1
|
Hassanpoor N, Ebrahimiadib N, Riazi-Esfahani H, Moghaddasi A, Suri F. Bilateral helicoid peri-papillary sub-retinal fibrosis due to a biallelic NR2E3 mutation: Describing variable expressivity of a mutation. Eur J Ophthalmol 2024:11206721241234396. [PMID: 38444285 DOI: 10.1177/11206721241234396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
BACKGROUND To describe different clinical presentations of a same NR2E3 recessive mutation in two families and within one family. DESIGN Interventional family study. RESULTS Our first case was a one-year-old male child with high hyperopia and refractive accommodative esotropia. In retinal examination, peri-papillary sub-retinal fibrosis with a helicoid configuration was observed in both eyes. The parents and the only sibling had no pathologic findings in the eyes. The child showed to have severely reduced responses in both photopic and scotopic electroretinogram components. In the genetic investigation, a homozygous autosomal recessive mutation in the NR2E3 gene (IVS1-2A > C) was discovered in the affected child, while the other family members were heterozygous for this mutation. We followed up with the patient for 3 years and no new lesion developed during this period. The second case was a 13-year-old male child referred to the retina clinic for decreased vision in the right eye. In retina examination, there were nummular pigmentary changes at the level of retinal pigment epithelium and along the vascular arcades with foveo-schitic changes in both eyes. A choroidal neovascularization (CNV) was noticed in the macula of his right eye. The genetic evaluation proved the same mutation in the NR2E3 gene as in the first case. Family history was remarkable for an uncle, an aunt, and two cousins with night blindness. CONCLUSION Same NR2E3 gene mutation can cause heterogeneous clinical manifestations such as slight retinal changes in the absence of any visual symptoms to high hyperopia associated with helicoid peri-papillary sub-retinal fibrosis.
Collapse
Affiliation(s)
- Narges Hassanpoor
- Retina & Vitreous Service, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Ebrahimiadib
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Hamid Riazi-Esfahani
- Retina & Vitreous Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Afrooz Moghaddasi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
3
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
4
|
Sun C, Chen S. Disease-causing mutations in genes encoding transcription factors critical for photoreceptor development. Front Mol Neurosci 2023; 16:1134839. [PMID: 37181651 PMCID: PMC10172487 DOI: 10.3389/fnmol.2023.1134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptor development of the vertebrate visual system is controlled by a complex transcription regulatory network. OTX2 is expressed in the mitotic retinal progenitor cells (RPCs) and controls photoreceptor genesis. CRX that is activated by OTX2 is expressed in photoreceptor precursors after cell cycle exit. NEUROD1 is also present in photoreceptor precursors that are ready to specify into rod and cone photoreceptor subtypes. NRL is required for the rod fate and regulates downstream rod-specific genes including the orphan nuclear receptor NR2E3 which further activates rod-specific genes and simultaneously represses cone-specific genes. Cone subtype specification is also regulated by the interplay of several transcription factors such as THRB and RXRG. Mutations in these key transcription factors are responsible for ocular defects at birth such as microphthalmia and inherited photoreceptor diseases such as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and allied dystrophies. In particular, many mutations are inherited in an autosomal dominant fashion, including the majority of missense mutations in CRX and NRL. In this review, we describe the spectrum of photoreceptor defects that are associated with mutations in the above-mentioned transcription factors, and summarize the current knowledge of molecular mechanisms underlying the pathogenic mutations. At last, we deliberate the outstanding gaps in our understanding of the genotype-phenotype correlations and outline avenues for future research of the treatment strategies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Chi Sun,
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Iarossi G, Sinibaldi L, Passarelli C, Coppe’ AM, Cappelli A, Petrocelli G, Catena G, Perrone C, Falsini B, Novelli A, Bartuli A, Buzzonetti L. A Novel Autosomal Recessive Variant of the NRL Gene Causing Enhanced S-Cone Syndrome: A Morpho-Functional Analysis of Two Unrelated Pediatric Patients. Diagnostics (Basel) 2022; 12:2183. [PMID: 36140584 PMCID: PMC9497687 DOI: 10.3390/diagnostics12092183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Enhanced S-cone syndrome (ESCS) is a rare autosomal recessive retinal degeneration mainly associated with pathogenic variations in the NR2E3 gene. Only a few pathogenic variations in the NRL gene associated with ESCS have been reported to date. Here, we describe the clinical and genetic findings of two unrelated pediatric patients with a novel frameshift homozygous variant in the NRL gene. Fundus examinations showed signs of peripheral degeneration in both patients, more severe in Proband 2, with relative sparing of the macular area. Spectral domain optical coherence tomography (SD-OCT) revealed a significant macular involvement with cysts in Proband 1, and minimal foveal alteration with peripheral retina involvement in Proband 2. Visual acuity was abnormal in both patients, but more severely affected in Proband 1 than Proband 2. The electroretinogram recordings showed reduced scotopic, mixed and single flash cone responses, with a typical supernormal S-cone response, meeting the criteria for a clinical diagnosis of ESCS in both patients. The present report expands the clinical and genetic spectrum of NRL-associated ESCS, and confirms the age-independent variability of phenotypic presentation already described in the NR2E3-associated ESCS.
Collapse
Affiliation(s)
- Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Maria Coppe’
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Alessandro Cappelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gianni Petrocelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gino Catena
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Perrone
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Bartuli
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| |
Collapse
|
6
|
Massengill MT, Lewin AS. Gene Therapy for Rhodopsin-associated Autosomal Dominant Retinitis Pigmentosa. Int Ophthalmol Clin 2021; 61:79-96. [PMID: 34584046 PMCID: PMC8478325 DOI: 10.1097/iio.0000000000000383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Retinitis Punctata Albescens and RLBP1-Allied Phenotypes. OPHTHALMOLOGY SCIENCE 2021; 1:100052. [PMID: 36247817 PMCID: PMC9559097 DOI: 10.1016/j.xops.2021.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022]
Abstract
Purpose To identify relevant criteria for gene therapy based on clinical and genetic characteristics of rod–cone dystrophy associated with RLBP1 pathogenic variants in a large cohort comprising children and adults. Design Retrospective cohort study. Participants Patients with pathogenic variants in RLBP1 registered in a single French reference center specialized in inherited retinal dystrophies. Methods Clinical, multimodal imaging, and genetic findings were reviewed. Main Outcome Measures Age of onset; visual acuity; ellipsoid line length; nasal, temporal, and foveal retinal thickness; and pathogenic variants and related phenotypes, including Newfoundland rod–cone and Bothnia dystrophies (NFRCDs), were reappraised. Results Twenty-one patients (15 families) were included. The most frequent form was NFRCD with 12 patients (8 families) homozygous for the recurrent deletion of exons 7 through 9 in RLBP1 and 5 patients (4 families) with biallelic protein-truncating variants (2 novel: p.Gln16∗ and p.Tyr251∗). A novel combination of the p.Arg234Trp Bothnia variant with a nonsense variant in trans led to Bothnia dystrophy in 2 sisters. One proband carrying the p.Met266Lys Bothnia variant and in trans p.Arg121Trp and a second, with the p.Arg9Cys and p.Tyr111∗ combination, both demonstrated mild retinitis punctata albescens. Independently of genotype, all patients showed a visual acuity of worse than 20/200, an ellipsoid line width of less than 1000 μm, and a mean foveal thickness of less than 130 to 150 μm, with loss of both the interdigitation and ellipsoid lines. Conclusions The eligibility for RLBP1 gene therapy first should be determined according to the biallelic variant combination using a robust classification as proposed herein. An ellipsoid line width of more than 1200 μm and a central thickness of more than 130 to 150 μm with detectable ellipsoid and interdigitation lines should be 2 prerequisite imaging indicators for gene therapy.
