC9996646 DOI: 10.1016/j.autrev.2018.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Obesity can instigate and sustain a systemic low-grade inflammatory environment that can amplify autoimmune disorders and their associated comorbidities. Metabolic changes and inflammatory factors produced by the adipose tissue have been reported to aggravate autoimmunity and predispose the patient to cardiovascular disease (CVD) and metabolic comorbidities. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are autoimmune arthritic diseases, often linked with altered body mass index (BMI). Severe joint inflammation and bone destruction have a debilitating impact on the patient's life; there is also a staggering risk of cardiovascular morbidity and mortality. Furthermore, these patients are at risk of developing metabolic symptoms, including insulin resistance resulting in type 2 diabetes mellitus (T2DM). In addition, arthritis severity, progression and response to therapy can be markedly affected by the patient's BMI. Hence, a complex integrative pathogenesis interconnects autoimmunity with metabolic and cardiovascular disorders. This review aims to shed light on the network that connects obesity with RA, PsA, systemic lupus erythematosus and Sjӧgren's syndrome. We have focused on clarifying the mechanism by which obesity affects different cell types, inflammatory factors and traditional therapies in these autoimmune disorders. We conclude that to further optimize arthritis therapy and to prevent CVD, it is imperative to uncover the intricate relation between obesity and arthritis pathology.
Collapse
|
35
|
Edman MC, Janga SR, Meng Z, Bechtold M, Chen AF, Kim C, Naman L, Sarma A, Teekappanavar N, Kim AY, Madrigal S, Singh S, Ortiz E, Christianakis S, Arkfeld DG, Mack WJ, Heur M, Stohl W, Hamm-Alvarez SF. Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjögren's Syndrome patients. Sci Rep 2018; 8:11044. [PMID: 30038391 PMCID: PMC6056496 DOI: 10.1038/s41598-018-29411-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. Here we tested whether protease inhibition and cystatin C (Cys C) levels are reduced in SS tears, which could lead to enhanced CTSS-driven degradation of tear proteins. CTSS activity against Cys C, LF and sIgA was tested in SS or healthy control tears. Tears from 156 female subjects (33, SS; 33, rheumatoid arthritis; 31, other autoimmune diseases; 35, non-autoimmune dry eye (DE); 24, healthy controls) were analyzed for CTSS activity and Cys C, LF, and sIgA levels. Cys C and LF showed enhanced degradation in SS tears supplemented with recombinant CTSS, but not supplemented healthy control tears. CTSS activity was significantly increased, while Cys C, LF and sIgA levels were significantly decreased, in SS tears compared to other groups. While tear CTSS activity remained the strongest discriminator of SS in autoimmune populations, combining LF and CTSS improved discrimination of SS beyond CTSS in DE patients. Reductions in Cys C and other endogenous proteases may enhance CTSS activity in SS tears. Tear CTSS activity is reconfirmed as a putative biomarker of SS in an independent patient cohort while combined LF and CTSS measurements may distinguish SS from DE patients.
Collapse
Affiliation(s)
- Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Srikanth R Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Mercy Bechtold
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander F Chen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chongiin Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luke Naman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arunava Sarma
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neha Teekappanavar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Y Kim
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Madrigal
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Simranjit Singh
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Ortiz
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stratos Christianakis
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel G Arkfeld
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Heur
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Rheumatology, Department of Medicine, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, USA
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Edwards TL, Xue K, Meenink HCM, Beelen MJ, Naus GJL, Simunovic MP, Latasiewicz M, Farmery AD, de Smet MD, MacLaren RE. First-in-human study of the safety and viability of intraocular robotic surgery. Nat Biomed Eng 2018; 2:649-656. [PMID: 30263872 DOI: 10.1038/s41551-018-0248-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microsurgery of the retina would be dramatically improved by instruments that offer supra-human precision. Here, we report the results of a first-in-human study of remotely controlled robot-assisted retinal surgery performed through a telemanipulation device. Specifically, 12 patients requiring dissection of the epiretinal or inner limiting membrane over the macula were randomly assigned to either undergo robot-assisted-surgery or manual surgery, under general anaesthesia. We evaluated surgical success, duration of surgery and amount of retinal microtrauma as a proxy for safety. Surgical outcomes were equally successful in the robotic-surgery and manual-surgery groups. Differences in the amount of retinal microtrauma between the two groups were statistically insignificant, yet dissection took longer with robotic surgery (median time, 4 min 5 s) than with manual surgery (1 min 20 s). We also show the feasibility of using the robot to inject recombinant tissue plasminogen activator under the retina to displace sight-threatening haemorrhage in three patients under local anaesthesia. A safe and viable robotic system for intraocular surgery would enable precise and minimally traumatic delivery of gene therapy or cell therapy to the retina.
