1
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer's Disease and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7271. [PMID: 39000382 PMCID: PMC11242094 DOI: 10.3390/ijms25137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) represents a prominent neurodegenerative disorder (NDD), accounting for the majority of dementia cases worldwide. In addition to memory deficits, individuals with AD also experience alterations in the visual system. As the retina is an extension of the central nervous system (CNS), the loss in retinal ganglion cells manifests clinically as decreased visual acuity, narrowed visual field, and reduced contrast sensitivity. Among the extensively studied retinal disorders, age-related macular degeneration (AMD) shares numerous aging processes and risk factors with NDDs such as cognitive impairment that occurs in AD. Histopathological investigations have revealed similarities in pathological deposits found in the retina and brain of patients with AD and AMD. Cellular aging processes demonstrate similar associations with organelles and signaling pathways in retinal and brain tissues. Despite these similarities, there are distinct genetic backgrounds underlying these diseases. This review comprehensively explores the genetic similarities and differences between AMD and AD. The purpose of this review is to discuss the parallels and differences between AMD and AD in terms of pathophysiology, genetics, and epigenetics.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
3
|
Ellis MW, Riaz M, Huang Y, Anderson CW, Hoareau M, Li X, Luo H, Lee S, Park J, Luo J, Batty LD, Huang Q, Lopez CA, Reinhardt DP, Tellides G, Qyang Y. De Novo Elastin Assembly Alleviates Development of Supravalvular Aortic Stenosis-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:1674-1682. [PMID: 38752350 PMCID: PMC11209776 DOI: 10.1161/atvbaha.124.320790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln+/- mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln+/- mice. CONCLUSIONS We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln+/- mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.
Collapse
MESH Headings
- Elastin/metabolism
- Animals
- Humans
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Aortic Stenosis, Supravalvular/metabolism
- Aortic Stenosis, Supravalvular/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Cell Proliferation/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Mice
- Cells, Cultured
- Mice, Inbred C57BL
- Female
- Male
- Mice, Knockout
Collapse
Affiliation(s)
- Matthew W. Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Yan Huang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Christopher W. Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Marie Hoareau
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Xin Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Seoyeon Lee
- Biological and Biomedical Sciences, Yale University, New Haven, CT 06511, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Luke D. Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Qunhua Huang
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Colleen A. Lopez
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Dieter P. Reinhardt
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - George Tellides
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
4
|
Stradiotto E, Allegrini D, Fossati G, Raimondi R, Sorrentino T, Tripepi D, Barone G, Inforzato A, Romano MR. Genetic Aspects of Age-Related Macular Degeneration and Their Therapeutic Potential. Int J Mol Sci 2022; 23:13280. [PMID: 36362067 PMCID: PMC9653831 DOI: 10.3390/ijms232113280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.
Collapse
Affiliation(s)
- Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Davide Allegrini
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Giovanni Fossati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano-Milan, Italy
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| |
Collapse
|
5
|
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. J Mol Cell Cardiol 2022; 163:167-174. [PMID: 34979103 PMCID: PMC8920537 DOI: 10.1016/j.yjmcc.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Tissue engineered vascular grafts possess several advantages over synthetic or autologous grafts, including increased availability and reduced rates of infection and thrombosis. Engineered grafts constructed from human induced pluripotent stem cell derivatives further offer enhanced reproducibility in graft production. One notable obstacle to clinical application of these grafts is the lack of elastin in the vessel wall, which would serve to endow compliance in addition to mechanical strength. This study establishes the ability of the polyphenol compound epigallocatechin gallate, a principal component of green tea, to facilitate the extracellular formation of elastin fibers in vascular smooth muscle cells derived from human induced pluripotent stem cells. Further, this study describes the creation of a doxycycline-inducible elastin expression system to uncouple elastin production from vascular smooth muscle cell proliferative capacity to permit fiber formation in conditions conducive to robust tissue engineering.