Collapse
|
8
|
Kuehlewein L, Zobor D, Andreasson SO, Ayuso C, Banfi S, Bocquet B, Bernd AS, Biskup S, Boon CJF, Downes SM, Fischer MD, Holz FG, Kellner U, Leroy BP, Meunier I, Nasser F, Rosenberg T, Rudolph G, Stingl K, Thiadens AAHJ, Wilhelm B, Wissinger B, Zrenner E, Kohl S, Weisschuh N. Clinical Phenotype and Course of PDE6A-Associated Retinitis Pigmentosa Disease, Characterized in Preparation for a Gene Supplementation Trial. JAMA Ophthalmol 2021; 138:1241-1250. [PMID: 33057649 DOI: 10.1001/jamaophthalmol.2020.4206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Treatment trials require sound knowledge on the natural course of disease. Objective To assess clinical features, genetic findings, and genotype-phenotype correlations in patients with retinitis pigmentosa (RP) associated with biallelic sequence variations in the PDE6A gene in preparation for a gene supplementation trial. Design, Setting, and Participants This prospective, longitudinal, observational cohort study was conducted from January 2001 to December 2019 in a single center (Centre for Ophthalmology of the University of Tübingen, Germany) with patients recruited multinationally from 12 collaborating European tertiary referral centers. Patients with retinitis pigmentosa, sequence variants in PDE6A, and the ability to provide informed consent were included. Exposures Comprehensive ophthalmological examinations; validation of compound heterozygosity and biallelism by familial segregation analysis, allelic cloning, or assessment of next-generation sequencing-read data, where possible. Main Outcomes and Measures Genetic findings and clinical features describing the entire cohort and comparing patients harboring the 2 most common disease-causing variants in a homozygous state (c.304C>A;p.(R102S) and c.998 + 1G>A;p.?). Results Fifty-seven patients (32 female patients [56%]; mean [SD], 40 [14] years) from 44 families were included. All patients completed the study. Thirty patients were homozygous for disease-causing alleles. Twenty-seven patients were heterozygous for 2 different PDE6A variants each. The most frequently observed alleles were c.304C>A;p.(R102S), c.998 + 1G>A;p.?, and c.2053G>A;p.(V685M). The mean (SD) best-corrected visual acuity was 0.43 (0.48) logMAR (Snellen equivalent, 20/50). The median visual field area with object III4e was 660 square degrees (5th and 95th percentiles, 76 and 11 019 square degrees; 25th and 75th percentiles, 255 and 3923 square degrees). Dark-adapted and light-adapted full-field electroretinography showed no responses in 88 of 108 eyes (81.5%). Sixty-nine of 108 eyes (62.9%) showed additional findings on optical coherence tomography imaging (eg, cystoid macular edema or macular atrophy). The variant c.998 + 1G>A;p.? led to a more severe phenotype when compared with the variant c.304C>A;p.(R102S). Conclusions and Relevance Seventeen of the PDE6A variants found in these patients appeared to be novel. Regarding the clinical findings, disease was highly symmetrical between the right and left eyes and visual impairment was mild or moderate in 90% of patients, providing a window of opportunity for gene therapy.
Collapse
Affiliation(s)
- Laura Kuehlewein
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany.,University Eye Hospital, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany
| | - Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany
| | - Sten Olof Andreasson
- Lund University, Skane University Hospital, Department of Ophthalmology, Lund, Sweden
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundación Jiménez Díaz-University Hospital; Universidad Autónoma de Madrid, Madrid, Spain.,Centre for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli (NA) and Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Beatrice Bocquet
- Institute for Neurosciences of Montpellier Unité 1051, University of Montpellier, Montpellier, France.,National Center for Rare Diseases, Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Antje S Bernd
- University Eye Hospital, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany
| | | | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands.,Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Susan M Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - M Dominik Fischer
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany.,University Eye Hospital, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Germany
| | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum GmbH, Siegburg, Germany.,RetinaScience, Bonn, Germany
| | - Bart P Leroy
- Department of Ophthalmology Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier Unité 1051, University of Montpellier, Montpellier, France.,National Center for Rare Diseases, Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Fadi Nasser
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany
| | - Thomas Rosenberg
- Department of Ophthalmology, Kennedy Center, Rigshospitalet, Copenhagen, Denmark
| | - Günther Rudolph
- Ophthalmogenetik, Augenklinik, Klinikum der Universität München, Munich, Germany
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany
| | | | - Barbara Wilhelm
- STZ Eyetrial, Centre for Ophthalmology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|
9
|
Ford HR, Busato S, Bionaz M. In vitro–In vivo Hybrid Approach for Studying Modulation of NRF2 in Immortalized Bovine Mammary Cells. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.674355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in the response to oxidative stress. Diets containing known NRF2 modulators could be used to minimize oxidative stress in dairy cows. Currently, studies evaluating the activity of NRF2 in bovine have used the classical in vitro approach using synthetic media, which is very different than in vivo conditions. Furthermore, studies carried out in vivo cannot capture the short-term and dynamic response of NRF2. Thus, there is a need to develop new approaches to study NRF2 modulation. The aim of the present study was to establish an in vitro–in vivo hybrid system to investigate activation of NRF2 in bovine cells that can serve as an intermediate model with results closer to what is expected in vivo. To accomplish the aim, we used a combination of a gene reporter assay in immortalized bovine mammary cells, synthetic NRF2 modulators, and blood serum from periparturient cows. Synthetic agonist tert-butylhydroquinone and sulforaphane confirmed to be effective activators of bovine NRF2 with acute and large effect at 30 and 5 μM, respectively, with null response after the above doses due to cytotoxicity. When the agonists were added to blood serum the response was more linear with maximum activation of NRF2 at 100 and 30 μM, respectively, and the cytotoxicity was prevented. High concentration of albumin in blood serum plays an important role in such an effect. Brusatol (100 nM) was observed to be an effective NRF2 inhibitor while also displaying general protein synthesis inhibition and cytotoxicity when added to synthetic media. A consistent inhibition of NRF2 was observed when brusatol was added to the blood serum but the cytotoxicity was reduced. The synthetic inhibitor ML385 had no effect on modulation of bovine NRF2. Hydrogen peroxide activates NRF2 in bovine mammary cells starting from 100 μM; however, strong cytotoxicity was detected starting at 250 μM when cells were cultivated in the synthetic media, while blood serum prevented cytotoxicity. Overall, our data indicated that the use of synthetic media can be misleading in the study of NRF2 in bovine and the use of blood serum appears necessary.
Collapse
|
10
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
11
|
de Bruijn SE, Fadaie Z, Cremers FPM, Kremer H, Roosing S. The Impact of Modern Technologies on Molecular Diagnostic Success Rates, with a Focus on Inherited Retinal Dystrophy and Hearing Loss. Int J Mol Sci 2021; 22:2943. [PMID: 33799353 PMCID: PMC7998853 DOI: 10.3390/ijms22062943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined "third-generation" sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future.
Collapse
Affiliation(s)
- Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Hannie Kremer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
- Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
12
|
Fu L, Li Y, Yao S, Guo Q, You Y, Zhu X, Lei B. Autosomal Recessive Rod-Cone Dystrophy Associated With Compound Heterozygous Variants in ARL3 Gene. Front Cell Dev Biol 2021; 9:635424. [PMID: 33748123 PMCID: PMC7969994 DOI: 10.3389/fcell.2021.635424] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 01/17/2023] Open
Abstract
Purpose: ARL3 (ADP-ribosylation factor-like 3) variants cause autosomal dominant retinitis pigmentosa (RP) or autosomal recessive Joubert syndrome. We found a family with rod-cone dystrophy (RCD) and verified it was associated with compound heterozygous variants in ARL3 gene. Methods: Ophthalmic examinations including optical coherence tomography and electroretinogram (ERG) were performed. Targeted next generation sequencing (NGS) was performed for the proband using a custom designed panel. Sanger sequencing and co-segregation were conducted in the family members. Changes of protein structure mediated by the variants were studied in vitro. ARL3 protein stability and its interaction with RP2 protein were assessed by cycloheximide chase assay and co-immunoprecipitation (Co-IP) assay. Results: Visual acuity of the 18-year-old male proband was 0.25 in the right and 0.20 in the left eye, while his non-consanguineous parents and sister was normal. The proband showed signs of RCD, including nyctalopia, peripheral field loss, bone-spicule deposits in the retina, and reduced ERG responses. The father, aged 50 years old, showed visual acuity of 1.0 in both eyes. Unlike the proband, he presented late onset and mild cone-rod dystrophy (CRD), including macular atrophy, central scotomata, moderate reduction in photopic ERG responses. None of all the family members had hearing abnormality, mental dysplasia or gait instability. We identified two novel compound heterozygous variants (c.91A>G, p.T31A; c.353G>T, p.C118F) in ARL3 in the proband, while his father only had variant c.91A>G. Bioinformatics analysis indicated amino acid positions of the two variants are highly conserved among species. The in silico tools predicted the variants to be harmful. Protein structure analysis showed the two variants had potential to alter the protein structure. Based on the ACMG guidelines, the two variants were likely pathogenic. In addition, the ARL3 mutations destabilized ARL3 protein, and the mutation c.353G>T disrupted the interaction between ARL3 and RP2 in HEK293T cells. Conclusions: We showed novel compound heterozygous variants in ARL3 were associated with early onset of autosomal recessive RCD, while c.91A>G along may be associated with a late onset of dominant CRD. The two variants in ARL3 could be causative by destabilizing ARL3 protein and impairing its interaction with RP2 protein.