Collapse
Affiliation(s)
- T L Edwards
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - K Xue
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | | | - M P Simunovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Latasiewicz
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A D Farmery
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | | | - R E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK. .,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
37
|
Meng Z, Klinngam W, Edman MC, Hamm-Alvarez SF. Interferon-γ treatment in vitro elicits some of the changes in cathepsin S and antigen presentation characteristic of lacrimal glands and corneas from the NOD mouse model of Sjögren's Syndrome. PLoS One 2017; 12:e0184781. [PMID: 28902875 PMCID: PMC5597228 DOI: 10.1371/journal.pone.0184781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammation and impaired secretion by lacrimal and salivary glands are hallmarks of the autoimmune disease, Sjögren’s Syndrome. These changes in the lacrimal gland promote dryness and inflammation of the ocular surface, causing pain, irritation and corneal damage. The changes that initiate and sustain autoimmune inflammation in the lacrimal gland are not well-established. Here we demonstrate that interferon-γ (IFN-γ) is significantly elevated in lacrimal gland and tears of the male NOD mouse, a model of autoimmune dacryoadenitis which exhibits many ocular characteristics of Sjögren’s Syndrome, by 12 weeks of age early in lacrimal gland inflammation. Working either with primary cultured lacrimal gland acinar cells from BALB/c mice and/or rabbits, in vitro IFN-γ treatment for 48 hr decreased expression of Rab3D concurrent with increased expression of cathepsin S. Although total cellular cathepsin S activity was not commensurately increased, IFN-γ treated lacrimal gland acinar cells showed a significant increase in carbachol-stimulated secretion of cathepsin S similar to the lacrimal gland in disease. In vitro IFN-γ treatment did not increase the expression of most components of major histocompatibility complex (MHC) class II-mediated antigen presentation although antigen presentation was slightly but significantly stimulated in primary cultured lacrimal gland acinar cells. However, exposure of cultured human corneal epithelial cells to IFN-γ more robustly increased expression and activity of cathepsin S in parallel with increased expression and function of MHC class II-mediated antigen presentation. We propose that early elevations in IFN-γ contribute to specific features of ocular disease pathology in Sjögren’s Syndrome.