Collapse
Affiliation(s)
- Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yan Huang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Christopher W Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Colleen A Lopez
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Luke D Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Kimberley H Gibson
- Center for Cellular and Molecular Imaging: Electron Microscopy, Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Gharesouran J, Hosseinzadeh H, Ghafouri-Fard S, Jabbari Moghadam Y, Ahmadian Heris J, Jafari-Rouhi AH, Taheri M, Rezazadeh M. New insight into clinical heterogeneity and inheritance diversity of FBLN5-related cutis laxa. Orphanet J Rare Dis 2021; 16:51. [PMID: 33509220 PMCID: PMC7845118 DOI: 10.1186/s13023-021-01696-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background FBLN5-related cutis laxa (CL) is a rare disorder that involves elastic fiber-enriched tissues and is characterized by lax skin and variable systemic involvement such as pulmonary emphysema, arterial involvement, inguinal hernias, hollow viscus diverticula and pyloric stenosis. This type of CL follows mostly autosomal recessive (AR) and less commonly autosomal dominant patterns of inheritance. Results In this study, we detected a novel homozygous missense variant in exon 6 of FBLN5 gene (c.G544C, p.A182P) by using whole exome sequencing in a consanguineous Iranian family with two affected members. Our twin patients showed some of the clinical manifestation of FBLN5-related CL but they did not present pulmonary complications, gastrointestinal and genitourinary abnormalities. The notable thing about this monozygotic twin sisters is that only one of them showed ventricular septal defect, suggesting that this type of CL has intrafamilial variability. Co-segregation analysis showed the patients’ parents and relatives were heterozygous for detected variation suggesting AR form of the CL. In silico prediction tools showed that this mutation is pathogenic and 3D modeling of the normal and mutant protein revealed relative structural alteration of fibulin-5 suggesting that the A182P can contribute to the CL phenotype via the combined effect of lack of protein function and partly misfolding-associated toxicity. Conclusion We underlined the probable roles and functions of the involved domain of fibulin-5 and proposed some possible mechanisms involved in AR form of FBLN5-related CL. However, further functional studies and subsequent clinical and molecular investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Jabbari Moghadam
- Department of Otorhinolaryngology, School of Medicine, Sina Medical Research and Training Hospital, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Pediatrics, School of Medicine, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
O'Neill Moore S, Grubb TJ, Kothapalli CR. Insights into the biophysical forces between proteins involved in elastic fiber assembly. J Mater Chem B 2020; 8:9239-9250. [PMID: 32966543 DOI: 10.1039/d0tb01591a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Elastogenesis is a complex process beginning with transcription, translation, and extracellular release of precursor proteins leading to crosslinking, deposition, and assembly of ubiquitous elastic fibers. While the biochemical pathways by which elastic fibers are assembled are known, the biophysical forces mediating the interactions between the constituent proteins are unknown. Using atomic force microscopy, we quantified the adhesive forces among the elastic fiber components, primarily between tropoelastin, elastin binding protein (EBP), fibrillin-1, fibulin-5, and lysyl oxidase-like 2 (LOXL2). The adhesive forces between tropoelastin and other tissue-derived proteins such as insoluble elastin, laminin, and type I collagens were also assessed. The adhesive forces between tropoelastin and laminin were strong (1767 ± 126 pN; p < 10-5vs. all others), followed by forces (≥200 pN) between tropoelastin and human collagen, mature elastin, or tropoelastin. The adhesive forces between tropoelastin and rat collagen, EBP, fibrillin-1, fibulin-5, and LOXL2 coated on fibrillin-1 were in the range of 100-200 pN. The forces between tropoelastin and LOXL2, LOXL2 and fibrillin-1, LOXL2 and fibulin-5, and fibrillin-1 and fibulin-5 were less than 100 pN. Introducing LOXL2 decreased the adhesive forces between the tropoelastin monomers by ∼100 pN. The retraction phase of force-deflection curves was fitted to the worm-like chain model to calculate the rigidity and flexibility of these proteins as they unfolded. The results provided insights into how each constituent's stretching under deformation contributes to structural and mechanical characteristics of these fibers and to elastic fiber assembly.