Collapse
Affiliation(s)
- Leming Fu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shun Yao
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qingge Guo
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya You
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xianjun Zhu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Lei
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Luo H, Xiao X, Li S, Sun W, Yi Z, Wang P, Zhang Q. Spectrum-frequency and genotype-phenotype analysis of rhodopsin variants. Exp Eye Res 2020; 203:108405. [PMID: 33347869 DOI: 10.1016/j.exer.2020.108405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
Mutations in RHO are the most common cause of autosomal dominant retinitis pigmentosa. However, the pathogenicity of many RHO variants is questionable. This study was designed to investigate the genotype-phenotype correlation for RHO variants. These RHO variants were collected from the in-house exome sequencing data of 7092 probands suffering from different types of eye conditions. The variants were classified using bioinformatics tools, family segregation, and clinical phenotypes. The RHO variants were assessed using multiple online tools and a genotype-phenotype analysis based on the data collected from of ours, gnomAD, and published literature. Totally, 52 heterozygous variants of RHO were detected in the 7092 probands. Of these 52, 17 were potentially pathogenic, were present in 35 families, and comprised 15 missense variants, one inframe deletion and one nonsense variant. All the 15 missense variants were predicted to be damaging by five different online tools. The analysis of the clinical data of the patients from the 35 families revealed certain common features, of an early damage to both the rods and the cones, relatively preserved visual acuity in adulthood, and mid-peripheral tapetoretinal degeneration with pigmentation or RPE atrophy. Our data, the data from gnomAD, and the systematic review of the 246 previously reported variants suggest that approximately two-thirds of the rare missense variants and most of the truncated variants involving upstream of K296 are likely benign. This study provides a brief summary of the characteristics of the pathogenic RHO variants. It emphasizes that the systematic evaluation of these variants at the individual-gene level is crucial in the current era of clinical genetic testing even for a well-known gene such as RHO.
Collapse
Affiliation(s)
- Hualei Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
14
|
Al-khuzaei S, Broadgate S, Halford S, Jolly JK, Shanks M, Clouston P, Downes SM. Novel Pathogenic Sequence Variants in NR2E3 and Clinical Findings in Three Patients. Genes (Basel) 2020; 11:E1288. [PMID: 33138239 PMCID: PMC7716234 DOI: 10.3390/genes11111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
A retrospective review of the clinical records of patients seen at the Oxford Eye Hospital identified as having NR2E3 mutations was performed. The data included symptoms, best-corrected visual acuity, multimodal retinal imaging, visual fields and electrophysiology testing. Three participants were identified with biallelic NR2E3 pathogenic sequence variants detected using a targeted NGS gene panel, two of which were novel. Participant I was a Nepalese male aged 68 years, and participants II and III were white Caucasian females aged 69 and 10 years old, respectively. All three had childhood onset nyctalopia, a progressive decrease in central vision, and visual field loss. Patients I and III had photopsia, patient II had photosensitivity and patient III also had photophobia. Visual acuities in patients I and II were preserved even into the seventh decade, with the worst visual acuity measured at 6/36. Visual field constriction was severe in participant I, less so in II, and fields were full to bright targets targets in participant III. Electrophysiology testing in all three demonstrated loss of rod function. The three patients share some of the typical distinctive features of NR2E3 retinopathies, as well as a novel clinical observation of foveal ellipsoid thickening.
Collapse
Affiliation(s)
- Saoud Al-khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Jasleen K. Jolly
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Morag Shanks
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Penny Clouston
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| |
Collapse
|
15
|
Ilyas M, Mir A, Efthymiou S, Houlden H. The genetics of intellectual disability: advancing technology and gene editing. F1000Res 2020; 9. [PMID: 31984132 PMCID: PMC6966773 DOI: 10.12688/f1000research.16315.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental condition affecting 1–3% of the world’s population. Genetic factors play a key role causing the congenital limitations in intellectual functioning and adaptive behavior. The heterogeneity of ID makes it more challenging for genetic and clinical diagnosis, but the advent of large-scale genome sequencing projects in a trio approach has proven very effective. However, many variants are still difficult to interpret. A combined approach of next-generation sequencing and functional, electrophysiological, and bioinformatics analysis has identified new ways to understand the causes of ID and help to interpret novel ID-causing genes. This approach offers new targets for ID therapy and increases the efficiency of ID diagnosis. The most recent functional advancements and new gene editing techniques involving the use of CRISPR–Cas9 allow for targeted editing of DNA in
in vitro and more effective mammalian and human tissue-derived disease models. The expansion of genomic analysis of ID patients in diverse and ancient populations can reveal rare novel disease-causing genes.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan.,Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Asif Mir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
16
|
Paulraj P, Bosworth M, Longhurst M, Hornbuckle C, Gotway G, Lamb AN, Andersen EF. A Novel Homozygous Deletion within the FRY Gene Associated with Nonsyndromic Developmental Delay. Cytogenet Genome Res 2019; 159:19-25. [PMID: 31487712 DOI: 10.1159/000502598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
The role of autosomal recessive (AR) variants in clinically heterogeneous conditions such as intellectual disability and developmental delay (ID/DD) has been difficult to uncover. Implication of causative pathogenic AR variants often requires investigation within large and consanguineous families, and/or identifying rare biallelic variants in affected individuals. Furthermore, detection of homozygous gene-level copy number variants during first-line genomic microarray testing in the pediatric population is a rare finding. We describe a 6.7-year-old male patient with ID/DD and a novel homozygous deletion involving the FRY gene identified by genomic SNP microarray. This deletion was observed within a large region of homozygosity on the long arm of chromosome 13 and in a background of increased low-level (2.6%) autosomal homozygosity, consistent with a reported common ancestry in the family. FRY encodes a protein that regulates cell cytoskeletal dynamics, functions in chromosomal alignment in mitosis in vitro, and has been shown to function in the nervous system in vivo. Homozygous mutation of FRY has been previously reported in 2 consanguineous families from studies of autosomal recessive ID in Middle Eastern and Northern African populations. This report provides additional supportive evidence that deleterious biallelic mutation of FRY is associated with ID/DD and illustrates the utility of genomic SNP microarray detection of low-level homozygosity.
Collapse
|
17
|
Maryam A, Vedithi SC, Khalid RR, Alsulami AF, Torres PHM, Siddiqi AR, Blundell TL. The Molecular Organization of Human cGMP Specific Phosphodiesterase 6 (PDE6): Structural Implications of Somatic Mutations in Cancer and Retinitis Pigmentosa. Comput Struct Biotechnol J 2019; 17:378-389. [PMID: 30962868 PMCID: PMC6434069 DOI: 10.1016/j.csbj.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 01/12/2023] Open
Abstract
In the cyclic guanosine monophosphate (cGMP) signaling pathway, phosphodiesterase 6 (PDE6) maintains a critical balance of the intracellular concentration of cGMP by catalyzing it to 5′ guanosine monophosphate (5′-GMP). To gain insight into the mechanistic impacts of the PDE6 somatic mutations that are implicated in cancer and retinitis pigmentosa, we first defined the structure and organization of the human PDE6 heterodimer using computational comparative modelling. Each subunit of PDE6αβ possesses three domains connected through long α-helices. The heterodimer model indicates that the two chains are likely related by a pseudo two-fold axis. The N-terminal region of each subunit is comprised of two allosteric cGMP-binding domains (Gaf-A & Gaf-B), oriented in the same way and interacting with the catalytic domain present at the C-terminal in a way that would allow the allosteric cGMP-binding domains to influence catalytic activity. Subsequently, we applied an integrated knowledge-driven in silico mutation analysis approach to understand the structural and functional implications of experimentally identified mutations that cause various cancers and retinitis pigmentosa, as well as computational saturation mutagenesis of the dimer interface and cGMP-binding residues of both Gaf-A, and the catalytic domains. We studied the impact of mutations on the stability of PDE6αβ structure, subunit-interfaces and Gaf-cGMP interactions. Further, we discussed the changes in interatomic interactions of mutations that are destabilizing in Gaf-A (R93L, V141 M, F162 L), catalytic domain (D600N, F742 L, F776 L) and at the dimer interface (F426A, F248G, F424 N). This study establishes a possible link of change in PDE6αβ structural stability to the experimentally observed disease phenotypes.