Collapse
Affiliation(s)
- Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Maria C. Edman
- Department of Ophthalmology, USC Roski Eye Institute and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, USC Roski Eye Institute and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Shah M, Edman MC, Reddy Janga S, Yarber F, Meng Z, Klinngam W, Bushman J, Ma T, Liu S, Louie S, Mehta A, Ding C, MacKay JA, Hamm-Alvarez SF. Rapamycin Eye Drops Suppress Lacrimal Gland Inflammation In a Murine Model of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 2017; 58:372-385. [PMID: 28122086 PMCID: PMC5270623 DOI: 10.1167/iovs.16-19159] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose To evaluate the efficacy of topical rapamycin in treating autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. Methods We developed rapamycin in a poly(ethylene glycol)-distearoyl phosphatidylethanolamine (PEG-DSPE) micelle formulation to maintain solubility. Rapamycin or PEG-DSPE eye drops (vehicle) were administered in a well-established Sjögren's syndrome disease model, the male nonobese diabetic (NOD) mice, twice daily for 12 weeks starting at 8 weeks of age. Mouse tear fluid was collected and tear Cathepsin S, a putative tear biomarker for Sjögren's syndrome, was measured. Lacrimal glands were retrieved for histological evaluation, and quantitative real-time PCR of genes associated with Sjögren's syndrome pathogenesis. Tear secretion was measured using phenol red threads, and corneal fluorescein staining was used to assess corneal integrity. Results Lymphocytic infiltration of lacrimal glands from rapamycin-treated mice was significantly (P = 0.0001) reduced by 3.8-fold relative to vehicle-treated mice after 12 weeks of treatment. Rapamycin, but not vehicle, treatment increased tear secretion and decreased corneal fluorescein staining after 12 weeks. In rapamycin-treated mice, Cathepsin S activity was significantly reduced by 3.75-fold in tears (P < 0.0001) and 1.68-fold in lacrimal gland lysates (P = 0.003) relative to vehicle-treated mice. Rapamycin significantly altered the expression of several genes linked to Sjögren's syndrome pathogenesis, including major histocompatibility complex II, TNF-α, IFN-γ, and IL-12a, as well as Akt3, an effector of autophagy. Conclusions Our findings suggest that topical rapamycin reduces autoimmune-mediated lacrimal gland inflammation while improving ocular surface integrity and tear secretion, and thus has potential for treating Sjögren's syndrome–associated dry eye.
Collapse
Affiliation(s)
- Mihir Shah
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Frances Yarber
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Jonathan Bushman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Tao Ma
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Siyu Liu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Stan Louie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Arjun Mehta
- Anatomic and Clinical Pathology, Los Angeles County + University of Southern California Medical Center, Los Angeles, California, United States
| | - Chuanqing Ding
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
39
|
|
40
|
Naeem AS, Tommasi C, Cole C, Brown SJ, Zhu Y, Way B, Willis Owen SAG, Moffatt M, Cookson WO, Harper JI, Di WL, Brown SJ, Reinheckel T, O'Shaughnessy RFL. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 139:1228-1241. [PMID: 27913303 PMCID: PMC5380661 DOI: 10.1016/j.jaci.2016.09.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. OBJECTIVE We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. RESULTS We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. CONCLUSION Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD.
Collapse
Affiliation(s)
- Aishath S Naeem
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Cristina Tommasi
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christian Cole
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Stuart J Brown
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Yanan Zhu
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Benjamin Way
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | | | - Miriam Moffatt
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - William O Cookson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - John I Harper
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Wei-Li Di
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Sara J Brown
- Centre for Dermatology and Genetic Medicine, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Ryan F L O'Shaughnessy
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom.
| |
Collapse
|
41
|
Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Tear Production in a Mouse Model of Sjögren's Syndrome. Stem Cells Int 2017; 2017:3134543. [PMID: 28348600 PMCID: PMC5352970 DOI: 10.1155/2017/3134543] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
The purpose of the present study was to test the potential of mouse bone marrow-derived mesenchymal stem cells (BD-MSCs) in improving tear production in a mouse model of Sjögren's syndrome dry eye and to investigate the underlying mechanisms involved. NOD mice (n = 20) were randomized to receive i.p. injection of sterile phosphate buffered saline (PBS, control) or murine BD-MSCs (1 × 106 cells). Tears production was measured at baseline and once a week after treatment using phenol red impregnated threads. Cathepsin S activity in the tears was measured at the end of treatment. After 4 weeks, animals were sacrificed and the lacrimal glands were excised and processed for histopathology, immunohistochemistry, and RNA analysis. Following BD-MSC injection, tears production increased over time when compared to both baseline and PBS injected mice. Although the number of lymphocytic foci in the lacrimal glands of treated animals did not change, the size of the foci decreased by 40.5% when compared to control animals. The mRNA level of the water channel aquaporin 5 was significantly increased following delivery of BD-MSCs. We conclude that treatment with BD-MSCs increases tear production in the NOD mouse model of Sjögren's syndrome. This is likely due to decreased inflammation and increased expression of aquaporin 5.