Collapse
Affiliation(s)
- Sean O'Neill Moore
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| | - Tyler Jacob Grubb
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| |
Collapse
|
8
|
Paraoan L, Sharif U, Carlsson E, Supharattanasitthi W, Mahmud NM, Kamalden TA, Hiscott P, Jackson M, Grierson I. Secretory proteostasis of the retinal pigmented epithelium: Impairment links to age-related macular degeneration. Prog Retin Eye Res 2020; 79:100859. [PMID: 32278708 DOI: 10.1016/j.preteyeres.2020.100859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Secretory proteostasis integrates protein synthesis, processing, folding and trafficking pathways that are essential for efficient cellular secretion. For the retinal pigment epithelium (RPE), secretory proteostasis is of vital importance for the maintenance of the structural and functional integrity of apical (photoreceptors) and basal (Bruch's membrane/choroidal blood supply) sides of the environment it resides in. This integrity is achieved through functions governed by RPE secreted proteins, which include extracellular matrix modelling/remodelling, angiogenesis and immune response modulation. Impaired RPE secretory proteostasis affects not only the extracellular environment, but leads to intracellular protein aggregation and ER-stress with subsequent cell death. Ample recent evidence implicates dysregulated proteostasis as a key factor in the development of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, and research aiming to characterise the roles of various proteins implicated in AMD-associated dysregulated proteostasis unveiled unexpected facets of the mechanisms involved in degenerative pathogenesis. This review analyses cellular processes unveiled by the study of the top 200 transcripts most abundantly expressed by the RPE/choroid in the light of the specialised secretory nature of the RPE. Functional roles of these proteins and the mechanisms of their impaired secretion, due to age and genetic-related causes, are analysed in relation to AMD development. Understanding the importance of RPE secretory proteostasis in relation to maintaining retinal health and how it becomes impaired in disease is of paramount importance for the development and assessment of future therapeutic advancements involving gene and cell therapies.
Collapse
Affiliation(s)
- Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Umar Sharif
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Emil Carlsson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Wasu Supharattanasitthi
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Nur Musfirah Mahmud
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Tengku Ain Kamalden
- Eye Research Centre, Department of Ophthalmology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Hiscott
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm Jackson
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ian Grierson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Greene AG, Eivers SB, Dervan EWJ, O'Brien CJ, Wallace DM. Lysyl Oxidase Like 1: Biological roles and regulation. Exp Eye Res 2020; 193:107975. [PMID: 32070696 DOI: 10.1016/j.exer.2020.107975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Lysyl Oxidase Like 1 (LOXL1) is a gene that encodes for the LOXL1 enzyme. This enzyme is required for elastin biogenesis and collagen cross-linking, polymerising tropoelastin monomers into elastin polymers. Its main role is in elastin homeostasis and matrix remodelling during injury, fibrosis and cancer development. Because of its vast range of biological functions, abnormalities in LOXL1 underlie many disease processes. Decreased LOXL1 expression is observed in disorders of elastin such as Cutis Laxa and increased expression is reported in fibrotic disease such as Idiopathic Pulmonary Fibrosis. LOXL1 is also downregulated in the lamina cribrosa in pseudoexfoliation glaucoma and genetic variants in the LOXL1 gene have been linked with an increased risk of developing pseudoexfoliation glaucoma and pseudoexfoliation syndrome. However the two major risk alleles are reversed in certain ethnic groups and are present in a large proportion of the normal population, implying complex genetic and environmental regulation is involved in disease pathogenesis. It also appears that the non-coding variants in intron 1 of LOXL1 may be involved in the regulation of LOXL1 expression. Gene alteration may occur via a number of epigenetic and post translational mechanisms such as DNA methylation, long non-coding RNAs and microRNAs. These may represent future therapeutic targets for disease. Environmental factors such as hypoxia, oxidative stress and ultraviolet radiation exposure alter LOXL1 expression, and it is likely a combination of these genetic and environmental factors that influence disease development and progression. In this review, we discuss LOXL1 properties, biological roles and regulation in detail with a focus on pseudoexfoliation syndrome and glaucoma.