Collapse
Affiliation(s)
- Arooma Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.,Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | | | - Rana Rehan Khalid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ali F Alsulami
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | | | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| |
Collapse
|
18
|
Khan M, Fadaie Z, Cornelis SS, Cremers FPM, Roosing S. Identification and Analysis of Genes Associated with Inherited Retinal Diseases. Methods Mol Biol 2019; 1834:3-27. [PMID: 30324433 DOI: 10.1007/978-1-4939-8669-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inherited retinal diseases (IRDs) display a very high degree of clinical and genetic heterogeneity, which poses challenges in finding the underlying defects in known IRD-associated genes and in identifying novel IRD-associated genes. Knowledge on the molecular and clinical aspects of IRDs has increased tremendously in the last decade. Here, we outline the state-of-the-art techniques to find the causative genetic variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification. An important aspect is the functional assessment of rare variants with RNA and protein effects which can only be predicted in silico. We therefore describe the in vitro assessment of putative splice defects in human embryonic kidney cells. In addition, we outline the use of stem cell technology to generate photoreceptor precursor cells from patients' somatic cells which can subsequently be used for RNA and protein studies. Finally, we outline the in silico methods to interpret the causality of variants associated with inherited retinal disease and the registry of these variants.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Audo I, Mohand-Said S, Boulanger-Scemama E, Zanlonghi X, Condroyer C, Démontant V, Boyard F, Antonio A, Méjécase C, El Shamieh S, Sahel JA, Zeitz C. MERTK
mutation update in inherited retinal diseases. Hum Mutat 2018; 39:887-913. [DOI: 10.1002/humu.23431] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Isabelle Audo
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
- CHNO des Quinze-Vingts; DHU Sight Restore; INSERM-DGOS CIC1423 Paris France
- University College London Institute of Ophthalmology; London UK
| | - Saddek Mohand-Said
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
- CHNO des Quinze-Vingts; DHU Sight Restore; INSERM-DGOS CIC1423 Paris France
| | - Elise Boulanger-Scemama
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
- Fondation Ophtalmologique Adolphe de Rothschild; Paris France
| | | | | | - Vanessa Démontant
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
| | - Fiona Boyard
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
| | - Aline Antonio
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
| | - Cécile Méjécase
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
| | - Said El Shamieh
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
- Department of Medical Laboratory Technology; Faculty of Health Sciences; Beirut Arab University; Beirut Lebanon
| | - José-Alain Sahel
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
- CHNO des Quinze-Vingts; DHU Sight Restore; INSERM-DGOS CIC1423 Paris France
- University College London Institute of Ophthalmology; London UK
- Fondation Ophtalmologique Adolphe de Rothschild; Paris France
- Académie des Sciences-Institut de France; Paris France. Department of Ophthalmology; University of Pittsburgh Medical School; Pittsburgh Pennsylvania
| | - Christina Zeitz
- Sorbonne Université; INSERM; CNRS; Institut de la Vision; Paris France
| |
Collapse
|
20
|
Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype-Phenotype Correlations, and Inheritance Models. Genes (Basel) 2018; 9:genes9040215. [PMID: 29659558 PMCID: PMC5924557 DOI: 10.3390/genes9040215] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal diseases (IRDs) are genetically and clinically heterogeneous disorders.[...].
Collapse
|
21
|
Bhatia S, Kaur N, Singh IR, Vanita V. A novel mutation in MERTK for rod-cone dystrophy in a North Indian family. CANADIAN JOURNAL OF OPHTHALMOLOGY 2018; 54:40-50. [PMID: 30851773 DOI: 10.1016/j.jcjo.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify the underlying genetic defect of childhood-onset severe rod-cone dystrophy (RCD) in a consanguineous family from North India with autosomal recessive retinitis pigmentosa. METHODS A detailed family history, clinical data, and blood samples were collected from 11 members of the family, including 4 affected by an autosomal recessive rod-cone dystrophy (arRCD), and DNA was extracted. Whole-exome sequencing (WES) was performed on DNA samples of proband and her unaffected maternal uncle. Ion Reporter software (ver. 4.4) was used for the annotation of variants obtained by WES. The variants detected in proband were tested for validation in all other affected and unaffected family members using Sanger sequencing technique. RESULTS We have identified a novel nonsense mutation-c.1647T>G (p.Tyr549Ter)-in the exon 11 of MERTK that co-segregated completely with the disease phenotype in all the 4 affected members and was not observed in the 7 unaffected members of the family. This mutation was also not detected in 120 ethnically matched controls (240 chromosomes), hence excluding it as a polymorphism. CONCLUSIONS MERTK has a role in retinal pigment epithelium as a regulator of rod outer segments' phagocytosis. Due to c.1647T > G substitution, the stop codon (p.Tyr549Ter) appears early in the transcript. It seems that either the altered transcript would degenerate through nonsense-mediated decay (NMD) or potentially form truncated protein lacking a functionally important domain (i.e., tyrosine kinase domain). These findings thus further expand the mutation spectrum in MERTK and substantiate its role in the pathogenesis of retinal dystrophy.
Collapse
Affiliation(s)
- Sofia Bhatia
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | | | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
22
|
Littink KW, Stappers PTY, Riemslag FCC, Talsma HE, van Genderen MM, Cremers FPM, Collin RWJ, van den Born LI. Autosomal Recessive NRL Mutations in Patients with Enhanced S-Cone Syndrome. Genes (Basel) 2018; 9:genes9020068. [PMID: 29385733 PMCID: PMC5852564 DOI: 10.3390/genes9020068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/20/2023] Open
Abstract
Enhanced S-cone syndrome (ESCS) is mainly associated with mutations in the NR2E3 gene. However, rare mutations in the NRL gene have been reported in patients with ESCS. We report on an ESCS phenotype in additional patients with autosomal recessive NRL (arNRL) mutations. Three Moroccan patients of two different families with arNRL mutations were enrolled in this study. The mutation in the DNA of one patient, from a consanguineous marriage, was detected by homozygosity mapping. The mutation in the DNA of two siblings from a second family was detected in a targeted next-generation sequencing project. Full ophthalmic examination was performed, including best-corrected visual acuity, slit-lamp biomicroscopy, funduscopy, Goldmann kinetic perimetry, optical coherence tomography, fundus autofluorescence, and extended electroretinography including an amber stimulus on a blue background and a blue stimulus on an amber background. One patient carried a homozygous missense mutation (c.508C>A; p.Arg170Ser) in the NRL gene, whereas the same mutation was identified heterozygously in the two siblings of a second family, in combination with a one base-pair deletion (c.654del; p.Cys219Valfs*4) on the other allele. All patients had reduced visual acuity and showed a typical clumped pigmentary retinal degeneration (CPRD). Foveal schisis-like changes were observed in the oldest patient. An electroretinogram (ERG) under dark-adapted conditions showed absent responses for low stimulus strengths and reduced responses for high stimulus strengths, with constant b-wave latencies despite increasing stimulus strength. A relatively high amplitude was detected with a blue stimulus on an amber background, while an amber stimulus on a blue background showed reduced responses. The arNRL mutations cause a phenotype with typical CPRD. This phenotype has previously been described in patients with ESCS caused by NR2E3 mutations, and rarely by NRL mutations. Based on our findings in ERG testing, we conclude that S-cone function is enhanced in our patients in a similar manner as in patients with NR2E3-associated ESCS, confirming previous reports of NRL as a second gene to cause ESCS.
Collapse
Affiliation(s)
- Karin W Littink
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
| | | | - Frans C C Riemslag
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
- Bartiméus Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands.
| | - Herman E Talsma
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
- Bartiméus Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands.