Collapse
|
42
|
Symbiotic gut commensal bacteria act as host cathepsin S activity regulators. J Autoimmun 2016; 75:82-95. [PMID: 27484364 DOI: 10.1016/j.jaut.2016.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022]
Abstract
Cathepsin S (CTSS) is a lysosomal protease whose activity regulation is important for MHC-II signaling and subsequent activation of CD4+ T cell mediated immune responses. Dysregulation of its enzymatic activity or enhanced secretion into extracellular environments is associated with the induction or progression of several autoimmune diseases. Here we demonstrate that commensal intestinal bacteria influence secretion rates and intracellular activity of host CTSS and that symbiotic bacteria, i.e. Bacteroides vulgatus mpk, may actively regulate this process and help to maintain physiological levels of CTSS activities in order to prevent from induction of pathological inflammation. The symbiont-controlled regulation of CTSS activity is mediated by anticipating reactive oxygen species induction in dendritic cells which, in turn, maintains cystatin C (CysC) monomer binding to CTSS. CysC monomers are potent endogenous CTSS inhibitors. This Bacteroides vulgatus caused and CysC dependent CTSS activity regulation is involved in the generation of tolerant intestinal dendritic cells contributing to prevention of T-cell mediated induction of colonic inflammation. Taken together, we demonstrate that symbionts of the intestinal microbiota regulate host CTSS activity and secretion and might therefore be an attractive approach to deal with CTSS associated autoimmune diseases.
Collapse
|
43
|
Meng Z, Edman MC, Hsueh PY, Chen CY, Klinngam W, Tolmachova T, Okamoto CT, Hamm-Alvarez SF. Imbalanced Rab3D versus Rab27 increases cathepsin S secretion from lacrimal acini in a mouse model of Sjögren's Syndrome. Am J Physiol Cell Physiol 2016; 310:C942-54. [PMID: 27076615 DOI: 10.1152/ajpcell.00275.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/06/2016] [Indexed: 02/04/2023]
Abstract
The mechanism responsible for the altered spectrum of tear proteins secreted by lacrimal gland acinar cells (LGAC) in patients with Sjögren's Syndrome (SS) remains unknown. We have previously identified increased cathepsin S (CTSS) activity as a unique characteristic of tears of patients with SS. Here, we investigated the role of Rab3D, Rab27a, and Rab27b proteins in the enhanced release of CTSS from LGAC. Similar to patients with SS and to the male nonobese diabetic (NOD) mouse model of SS, CTSS activity was elevated in tears of mice lacking Rab3D. Findings of lower gene expression and altered localization of Rab3D in NOD LGAC reinforce a role for Rab3D in suppressing excess CTSS release under physiological conditions. However, CTSS activity was significantly reduced in tears of mice lacking Rab27 isoforms. The reliance of CTSS secretion on Rab27 activity was supported by in vitro findings that newly synthesized CTSS was detected in and secreted from Rab27-enriched secretory vesicles and that expression of dominant negative Rab27b reduced carbachol-stimulated secretion of CTSS in cultured LGAC. High-resolution 3D-structured illumination microscopy revealed microdomains of Rab3D and Rab27 isoforms on the same secretory vesicles but present in different proportions on different vesicles, suggesting that changes in their relative association with secretory vesicles may tailor the vesicle contents. We propose that a loss of Rab3D from secretory vesicles, leading to disproportionate Rab27-to-Rab3D activity, may contribute to the enhanced release of CTSS in tears of patients with SS.