Collapse
Affiliation(s)
- Alison G Greene
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland.
| | - Sarah B Eivers
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| | - Edward W J Dervan
- Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Colm J O'Brien
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Deborah M Wallace
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
10
|
De novo variants in an extracellular matrix protein coding gene, fibulin-5 (FBLN5) are associated with pseudoexfoliation. Eur J Hum Genet 2019; 27:1858-1866. [PMID: 31358954 DOI: 10.1038/s41431-019-0482-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 02/08/2023] Open
Abstract
Fibulin-5 (FBLN5), an extracellular scaffold protein, plays a crucial role in the activation of Lysyl oxidase like-1 (LOXL1), a tropoelastin crosslinking enzyme, and subsequent deposition of elastin in the extracellular matrix. Following study identifies polymorphisms within FBLN5 gene as risk factors and its aberrant expression in the pathogenesis of an ocular disorder, pseudoexfoliation (PEX). Exons and exon-intron boundaries within FBLN5 gene were scanned through fluorescence-based capillary electrophoresis for polymorphisms as risk factors for PEX pathogenesis in recruited study subjects with Indian ethnicity. mRNA and protein expression of FBLN5 was checked in lens capsule of study subjects through qRT-PCR and western blotting, respectively. In vitro functional analysis of risk variants was done through luciferase reporter assays. Thirty study subjects from control and PEX affected groups were scanned for potential risk variants. Putative polymorphisms identified by scanning were further evaluated for genetic association in a larger sample size comprising of 338 control and 375 PEX affected subjects. Two noncoding polymorphisms, hg38 chr14:g.91947643G>A (rs7149187:G>A) and hg38 chr14:g.91870431T>C (rs929608:T>C) within FBLN5 gene are found to be significantly associated with PEX as risk factors with a p-value of 0.005 and 0.004, respectively. Molecular assays showed a decreased expression of FBLN5 at both mRNA and protein level in lens capsule of pseudoexfoliation syndrome (PEXS) affected subjects than control. This study unravels two novel risk variants within FBLN5 gene in the pathogenesis of PEX. Further, a decreased expression of FBLN5 in PEXS affected lens capsules implicates a pathogenic link between extracellular matrix maintenance and onset of PEX.
Collapse
|
11
|
Mohamedi Y, Fontanil T, Solares L, Garcia-Suárez O, García-Piqueras J, Vega JA, Cal S, Obaya AJ. Fibulin-5 downregulates Ki-67 and inhibits proliferation and invasion of breast cancer cells. Int J Oncol 2016; 48:1447-56. [PMID: 26891749 DOI: 10.3892/ijo.2016.3394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
Fibulins not only function as molecular bridges within the cellular microenvironment but also influence cell behavior. Thus, fibulins may contribute to create a permissive microenvironment for tumor growth but can also stimulate different mechanisms that may impede tumor progression. This is the case with Fibulin-5, which has been shown to display both tumor-promoting and tumor-protective functions by mechanisms that are not totally defined. We show new evidence on the tumor-protective functions displayed by Fibulin-5 in MCF-7, T47D and MDA-MB-231 breast cancer cells including the inhibition of invasion and proliferation capacity and hampering the ability to form mammospheres. Reduction in the level of phosphorylation of Ser residues involved in the nuclear translocation of β-catenin may underlie these antitumor effects. We also found that Fibulin-5 reduces the level of expression of Ki-67, a nuclear protein associated with cell proliferation. Moreover, reduction in Fibulin-5 expression corresponds to an increase of Ki-67 detection in breast tissue samples. Overall, our data provide new insights into the influence of Fibulin-5 to modify breast cancer cell behavior and contribute to better understand the connections between fibulins and cancer.