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | | |
Collapse
|
23
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
24
|
Blant A, Kwong M, Szpiech ZA, Pemberton TJ. Weighted likelihood inference of genomic autozygosity patterns in dense genotype data. BMC Genomics 2017; 18:928. [PMID: 29191164 PMCID: PMC5709839 DOI: 10.1186/s12864-017-4312-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Background Genomic regions of autozygosity (ROA) arise when an individual is homozygous for haplotypes inherited identical-by-descent from ancestors shared by both parents. Over the past decade, they have gained importance for understanding evolutionary history and the genetic basis of complex diseases and traits. However, methods to infer ROA in dense genotype data have not evolved in step with advances in genome technology that now enable us to rapidly create large high-resolution genotype datasets, limiting our ability to investigate their constituent ROA patterns. Methods We report a weighted likelihood approach for inferring ROA in dense genotype data that accounts for autocorrelation among genotyped positions and the possibilities of unobserved mutation and recombination events, and variability in the confidence of individual genotype calls in whole genome sequence (WGS) data. Results Forward-time genetic simulations under two demographic scenarios that reflect situations where inbreeding and its effect on fitness are of interest suggest this approach is better powered than existing state-of-the-art methods to infer ROA at marker densities consistent with WGS and popular microarray genotyping platforms used in human and non-human studies. Moreover, we present evidence that suggests this approach is able to distinguish ROA arising via consanguinity from ROA arising via endogamy. Using subsets of The 1000 Genomes Project Phase 3 data we show that, relative to WGS, intermediate and long ROA are captured robustly with popular microarray platforms, while detection of short ROA is more variable and improves with marker density. Worldwide ROA patterns inferred from WGS data are found to accord well with those previously reported on the basis of microarray genotype data. Finally, we highlight the potential of this approach to detect genomic regions enriched for autozygosity signals in one group relative to another based upon comparisons of per-individual autozygosity likelihoods instead of inferred ROA frequencies. Conclusions This weighted likelihood ROA inference approach can assist population- and disease-geneticists working with a wide variety of data types and species to explore ROA patterns and to identify genomic regions with differential ROA signals among groups, thereby advancing our understanding of evolutionary history and the role of recessive variation in phenotypic variation and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4312-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Blant
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Michelle Kwong
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Zachary A Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
25
|
Chelstowska S, Widjaja-Adhi MAK, Silvaroli JA, Golczak M. Impact of LCA-Associated E14L LRAT Mutation on Protein Stability and Retinoid Homeostasis. Biochemistry 2017; 56:4489-4499. [PMID: 28758396 PMCID: PMC5682948 DOI: 10.1021/acs.biochem.7b00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin A (all-trans-retinol) is metabolized to the visual chromophore (11-cis-retinal) in the eyes and to all-trans-retinoic acid, a hormone like compound, in most tissues. A key enzyme in retinoid metabolism is lecithin:retinol acyltransferase (LRAT), which catalyzes the esterification of vitamin A. The importance of LRAT is indicated by pathogenic missense and nonsense mutations, which cause devastating blinding diseases. Retinoid-based chromophore replacement therapy has been proposed as treatment for these types of blindness based on studies in LRAT null mice. Here, we analyzed the structural and biochemical basis for retinal pathology caused by mutations in the human LRAT gene. Most LRAT missense mutations associated with retinal degeneration are localized within the catalytic domain, whereas E14L substitution is localized in an N-terminal α-helix, which has been implicated in interaction with the phospholipid bilayer. To elucidate the biochemical consequences of this mutation, we determined LRAT(E14L)'s enzymatic properties, protein stability, and impact on ocular retinoid metabolism. Bicistronic expression of LRAT(E14L) and enhanced green fluorescence protein revealed instability and accelerated proteosomal degradation of this mutant isoform. Surprisingly, instability of LRAT(E14L) did not abrogate the production of the visual chromophore in a cell-based assay. Instead, expression of LRAT(E14L) led to a rapid increase in cellular levels of retinoic acid upon retinoid supplementation. Thus, our study unveils the potential role of retinoic acid in the pathology of a degenerative retinal disease with important implications for the use of retinoid-based therapeutics in affected patients.
Collapse
Affiliation(s)
- Sylwia Chelstowska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw 04141, Poland
| | | | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
26
|
Molecular Basis for Vitamin A Uptake and Storage in Vertebrates. Nutrients 2016; 8:nu8110676. [PMID: 27792183 PMCID: PMC5133064 DOI: 10.3390/nu8110676] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 01/27/2023] Open
Abstract
The ability to store and distribute vitamin A inside the body is the main evolutionary adaptation that allows vertebrates to maintain retinoid functions during nutritional deficiencies and to acquire new metabolic pathways enabling light-independent production of 11-cis retinoids. These processes greatly depend on enzymes that esterify vitamin A as well as associated retinoid binding proteins. Although the significance of retinyl esters for vitamin A homeostasis is well established, until recently, the molecular basis for the retinol esterification enzymatic activity was unknown. In this review, we will look at retinoid absorption through the prism of current biochemical and structural studies on vitamin A esterifying enzymes. We describe molecular adaptations that enable retinoid storage and delineate mechanisms in which mutations found in selective proteins might influence vitamin A homeostasis in affected patients.
Collapse
|
27
|
AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs. Mol Ther 2016; 24:867-76. [PMID: 26857842 DOI: 10.1038/mt.2016.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 11/08/2022] Open
Abstract
We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.
Collapse
|
28
|
Marfany G, Gonzàlez-Duarte R. Clinical applications of high-throughput genetic diagnosis in inherited retinal dystrophies: Present challenges and future directions. World J Med Genet 2015; 5:14-22. [DOI: 10.5496/wjmg.v5.i2.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
The advent of next generation sequencing (NGS) techniques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing (WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.
Collapse
|
29
|
Saqib MAN, Nikopoulos K, Ullah E, Sher Khan F, Iqbal J, Bibi R, Jarral A, Sajid S, Nishiguchi KM, Venturini G, Ansar M, Rivolta C. Homozygosity mapping reveals novel and known mutations in Pakistani families with inherited retinal dystrophies. Sci Rep 2015; 5:9965. [PMID: 25943428 PMCID: PMC4421863 DOI: 10.1038/srep09965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/25/2015] [Indexed: 11/09/2022] Open
Abstract
Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigrees. DNA samples from eight families with autosomal recessive retinal dystrophies were subjected to genome wide homozygosity mapping (seven by SNP arrays and one by STR markers) and genes comprised within the detected homozygous regions were analyzed by Sanger sequencing. All families displayed consistent autozygous genomic regions. Sequence analysis of candidate genes identified four previously-reported mutations in CNGB3, CNGA3, RHO, and PDE6A, as well as three novel mutations: c.2656C > T (p.L886F) in RPGRIP1, c.991G > C (p.G331R) in CNGA3, and c.413-1G > A (IVS6-1G > A) in CNGB1. This latter mutation impacted pre-mRNA splicing of CNGB1 by creating a -1 frameshift leading to a premature termination codon. In addition to better delineating the genetic landscape of inherited retinal dystrophies in Pakistan, our data confirm that combining homozygosity mapping and candidate gene sequencing is a powerful approach for mutation identification in populations where consanguineous unions are common.
Collapse
Affiliation(s)
- Muhammad Arif Nadeem Saqib
- 1] Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan [2] Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland [3] Pakistan Medical Research Council, Islamabad, 44000, Pakistan
| | | | - Ehsan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Falak Sher Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jamila Iqbal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rabia Bibi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afeefa Jarral
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sundus Sajid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Giulia Venturini
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | - Muhammad Ansar
- 1] Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan [2] Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
30
|
Chassine T, Bocquet B, Daien V, Avila-Fernandez A, Ayuso C, Collin RWJ, Corton M, Hejtmancik JF, van den Born LI, Klevering BJ, Riazuddin SA, Sendon N, Lacroux A, Meunier I, Hamel CP. Autosomal recessive retinitis pigmentosa withRP1mutations is associated with myopia. Br J Ophthalmol 2015; 99:1360-5. [DOI: 10.1136/bjophthalmol-2014-306224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/26/2015] [Indexed: 11/03/2022]
|
31
|
Maria M, Ajmal M, Azam M, Waheed NK, Siddiqui SN, Mustafa B, Ayub H, Ali L, Ahmad S, Micheal S, Hussain A, Shah STA, Ali SHB, Ahmed W, Khan YM, den Hollander AI, Haer-Wigman L, Collin RWJ, Khan MI, Qamar R, Cremers FPM. Homozygosity mapping and targeted sanger sequencing reveal genetic defects underlying inherited retinal disease in families from pakistan. PLoS One 2015; 10:e0119806. [PMID: 25775262 PMCID: PMC4361598 DOI: 10.1371/journal.pone.0119806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Background Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD). Methods We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucleotide polymorphism (SNP) array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families. Results Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1. Conclusions Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.
Collapse
Affiliation(s)
- Maleeha Maria
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Ajmal
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maleeha Azam
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadia Khalida Waheed
- Tufts University Medical School, Boston, Massachusetts, United States of America
| | | | - Bilal Mustafa
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
| | - Humaira Ayub
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
| | - Liaqat Ali
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
| | - Shakeel Ahmad
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
| | - Shazia Micheal
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alamdar Hussain
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
| | - Syed Tahir Abbas Shah
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Waqas Ahmed
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- University of Haripur, Haripur, Pakistan
| | - Yar Muhammad Khan
- Department of Chemistry, University of Science and Technology, Bannu, Pakistan
| | - Anneke I. den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Muhammad Imran Khan
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raheel Qamar
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- Al-Nafees Medical College & Hospital, Isra University, Islamabad, Pakistan
| | - Frans P. M. Cremers
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad, Pakistan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
32
|
Astuti GDN, Sun V, Bauwens M, Zobor D, Leroy BP, Omar A, Jurklies B, Lopez I, Ren H, Yazar V, Hamel C, Kellner U, Wissinger B, Kohl S, De Baere E, Collin RWJ, Koenekoop RK. Novel insights into the molecular pathogenesis of CYP4V2-associated Bietti's retinal dystrophy. Mol Genet Genomic Med 2014; 3:14-29. [PMID: 25629076 PMCID: PMC4299712 DOI: 10.1002/mgg3.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/24/2014] [Accepted: 07/31/2014] [Indexed: 11/09/2022] Open
Abstract
Bietti's crystalline dystrophy (BCD) is a rare, autosomal recessive retinal degenerative disease associated with mutations in CYP4V2. In this study, we describe the genetic and clinical findings in 19 unrelated BCD patients recruited from five international retinal dystrophy clinics. Patients underwent ophthalmic examinations and were screened for CYP4V2 mutations by Sanger sequencing and quantitative polymerase chain reaction (qPCR) copy number variation screening. Eight CYP4V2 mutations were found in 10/19 patients, including three patients in whom only monoallelic mutations were detected. Four novel mutations were identified: c.604G>A; p.(Glu202Lys), c.242C>G; p.(Thr81Arg), c.604+4A>G; p.(?), and c.1249dup; p.(Thr417Asnfs*2). In addition, we identified a heterozygous paternally inherited genomic deletion of at least 3.8 Mb, encompassing the complete CYP4V2 gene and several other genes, which is novel. Clinically, patients demonstrated phenotypic variability, predominantly showing choroidal sclerosis, attenuated vessels, and crystalline deposits of varying degrees of severity. To our knowledge, our study reports the first heterozygous CYP4V2 deletion and hence a novel mutational mechanism underlying BCD. Our results emphasize the importance of copy number screening in BCD. Finally, the identification of CYP4V2-negative patients with indistinguishable phenotypes from CYP4V2-positive patients might suggest the presence of mutations outside the coding regions of CYP4V2, or locus heterogeneity, which is unreported so far.