Collapse
Affiliation(s)
- Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chiao-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | | | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California;
| |
Collapse
|
44
|
Maria NI, Vogelsang P, Versnel MA. The clinical relevance of animal models in Sjögren's syndrome: the interferon signature from mouse to man. Arthritis Res Ther 2015; 17:172. [PMID: 26137972 PMCID: PMC4490668 DOI: 10.1186/s13075-015-0678-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse models have been widely used to elucidate the pathogenic mechanisms of human diseases. The advantages of using these models include the ability to study different stages of the disease with particular respect to specific target organs, to focus on the role of specific pathogenic factors and to investigate the effect of possible therapeutic interventions. Sjögren's syndrome (SS) is a systemic autoimmune disease, characterised by lymphocytic infiltrates in the salivary and lacrimal glands. To date, effective therapy is not available and treatment has been mainly symptomatic. Ongoing studies in murine models are aimed at developing more effective and targeted therapies in SS. The heterogeneity of SS will most probably benefit from optimising therapies, tailored to specific subgroups of the disease. In this review, we provide our perspective on the importance of subdividing SS patients according to their interferon signature, and recommend choosing appropriate mouse models for interferon-positive and interferon-negative SS subtypes. Murine models better resembling human-disease phenotypes will be essential in this endeavour.
Collapse
Affiliation(s)
- Naomi I Maria
- Department of Immunology, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Petra Vogelsang
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5021, Bergen, Norway
| | - Marjan A Versnel
- Department of Immunology, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Kim YJ, Kim YS, Chin S, Yoon JS, Lee SY, Kim CY, Jang SY. Cytoplasmic and nuclear leptin expression in lacrimal gland tumours: a pilot study. Br J Ophthalmol 2015; 99:1306-10. [DOI: 10.1136/bjophthalmol-2014-306404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/10/2015] [Indexed: 12/11/2022]
|
46
|
Wang F, Muller S. Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol 2015; 6:252. [PMID: 26042127 PMCID: PMC4437184 DOI: 10.3389/fimmu.2015.00252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a constitutive intracellular degradation pathway, displays essential role in the homeostasis of immune cells, antigen processing and presentation, and many other immune processes. Perturbation of autophagy has been shown to be related to several autoimmune syndromes, including systemic lupus erythematosus. Therefore, modulating autophagy processes appears most promising for therapy of such autoimmune diseases. Autophagy can be said non-selective or selective; it is classified into three main forms, namely macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA), the former process being by far the most intensively investigated. The role of CMA remains largely underappreciated in autoimmune diseases, even though CMA has been claimed to play pivotal functions into major histocompatibility complex class II-mediated antigen processing and presentation. Therefore, hereby, we give a special focus on CMA as a therapeutic target in autoimmune diseases, based in particular on our most recent experimental results where a phosphopeptide modulates lupus disease by interacting with CMA regulators. We propose that specifically targeting lysosomes and lysosomal pathways, which are central in autophagy processes and seem to be altered in certain autoimmune diseases such as lupus, could be an innovative approach of efficient and personalized treatment.
Collapse
Affiliation(s)
- Fengjuan Wang
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France
| | - Sylviane Muller
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France ; University of Strasbourg Institute for Advanced Study , Strasbourg , France
| |
Collapse
|
47
|
Zhou D, McNamara NA. Macrophages: important players in primary Sjögren's syndrome? Expert Rev Clin Immunol 2014; 10:513-20. [PMID: 24646086 DOI: 10.1586/1744666x.2014.900441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disorder characterized by immune-mediated destruction of the salivary and lacrimal glands with unknown etiology. Due to recent research utilizing human subjects as well as laboratory animal models, our understanding of the pathophysiological and immunological mechanisms of pSS has made great strides. As a consequence, targeted, immune-based therapies are gaining increased attention as the ideal way to conquer autoimmune diseases like pSS. Currently, however, there is no effective treatment to target specific immunological events or effector immune cells in the pathogenesis of pSS (discussed in other reviews of the current issue). Here, we summarize our current understanding and knowledge of the roles of monocytes/macrophages in the pathogenesis of pSS. Human studies, especially utilizing salivary gland biopsies, demonstrate the infiltration of macrophages and its correlation with disease severity. Moreover, animal model studies have shown the functional involvement of macrophages in promoting the ocular component of pSS.