Collapse
Affiliation(s)
- Yamina Mohamedi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Tania Fontanil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Laura Solares
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Olivia Garcia-Suárez
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Jose A Vega
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Santiago Cal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Alvaro J Obaya
- Department of Functional Biology-Physiology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
12
|
Li F, Zeng Y, Xu H, Yin ZQ. Subretinal transplantation of retinal pigment epithelium overexpressing fibulin-5 inhibits laser-induced choroidal neovascularization in rats. Exp Eye Res 2015; 136:78-85. [PMID: 25983185 DOI: 10.1016/j.exer.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/14/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Choroidal neovascularization (CNV) is the abnormal angiogenesis that causes severe visual loss in AMD. Fibulin-5 (Fbln5), which functions as an angiogenesis inhibitor, plays an important role in the pathogenesis of AMD. Here, we investigated whether subretinal transplantation of Fbln5-overexpressing retinal pigment epithelial (RPE) cells can inhibit CNV in vivo. Adult Long-Evans rats were used in this study. CNV was induced by laser photocoagulation. One week after laser-induced CNV, RPE cells expressing pZlen-Fbln5-IRES-GFP or the control pZlen-IRES-GFP vectors were transplanted into the subretinal space of the right and left eyes, respectively. CNV was evaluated using fundus photography, fundus fluorescein angiography (FFA), and hematoxylin and eosin staining. We found that CNV occurred at 1 week after photocoagulation, reaching peak activity at 3 weeks and remaining at a high level at 4-5 weeks after photocoagulation. Transplanted RPE cells survived for at least 4 weeks and migrated toward the retina. Subretinal transplantation of Fbln5-overexpressing RPE cells resulted in a significant reduction in the total area of leakage and the number of leakage spots compared with transplantation of RPE cells expressing only green fluorescent protein. Our findings suggest that subretinal transplantation of Fbln5-overexpressing RPE cells inhibits laser-induced CNV in rats and thus represents a promising therapy for the treatment of AMD.
Collapse
Affiliation(s)
- Fuliang Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, PR China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, PR China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, PR China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, PR China.
| |
Collapse
|
13
|
den Hollander AI, de Jong EK. Highly penetrant alleles in age-related macular degeneration. Cold Spring Harb Perspect Med 2014; 5:a017202. [PMID: 25377141 DOI: 10.1101/cshperspect.a017202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is a complex disease caused by a combination of genetic and environmental factors. Genome-wide association studies have identified several common genetic variants associated with AMD, which together account for 15%-65% of the heritability of AMD. Multiple hypotheses to clarify the unexplained portion of genetic variance have been proposed, such as gene-gene interactions, gene-environment interactions, structural variations, epigenetics, and rare variants. Several studies support a role for rare variants with large effect sizes in the pathogenesis of AMD. In this work, we review the methods that can be used to detect rare variants in common diseases, as well as the recent progress that has been made in the identification of rare variants in AMD. In addition, the relevance of these rare variants for diagnosis, prognosis, and treatment of AMD is highlighted.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Department of Ophthalmology and Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology and Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Papke CL, Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol 2014; 37:142-9. [PMID: 24613575 DOI: 10.1016/j.matbio.2014.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Abstract
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein-protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5(-/-)) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4(-/-)) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Hiromi Yanagisawa
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA.
| |
Collapse
|
15
|
|
16
|
Boon CJ, van de Ven JP, Hoyng CB, den Hollander AI, Klevering BJ. Cuticular drusen: Stars in the sky. Prog Retin Eye Res 2013; 37:90-113. [DOI: 10.1016/j.preteyeres.2013.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022]
|
17
|
Djokic J, Fagotto-Kaufmann C, Bartels R, Nelea V, Reinhardt DP. Fibulin-3, -4, and -5 are highly susceptible to proteolysis, interact with cells and heparin, and form multimers. J Biol Chem 2013; 288:22821-35. [PMID: 23782690 DOI: 10.1074/jbc.m112.439158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular short fibulins, fibulin-3, -4, and -5, are components of the elastic fiber/microfibril system and are implicated in the formation and homeostasis of elastic tissues. In this study, we report new structural and functional properties of the short fibulins. Full-length human short fibulins were recombinantly expressed in human embryonic kidney cells and purified by immobilized metal ion affinity chromatography. All three fibulins showed various levels of degradation after the purification procedure. N-terminal sequencing revealed that all three fibulins are highly susceptible to proteolysis within the N-terminal linker region of the first calcium-binding epidermal growth factor domain. Proteolytic susceptibility of the linker correlated with its length. Exposure of these fibulins to matrix metalloproteinase (MMP)-1, -2, -3, -7, -9, and -12 resulted in similar proteolytic fragments with MMP-7 and -12 being the most potent proteases. Fibulin-3 proteolysis was almost completely inhibited in cell culture by the addition of 25 μm doxycycline (a broad spectrum MMP inhibitor). Reducible fibulin-4 dimerization and multimerization were consistently observed by SDS-PAGE, Western blotting, and mass spectrometry. Atomic force microscopy identified monomers, dimers, and multimers in purified fibulin-4 preparations with sizes of ∼10-15, ∼20-25, and ∼30-50 nm, respectively. All short fibulins strongly adhered to human fibroblasts and smooth muscle cells. Although only fibulin-5 has an RGD integrin binding site, all short fibulins adhere at a similar level to the respective cells. Solid phase binding assays detected strong calcium-dependent binding of the short fibulins to immobilized heparin, suggesting that these fibulins may bind cell surface-located heparan sulfate.