Collapse
Affiliation(s)
- Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, The Netherlands ; Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre Nijmegen, The Netherlands ; Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University Semarang, Indonesia
| | - Vincent Sun
- McGill Ocular Genetics Laboratory, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre Montreal, Quebec, Canada
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University Hospital Ghent, Belgium
| | - Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen Tübingen, Germany
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital Ghent, Belgium ; Department of Ophthalmology, Ghent University Hospital Ghent, Belgium
| | - Amer Omar
- McGill Ocular Genetics Laboratory, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre Montreal, Quebec, Canada ; Moorfields Eye Hospital London, United Kingdom
| | | | - Irma Lopez
- McGill Ocular Genetics Laboratory, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre Montreal, Quebec, Canada
| | - Huanan Ren
- McGill Ocular Genetics Laboratory, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre Montreal, Quebec, Canada
| | - Volkan Yazar
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, The Netherlands
| | - Christian Hamel
- Institute of Neurosciences of Montpellier, Hôpital Saint Eloi Montpellier, France
| | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ ADTC Siegburg GmbH Siegburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen Tübingen, Germany
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital Ghent, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, The Netherlands ; Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre Nijmegen, The Netherlands
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre Montreal, Quebec, Canada
| |
Collapse
|
33
|
Siemiatkowska AM, Collin RWJ, den Hollander AI, Cremers FPM. Genomic approaches for the discovery of genes mutated in inherited retinal degeneration. Cold Spring Harb Perspect Med 2014; 4:a017137. [PMID: 24939053 PMCID: PMC4109577 DOI: 10.1101/cshperspect.a017137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In view of their high degree of genetic heterogeneity, inherited retinal diseases (IRDs) pose a significant challenge for identifying novel genetic causes. Thus far, more than 200 genes have been found to be mutated in IRDs, which together contain causal variants in >80% of the cases. Accurate genetic diagnostics is particularly important for isolated cases, in which X-linked and de novo autosomal dominant variants are not uncommon. In addition, new gene- or mutation-specific therapies are emerging, underlining the importance of identifying causative mutations in each individual. Sanger sequencing of selected genes followed by cost-effective targeted next-generation sequencing (NGS) can identify defects in known IRD-associated genes in the majority of the cases. Exome NGS in combination with genetic linkage or homozygosity mapping studies can aid the identification of the remaining causal genes. As these are thought to be mutated in <1% of the cases, validation through functional modeling in, for example, zebrafish and/or replication through the genotyping of large patient cohorts is required. In the near future, whole genome NGS in combination with transcriptome NGS may reveal mutations that are currently hidden in the noncoding regions of the human genome.
Collapse
Affiliation(s)
- Anna M Siemiatkowska
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Khan MI, Azam M, Ajmal M, Collin RWJ, den Hollander AI, Cremers FPM, Qamar R. The molecular basis of retinal dystrophies in pakistan. Genes (Basel) 2014; 5:176-95. [PMID: 24705292 PMCID: PMC3978518 DOI: 10.3390/genes5010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 12/23/2022] Open
Abstract
The customary consanguineous nuptials in Pakistan underlie the frequent occurrence of autosomal recessive inherited disorders, including retinal dystrophy (RD). In many studies, homozygosity mapping has been shown to be successful in mapping susceptibility loci for autosomal recessive inherited disease. RDs are the most frequent cause of inherited blindness worldwide. To date there is no comprehensive genetic overview of different RDs in Pakistan. In this review, genetic data of syndromic and non-syndromic RD families from Pakistan has been collected. Out of the 132 genes known to be involved in non-syndromic RD, 35 different genes have been reported to be mutated in families of Pakistani origin. In the Pakistani RD families 90% of the mutations causing non-syndromic RD and all mutations causing syndromic forms of the disease have not been reported in other populations. Based on the current inventory of all Pakistani RD-associated gene defects, a cost-efficient allele-specific analysis of 11 RD-associated variants is proposed, which may capture up to 35% of the genetic causes of retinal dystrophy in Pakistan.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Maleeha Azam
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.
| | - Frans P M Cremers
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Raheel Qamar
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| |
Collapse
|
35
|
Siemiatkowska AM, van den Born LI, van Hagen PM, Stoffels M, Neveling K, Henkes A, Kipping-Geertsema M, Hoefsloot LH, Hoyng CB, Simon A, den Hollander AI, Cremers FPM, Collin RWJ. Mutations in the mevalonate kinase (MVK) gene cause nonsyndromic retinitis pigmentosa. Ophthalmology 2013; 120:2697-2705. [PMID: 24084495 DOI: 10.1016/j.ophtha.2013.07.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous disorder characterized by night blindness and peripheral vision loss, and in many cases leads to blindness. Despite extensive knowledge about genes involved in the pathogenesis of RP, the genetic cause remains elusive in many patients. In this study, we aimed to identify novel genes that are involved in the cause of RP. DESIGN We present a case series with mutations in the mevalonate kinase (MVK) gene. PARTICIPANTS A total of 769 patients with nonsyndromic RP and 174 Dutch control individuals participated in this study. METHODS Exome sequencing analysis was performed in a proband of Dutch origin who was initially diagnosed with nonsyndromic autosomal recessive RP. Mutations in MVK were identified and subsequently tested for segregation within the patient's family and screened in a large cohort of patients with genetically unsolved RP. Patients with mutations underwent extensive clinical reexamination. MAIN OUTCOME MEASURES Digital fundus photography, spectral-domain optical coherence tomography (OCT), and fundus autofluorescence analysis were performed in patients with MVK mutations. Mevalonate kinase (MK) enzyme activity was analyzed in cultured lymphoblastoid cells, and mevalonic acid levels were measured in urine samples. RESULTS Exome variant filtering and prioritization led to the identification of compound heterozygous mutations in MVK (p.I268T and p.A334T) in the proband and her affected brother. Screening of our nonsyndromic RP patient cohort revealed an additional individual who was homozygous for the p.A334T alteration. Clinical reevaluation of all 3 patients showed a classic form of RP with variable extraocular symptoms, such as history of recurrent childhood febrile crises in 2 patients, mild ataxia in 1, and renal failure in 1. All 3 affected individuals showed a significantly decreased MK activity and highly elevated levels of urinary mevalonic acid. CONCLUSIONS Although the MK activity in cells and mevalonic acid concentrations in urine are strongly aberrant and comparable to that in patients with systemic mevalonate kinase deficiency (MKD), only mild clinical symptoms related to this syndrome were observed in our patients. In the current article, we add another phenotype to the spectrum of diverging disorders associated with mutations in MVK.
Collapse
Affiliation(s)
- Anna M Siemiatkowska
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - P Martin van Hagen
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Monique Stoffels
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Centre for Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arjen Henkes
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Lies H Hoefsloot
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anna Simon
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Centre for Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Exome sequencing identifies RDH12 compound heterozygous mutations in a family with severe retinitis pigmentosa. Gene 2013; 528:178-82. [PMID: 23900199 DOI: 10.1016/j.gene.2013.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Retinitis pigmentosa (RP) is the most prevalent type of inherited retinal degeneration and one of the commonest causes of genetically determined visual dysfunction worldwide. To date, approximately 35 genes have been associated with nonsyndromic autosomal recessive RP (arRP), however the small contribution of each gene to the total prevalence of arRP and the lack of a clear genotype-phenotype correlation complicate the genetic analysis in affected patients. Next generation sequencing technologies are powerful and cost-effective methods for detecting causative mutations in both sporadic and familial RP cases. METHODS A Mexican family with 5 members affected from arRP was studied. All patients underwent a complete ophthalmologic examination. Molecular methods included genome-wide SNP homozygosity mapping, exome sequencing analysis, and Sanger-sequencing confirmation of causal mutations. RESULTS No regions of shared homozygosity among affected subjects were identified. Exome sequencing in a single patient allowed the detection of two missense mutations in the RDH12 gene: a c.446T>C transition predicting a novel p.L149P substitution, and a c.295C>A transversion predicting a previously reported p.L99I replacement. Sanger sequencing confirmed that all affected subjects carried both RDH12 mutations. CONCLUSIONS This study adds to the molecular spectrum of RDH12-related retinopathy and offers an additional example of the power of exome sequencing in the diagnosis of recessively inherited retinal degenerations.