Collapse
Affiliation(s)
- Delu Zhou
- University of Utah, 15 North Medical Drive East, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
48
|
Hamm-Alvarez SF, Janga SR, Edman MC, Madrigal S, Shah M, Frousiakis SE, Renduchintala K, Zhu J, Bricel S, Silka K, Bach D, Heur M, Christianakis S, Arkfeld DG, Irvine J, Mack WJ, Stohl W. Tear cathepsin S as a candidate biomarker for Sjögren's syndrome. Arthritis Rheumatol 2014; 66:1872-81. [PMID: 24644101 DOI: 10.1002/art.38633] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/13/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The diagnosis of Sjögren's syndrome (SS) in routine practice is largely a clinical one and requires a high index of suspicion by the treating physician. This great dependence on clinical judgment frequently leads to delayed diagnosis or misdiagnosis. Tear protein profiles have been proposed as simple and reliable biomarkers for the diagnosis of SS. Given that cathepsin S activity is increased in the lacrimal glands and tears of NOD mice (a murine model of SS), the aim of this study was to explore the clinical utility of using tear cathepsin S (CTSS) activity as a biomarker for SS. METHODS A method to measure CTSS activity in tears eluted from Schirmer's test strips was developed and validated. Schirmer's tests were performed and CTSS activity measurements were obtained in 278 female subjects, including 73 with SS, 79 with rheumatoid arthritis, 40 with systemic lupus erythematosus, 10 with blepharitis, 31 with nonspecific dry eye disease, and 12 with other autoimmune diseases, as well as 33 healthy control subjects. RESULTS The median tear CTSS activity in patients with SS was 4.1-fold higher than that in patients with other autoimmune diseases, 2.1-fold higher than that in patients with nonspecific dry eye disease, and 41.1-fold higher than that in healthy control subjects. Tear CTSS levels were equally elevated in patients with primary SS and those with secondary SS, independent of the Schirmer's test strip values or the levels of circulating anti-SSA or anti-SSB antibodies. CONCLUSION Markedly high levels of tear CTSS activity are suggestive of SS. CTSS activity in tears can be measured in a simple, quick, economical, and noninvasive manner and may serve as a novel biomarker for autoimmune dacryoadenitis during the diagnostic evaluation for SS.
Collapse
|
49
|
Ge W, Li D, Gao Y, Cao X. The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 2014; 34:415-31. [DOI: 10.3109/08830185.2014.936587] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Chen RP, Ren A, Ye SD. Correlation between serum cathepsin S and insulin resistance in type 2 diabetes. Exp Ther Med 2013; 6:1237-1242. [PMID: 24223651 PMCID: PMC3820809 DOI: 10.3892/etm.2013.1290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022] Open
Abstract
Cathepsin S (CatS), a proteolytic enzyme, which belongs to the cysteine proteinase family, is associated with atherosclerosis, coronary heart disease, cancer and other diseases. The present study aimed to explore the correlation between serum CatS and insulin resistance (IR) in patients with type 2 diabetes. A total of 51 patients with type 2 diabetes (Group DM) were recruited for this study and 49 healthy individuals were selected as normal controls (Group NC). Blood pressure and body mass index (BMI) were recorded, and serum creatinine, CatS, glycosylated hemoglobin (HbA1c), lipid and insulin levels, and fasting plasma glucose (FPG) levels were measured in all the participants. The homeostatic model assessment index of IR (HOMA-IR) was calculated according to FPG and serum insulin levels. Serum CatS, very low density lipoprotein (VLDL) and triglyceride (TG) levels in Group DM were significantly higher compared with those in Group NC (P=0.000, 0.014 and 0.020, respectively). Significantly positive correlations were identified between CatS levels and VLDL and TG levels, respectively (P<0.05 for both); however, no significant correlations were determined between CatS levels and age, course of disease, blood pressure, cholesterol, BMI, FPG, HbAc1 and HOMA-IR (P>0.05). Further stratification analysis showed that CatS had no association with IR at different HOMA-IR and HbA1c levels. The present study demonstrated that serum CatS, which was significantly increased in patients with type 2 diabetes, had no correlation with IR. This indicates that CatS and IR are independent of each other; however, the precise mechanisms require further investigation.
Collapse
Affiliation(s)
- Ruo-Ping Chen
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | | | | |
Collapse
|