Collapse
Affiliation(s)
- Jelena Djokic
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, Quebec H3A 0C7, Canada
| | | | | | | | | |
Collapse
|
18
|
Kay P, Yang YC, Paraoan L. Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med 2013; 17:833-43. [PMID: 23663427 PMCID: PMC3822888 DOI: 10.1111/jcmm.12070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/24/2013] [Indexed: 11/29/2022] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.
Collapse
Affiliation(s)
- Paul Kay
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
19
|
Hulleman JD, Balch WE, Kelly JW. Translational attenuation differentially alters the fate of disease-associated fibulin proteins. FASEB J 2012; 26:4548-60. [PMID: 22872678 DOI: 10.1096/fj.11-202861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in fibulin proteins that cause cellular secretion deficiencies are linked to a variety of diseases, ranging from retinopathies to cutis laxa (CL). One secretion-deficient fibulin mutant, R345W fibulin-3, causes the macular dystrophy malattia leventinese by increased endoplasmic reticulum retention and/or extracellular misfolding. Herein, we report that small-molecule activation of the PERK arm of the unfolded protein response partially rescues R345W secretion deficiencies through translational attenuation mediated by eIF2α phosphorylation. Enhanced mutant fibulin-3 secretion can also be achieved by activation of a PERK-independent eIF2α kinase through arsenite treatment and is independent of activating transcription factor 4 signaling and protein translation. However, this translational attenuation strategy was unsuccessful for enhancing the secretion deficiencies of fibulin-5 mutants associated with age-related macular degeneration or CL. While lowered growth temperature enhanced the secretion of mutants associated with CL (C217R and S227P), these effects were not mediated through translational attenuation. In stark contrast to the situation with fibulin-3, protein translation was required for efficient wild-type and mutant fibulin-5 secretion. These data suggest that alteration of specific cellular signaling pathways and proteostasis network components can differentially influence fibulin fate, a hypothesis that could be exploited as a therapy for fibulin-related diseases.
Collapse
Affiliation(s)
- John D Hulleman
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
20
|
Li F, Xu H, Zeng Y, Yin ZQ. Overexpression of fibulin-5 in retinal pigment epithelial cells inhibits cell proliferation and migration and downregulates VEGF, CXCR4, and TGFB1 expression in cocultured choroidal endothelial cells. Curr Eye Res 2012; 37:540-8. [PMID: 22369482 DOI: 10.3109/02713683.2012.665561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE STUDY Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss. Fibulin-5 (FBLN5) plays a pleiotropic role in the pathogenesis of AMD. We examined whether the in vitro overexpression of FBLN5 in retinal pigment epithelial (RPE) cells alters the proliferation and migration of cocultured choroidal endothelial cells (CECs) and explored the possible mechanisms involved. MATERIALS AND METHODS A recombinant lentiviral vector carrying the Fbln5 gene was generated to transduce rat RPE cells. The expression of FBLN5 in transduced RPE cells was detected by quantitative real-time PCR and Western blot. The transduced RPE cells were then cocultured with rhesus macaque CECs in a Transwell coculture system. The impact of overexpression of FBLN5 in RPE cells on CEC proliferation and migration was assessed, as well as the impact on the mRNA expressions of vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), and transforming growth factor β1 (TGFB1). RESULTS Our results showed that a recombinant lentivirus carrying the Fbln5 gene, which could induce overexpression of FBLN5 in RPE cells, was successfully generated. Overexpression of FBLN5 in RPE cells inhibited cell proliferation and migration and downregulated the mRNA expressions of VEGF, CXCR4, and TGFB1 in cocultured CECs. CONCLUSIONS These findings suggest that FBLN5 may interfere with choroidal neovascularization by downregulating VEGF, CXCR4, and TGFB1 expression and inhibiting CEC proliferation and invasion, intensifying interest in FBLN5 as a target for therapeutic intervention in neovascular AMD.