Collapse
|
37
|
Wang X, Wang H, Sun V, Tuan HF, Keser V, Wang K, Ren H, Lopez I, Zaneveld JE, Siddiqui S, Bowles S, Khan A, Salvo J, Jacobson SG, Iannaccone A, Wang F, Birch D, Heckenlively JR, Fishman GA, Traboulsi EI, Li Y, Wheaton D, Koenekoop RK, Chen R. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet 2013; 50:674-88. [PMID: 23847139 DOI: 10.1136/jmedgenet-2013-101558] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are inherited retinal diseases that cause early onset severe visual impairment. An accurate molecular diagnosis can refine the clinical diagnosis and allow gene specific treatments. METHODS We developed a capture panel that enriches the exonic DNA of 163 known retinal disease genes. Using this panel, we performed targeted next generation sequencing (NGS) for a large cohort of 179 unrelated and prescreened patients with the clinical diagnosis of LCA or juvenile RP. Systematic NGS data analysis, Sanger sequencing validation, and segregation analysis were utilised to identify the pathogenic mutations. Patients were revisited to examine the potential phenotypic ambiguity at the time of initial diagnosis. RESULTS Pathogenic mutations for 72 patients (40%) were identified, including 45 novel mutations. Of these 72 patients, 58 carried mutations in known LCA or juvenile RP genes and exhibited corresponding phenotypes, while 14 carried mutations in retinal disease genes that were not consistent with their initial clinical diagnosis. We revisited patients in the latter case and found that homozygous mutations in PRPH2 can cause LCA/juvenile RP. Guided by the molecular diagnosis, we reclassified the clinical diagnosis in two patients. CONCLUSIONS We have identified a novel gene and a large number of novel mutations that are associated with LCA/juvenile RP. Our results highlight the importance of molecular diagnosis as an integral part of clinical diagnosis.
Collapse
Affiliation(s)
- Xia Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Roosing S, van den Born LI, Hoyng CB, Thiadens AAHJ, de Baere E, Collin RWJ, Koenekoop RK, Leroy BP, van Moll-Ramirez N, Venselaar H, Riemslag FCC, Cremers FPM, Klaver CCW, den Hollander AI. Maternal uniparental isodisomy of chromosome 6 reveals a TULP1 mutation as a novel cause of cone dysfunction. Ophthalmology 2013; 120:1239-46. [PMID: 23499059 DOI: 10.1016/j.ophtha.2012.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The majority of the genetic causes of autosomal recessive (ar) cone dystrophy (CD) and cone-rod dystrophy (CRD) are currently unknown. We used a high-resolution homozygosity mapping approach in a cohort of patients with CD or CRD to identify new genes for ar cone disorders. DESIGN Case series. PARTICIPANTS A cohort of 159 patients with ar CD and 91 patients with CRD. METHODS The genomes of 83 patients with ar CD and 73 patients with CRD were analyzed for homozygous regions using single nucleotide polymorphism (SNP) microarrays. One patient showed homozygosity of SNPs across chromosome 6, and segregation analysis was performed using microsatellite markers. Direct sequencing of all retinal disease genes on chromosome 6 revealed a novel pathogenic TULP1 mutation in this patient. A cohort of 159 individuals with CD and 91 individuals with CRD was screened for this particular mutation using the restriction enzyme HhaI. The medical history of patients carrying the TULP1 mutation was reviewed and additional ophthalmic examinations were performed, including electroretinography (ERG), perimetry, optical coherence tomography (OCT), fundus autofluorescence (FAF), and fundus photography. MAIN OUTCOME MEASURES TULP1 mutations, age at diagnosis, visual acuity, fundus appearance, color vision defects, visual field, ERG, FAF, and OCT findings. RESULTS In 1 patient, homozygosity mapping and subsequent segregation analysis revealed maternal uniparental disomy (UPD) of chromosome 6. A novel homozygous missense mutation (p.Arg420Ser) was identified in TULP1, whereas no mutations were detected in other retinal disease genes on chromosome 6. The mutation affects a highly conserved amino acid residue in the Tubby domain and is predicted to be pathogenic. The same homozygous mutation was also identified in an additional, unrelated patient with CRD. Both patients carrying the p.Arg420Ser mutation presented with a bull's eye maculopathy. The first patient had progressive loss of visual acuity with a relatively preserved ERG, whereas the second patient developed loss of visual acuity, peripheral degeneration, and severely reduced ERG responses in a cone-rod pattern. CONCLUSIONS Maternal UPD of chromosome 6 unmasked a mutation in the TULP1 gene as a novel cause of cone dysfunction. This expands the disease spectrum of TULP1 mutations from Leber congenital amaurosis and early-onset retinitis pigmentosa to cone-dominated disease. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jonsson F, Burstedt MS, Sandgren O, Norberg A, Golovleva I. Novel mutations in CRB1 and ABCA4 genes cause Leber congenital amaurosis and Stargardt disease in a Swedish family. Eur J Hum Genet 2013; 21:1266-71. [PMID: 23443024 DOI: 10.1038/ejhg.2013.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/09/2022] Open
Abstract
This study aimed to identify genetic mechanisms underlying severe retinal degeneration in one large family from northern Sweden, members of which presented with early-onset autosomal recessive retinitis pigmentosa and juvenile macular dystrophy. The clinical records of affected family members were analysed retrospectively and ophthalmological and electrophysiological examinations were performed in selected cases. Mutation screening was initially performed with microarrays, interrogating known mutations in the genes associated with recessive retinitis pigmentosa, Leber congenital amaurosis and Stargardt disease. Searching for homozygous regions with putative causative disease genes was done by high-density SNP-array genotyping, followed by segregation analysis of the family members. Two distinct phenotypes of retinal dystrophy, Leber congenital amaurosis and Stargardt disease were present in the family. In the family, four patients with Leber congenital amaurosis were homozygous for a novel c.2557C>T (p.Q853X) mutation in the CRB1 gene, while of two cases with Stargardt disease, one was homozygous for c.5461-10T>C in the ABCA4 gene and another was carrier of the same mutation and a novel ABCA4 mutation c.4773+3A>G. Sequence analysis of the entire ABCA4 gene in patients with Stargardt disease revealed complex alleles with additional sequence variants, which were evaluated by bioinformatics tools. In conclusion, presence of different genetic mechanisms resulting in variable phenotype within the family is not rare and can challenge molecular geneticists, ophthalmologists and genetic counsellors.
Collapse
Affiliation(s)
- Frida Jonsson
- Department of Medical Biosciences/Medical and Clinical Genetics, University of Umeå, Umeå, Sweden
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S, Sebai MA, Shamia A, Ray-Zack MD, Nassan M, Al-Hassnan ZN, Rahbeeni Z, Waheeb S, Alkharashi A, Abboud E, Al-Hazzaa SAF, Alkuraya FS. Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res 2012; 23:236-47. [PMID: 23105016 PMCID: PMC3561865 DOI: 10.1101/gr.144105.112] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinal dystrophy (RD) is a heterogeneous group of hereditary diseases caused by loss of photoreceptor function and contributes significantly to the etiology of blindness globally but especially in the industrialized world. The extreme locus and allelic heterogeneity of these disorders poses a major diagnostic challenge and often impedes the ability to provide a molecular diagnosis that can inform counseling and gene-specific treatment strategies. In a large cohort of nearly 150 RD families, we used genomic approaches in the form of autozygome-guided mutation analysis and exome sequencing to identify the likely causative genetic lesion in the majority of cases. Additionally, our study revealed six novel candidate disease genes (C21orf2, EMC1, KIAA1549, GPR125, ACBD5, and DTHD1), two of which (ACBD5 and DTHD1) were observed in the context of syndromic forms of RD that are described for the first time.
Collapse
Affiliation(s)
- Leen Abu-Safieh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype. PLoS One 2012; 7:e43251. [PMID: 22927954 PMCID: PMC3424119 DOI: 10.1371/journal.pone.0043251] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 01/31/2023] Open
Abstract
Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3rd exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.
Collapse
|
43
|
Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet 2012; 91:275-92. [PMID: 22883143 DOI: 10.1016/j.ajhg.2012.06.014] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/09/2012] [Accepted: 06/25/2012] [Indexed: 12/20/2022] Open
Abstract
Genome-wide patterns of homozygosity runs and their variation across individuals provide a valuable and often untapped resource for studying human genetic diversity and evolutionary history. Using genotype data at 577,489 autosomal SNPs, we employed a likelihood-based approach to identify runs of homozygosity (ROH) in 1,839 individuals representing 64 worldwide populations, classifying them by length into three classes-short, intermediate, and long-with a model-based clustering algorithm. For each class, the number and total length of ROH per individual show considerable variation across individuals and populations. The total lengths of short and intermediate ROH per individual increase with the distance of a population from East Africa, in agreement with similar patterns previously observed for locus-wise homozygosity and linkage disequilibrium. By contrast, total lengths of long ROH show large interindividual variations that probably reflect recent inbreeding patterns, with higher values occurring more often in populations with known high frequencies of consanguineous unions. Across the genome, distributions of ROH are not uniform, and they have distinctive continental patterns. ROH frequencies across the genome are correlated with local genomic variables such as recombination rate, as well as with signals of recent positive selection. In addition, long ROH are more frequent in genomic regions harboring genes associated with autosomal-dominant diseases than in regions not implicated in Mendelian diseases. These results provide insight into the way in which homozygosity patterns are produced, and they generate baseline homozygosity patterns that can be used to aid homozygosity mapping of genes associated with recessive diseases.
Collapse
|
44
|
A homozygous frameshift mutation in LRAT causes retinitis punctata albescens. Ophthalmology 2012; 119:1899-906. [PMID: 22559933 DOI: 10.1016/j.ophtha.2012.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine the genetic defect and to describe the clinical characteristics in patients with retinitis punctata albescens (RPA) and fundus albipunctatus (FAP). DESIGN Case series/observational study. PARTICIPANTS We included 13 patients affected by RPA or FAP. METHODS Thirteen patients were collected from 8 families with a retinal dystrophy characterized by tiny, yellow-white dots on funduscopy, typical for FAP or RPA. All patients underwent full ophthalmologic examinations, including visual field assessment. Fundus photography, and electroretinography were performed in 12 patients, and optical coherence tomography and fundus autofluorescence were performed in 4 patients. DNA samples of all patients were screened for mutations in RLBP1 and for mutations in RDH5 in patients who did not carry mutations in RLBP1. DNA samples of 2 sibling pairs of nonconsanguineous families who carried mutations neither in RLBP1 nor in RDH5 were analyzed by genome-wide homozygosity mapping. Sequence analysis was performed of LRAT, a candidate gene in a shared homozygous region. MAIN OUTCOME MEASURES We assessed DNA sequence variants, best-corrected visual acuity, fundus appearance, visual field measurements, electroretinogram responses, optical coherence tomography, and fundus autofluorescence. RESULTS A homozygous frameshift mutation was identified in LRAT in 4 patients with RPA. Mutations in RLBP1 were identified in 7 patients with RPA and in 1 patient with FAP and cone dystrophy. One patient had compound heterozygous mutations in RDH5 and suffered from FAP with mild maculopathy. CONCLUSIONS A genetic defect was identified in LRAT as a novel cause of RPA. LRAT is therefore the fourth gene involved in the visual cycle that may cause a white-dot retinopathy. We also revealed that mutations in RLBP1 may lead to FAP with cone dystrophy.
Collapse
|
45
|
Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 2012; 8:e1002635. [PMID: 22511880 PMCID: PMC3325173 DOI: 10.1371/journal.pgen.1002635] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/21/2012] [Indexed: 12/13/2022] Open
Abstract
Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders.
Collapse
|
46
|
Neveling K, Collin RWJ, Gilissen C, van Huet RAC, Visser L, Kwint MP, Gijsen SJ, Zonneveld MN, Wieskamp N, de Ligt J, Siemiatkowska AM, Hoefsloot LH, Buckley MF, Kellner U, Branham KE, den Hollander AI, Hoischen A, Hoyng C, Klevering BJ, van den Born LI, Veltman JA, Cremers FPM, Scheffer H. Next-generation genetic testing for retinitis pigmentosa. Hum Mutat 2012; 33:963-72. [PMID: 22334370 PMCID: PMC3490376 DOI: 10.1002/humu.22045] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/18/2012] [Indexed: 01/07/2023]
Abstract
Molecular diagnostics for patients with retinitis pigmentosa (RP) has been hampered by extreme genetic and clinical heterogeneity, with 52 causative genes known to date. Here, we developed a comprehensive next-generation sequencing (NGS) approach for the clinical molecular diagnostics of RP. All known inherited retinal disease genes (n = 111) were captured and simultaneously analyzed using NGS in 100 RP patients without a molecular diagnosis. A systematic data analysis pipeline was developed and validated to prioritize and predict the pathogenicity of all genetic variants identified in each patient, which enabled us to reduce the number of potential pathogenic variants from approximately 1,200 to zero to nine per patient. Subsequent segregation analysis and in silico predictions of pathogenicity resulted in a molecular diagnosis in 36 RP patients, comprising 27 recessive, six dominant, and three X-linked cases. Intriguingly, De novo mutations were present in at least three out of 28 isolated cases with causative mutations. This study demonstrates the enormous potential and clinical utility of NGS in molecular diagnosis of genetically heterogeneous diseases such as RP. De novo dominant mutations appear to play a significant role in patients with isolated RP, having major implications for genetic counselling.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Estrada-Cuzcano A, Neveling K, Kohl S, Banin E, Rotenstreich Y, Sharon D, Falik-Zaccai T, Hipp S, Roepman R, Wissinger B, Letteboer S, Mans D, Blokland E, Kwint M, Gijsen S, van Huet R, Collin R, Scheffer H, Veltman J, Zrenner E, den Hollander A, Klevering B, Cremers F, Cremers FPM. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement. Am J Hum Genet 2012; 90:102-9. [PMID: 22177090 DOI: 10.1016/j.ajhg.2011.11.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/28/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023] Open
Abstract
Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166(∗)]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156-2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156-2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.
Collapse
|
48
|
Littink KW, den Hollander AI, Cremers FPM, Collin RWJ. The power of homozygosity mapping: discovery of new genetic defects in patients with retinal dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:345-51. [PMID: 22183352 DOI: 10.1007/978-1-4614-0631-0_45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karin W Littink
- The Rotterdam Eye Hospital, 70030, 3000 LM, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
49
|
Neveling K, den Hollander AI, Cremers FPM, Collin RWJ. Identification and analysis of inherited retinal disease genes. Methods Mol Biol 2012; 935:3-23. [PMID: 23150357 DOI: 10.1007/978-1-62703-080-9_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inherited retinal diseases display a very high degree of clinical and genetic heterogeneity, which poses challenges in identifying the underlying defects in known genes and in identifying novel retinal disease genes. Here, we outline the state-of-the-art techniques to find the causative DNA variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
50
|
Fischer C, Trajanoski S, Papić L, Windpassinger C, Bernert G, Freilinger M, Schabhüttl M, Arslan-Kirchner M, Javaher-Haghighi P, Plecko B, Senderek J, Rauscher C, Löscher WN, Pieber TR, Janecke AR, Auer-Grumbach M. SNP array-based whole genome homozygosity mapping as the first step to a molecular diagnosis in patients with Charcot-Marie-Tooth disease. J Neurol 2011; 259:515-23. [PMID: 21892769 PMCID: PMC3296015 DOI: 10.1007/s00415-011-6213-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 12/01/2022]
Abstract
Considerable non-allelic heterogeneity for autosomal recessively inherited Charcot-Marie-Tooth (ARCMT) disease has challenged molecular testing and often requires a large amount of work in terms of DNA sequencing and data interpretation or remains unpractical. This study tested the value of SNP array-based whole-genome homozygosity mapping as a first step in the molecular genetic diagnosis of sporadic or ARCMT in patients from inbred families or outbred populations with the ancestors originating from the same geographic area. Using 10 K 2.0 and 250 K Nsp Affymetrix SNP arrays, 15 (63%) of 24 CMT patients received an accurate genetic diagnosis. We used our Java-based script eHoPASA CMT—easy Homozygosity Profiling of SNP arrays for CMT patients to display the location of homozygous regions and their extent of marker count and base-pairs throughout the whole genome. CMT4C was the most common genetic subtype with mutations detected in SH3TC2, one (p.E632Kfs13X) appearing to be a novel founder mutation. A sporadic patient with severe CMT was homozygous for the c.250G > C (p.G84R) HSPB1 mutation which has previously been reported to cause autosomal dominant dHMN. Two distantly related CMT1 patients with early disease onset were found to carry a novel homozygous mutation in MFN2 (p.N131S). We conclude that SNP array-based homozygosity mapping is a fast, powerful, and economic tool to guide molecular genetic testing in ARCMT and in selected sporadic CMT patients.
Collapse
Affiliation(s)
- Carina Fischer
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|