Collapse
Affiliation(s)
- Fuliang Li
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing, P. R. China
| | | | | | | |
Collapse
|
21
|
Baets J, Timmerman V. Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain 2011; 134:1587-90. [DOI: 10.1093/brain/awr114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Auer-Grumbach M, Weger M, Fink-Puches R, Papić L, Fröhlich E, Auer-Grumbach P, El Shabrawi-Caelen L, Schabhüttl M, Windpassinger C, Senderek J, Budka H, Trajanoski S, Janecke AR, Haas A, Metze D, Pieber TR, Guelly C. Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin. ACTA ACUST UNITED AC 2011; 134:1839-52. [PMID: 21576112 DOI: 10.1093/brain/awr076] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To identify the disease-causing gene responsible for an autosomal dominantly inherited Charcot-Marie-Tooth neuropathy subtype in a family excluded for mutations in the common Charcot-Marie-Tooth genes, we used array-based sequence capture to simultaneously analyse the disease-linked protein coding exome at chromosome 14q32. A missense mutation in fibulin-5, encoding a widely expressed constituent of the extracellular matrix that has an essential role in elastic fibre assembly and has been shown to cause cutis laxa, was detected as the only novel non-synonymous sequence variant within the disease interval. Screening of 112 index probands with unclassified Charcot-Marie-Tooth neuropathies detected two further fibulin-5 missense mutations in two families with Charcot-Marie-Tooth disease and hyperextensible skin. Since fibulin-5 mutations have been described in patients with age-related macular degeneration, an additional 300 probands with exudative age-related macular degeneration were included in this study. Two further fibulin-5 missense mutations were identified in six patients. A mild to severe peripheral neuropathy was detected in the majority of patients with age-related macular degeneration carrying mutations in fibulin-5. This study identifies fibulin-5 as a gene involved in Charcot-Marie-Tooth neuropathies and reveals heterozygous fibulin-5 mutations in 2% of our patients with age-related macular degeneration. Furthermore, it adumbrates a new syndrome by linking concurrent pathologic alterations affecting peripheral nerves, eyes and skin to mutations in the fibulin-5 gene.
Collapse
Affiliation(s)
- Michaela Auer-Grumbach
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz, Stiftingtalstraße 24; A-8010 Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schneider R, Jensen SA, Whiteman P, McCullagh JSO, Redfield C, Handford PA. Biophysical characterisation of fibulin-5 proteins associated with disease. J Mol Biol 2010; 401:605-17. [PMID: 20599547 DOI: 10.1016/j.jmb.2010.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
Abstract
FBLN5 encodes fibulin-5, an extracellular matrix calcium-binding glycoprotein that is essential for elastic fibre formation. FBLN5 mutations are associated with two distinct human diseases, age-related macular degeneration (AMD) and cutis laxa (CL), but the biochemical basis for the pathogenic effects of these mutations is poorly understood. Two missense mutations found in AMD patients (I169T and G267S) and two missense mutations found in CL patients (G202R and S227P) were analysed in a native-like context in recombinant fibulin-5 fragments. Limited proteolysis, NMR spectroscopy and chromophoric calcium chelation experiments showed that the G267S and S227P substitutions cause long-range structural effects consistent with protein misfolding. Cellular studies using fibroblast cells further demonstrated that these recombinant forms of mutant fibulin-5 were not present in the extracellular medium, consistent with retention. In contrast, no significant effects of I169T and G202R substitutions on protein fold and secretion were identified. These data establish protein misfolding as a causative basis for the effects of G267S and S227P substitutions in AMD and CL, respectively, and raise the possibility that the I169T and G202R substitutions may be polymorphisms or may increase susceptibility to disease.
Collapse
Affiliation(s)
- Ralf Schneider
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|