1
|
Chang K, Chen J, Rajagopalan A, Chen DF, Cho KS. Testing Visual Function by Assessment of the Optomotor Reflex in Glaucoma. Methods Mol Biol 2025; 2858:219-227. [PMID: 39433679 DOI: 10.1007/978-1-0716-4140-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Optomotor response/reflex (OMR) is a fast and efficient first-in-line visual screening method, especially for rodents. It has the potential to evaluate both the scotopic and photopic visions of nonrestrained animals through tracking head movement, providing a quantitative estimate of visual functions. In restrained animals, optokinetic response (OKR), compensatory eye movements for visual shifts in the surroundings, is utilized. Both OMR and OKR capitalize on an individual's innate reflex to stabilize images for the purpose of capturing clear vision. The two reflexes have similar reliability when evaluating stimulus luminance, contrast, spatial frequency, and velocity. They have emerged as powerful tools to evaluate the efficacy of pharmacological treatments and phenotypes of subjects undergoing study. With OMR and OKR accurately assessing visual acuity (VA) as well as contrast sensitivity (CS), the gold standards for measuring clinical vision, they provide reliable and easily accessible results that further eye and brain research. These methods of sight evaluation have been used in multiple animal models, particularly mice and zebrafish. Through OMR assays, these animal models have been utilized to investigate retinal degenerative diseases, helping researchers differentiate between worsening stages. Alongside tests such as optical coherence tomography (OCT), OMR provides confirmation of visual status, where increased OMR function often correlates with improved visual status. OMR has continued to be used outside of glaucoma in various retinal diseases, such as retinitis pigmentosa (RP), diabetic retinopathy, and age-related macular degeneration.In this chapter, we will introduce the concept and application of visual stimulus-induced head or eye reflex movement in different animal species and experimental models of eye diseases, such as glaucoma and other neurodegenerative disorders, and in patients with glaucoma.
Collapse
Affiliation(s)
- Karen Chang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Julie Chen
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Aishwarya Rajagopalan
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Dong Feng Chen
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
2
|
Johnston TP, Edwards G, Koulen P. Synergism of mechanisms underlying early-stage changes in retina function in male hyperglycemic db/db mice in the absence and presence of chemically-induced dyslipidemia. Sci Rep 2023; 13:17347. [PMID: 37833428 PMCID: PMC10576038 DOI: 10.1038/s41598-023-44446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
The study was designed to quantify retina function in a spontaneous mutation mouse model of diabetes, in which sustained dyslipidemia was induced chemically. The goal of the study was to identify if dyslipidemia in the presence of hyperglycemia resulted in either a synergistic, or a merely additive, exacerbation of retinal and visual dysfunctions in diabetes. Two cohorts of mice, male C57BL/6 and C57BL/KsJ-db/db mice were divided into two groups each. One group of each strain received the triblock copolymer, poloxamer 407 (P-407), administered by intraperitoneal injection ("WT P-407" and "db/db P-407" groups) with saline as a control in the remaining two groups ("WT" and "db/db" groups). Blood glucose, total cholesterol (TC) and total triglyceride (TG) levels were quantified using enzyme-based colorimetric assays. Retina function was measured using electroretinography (ERG) and visual acuity was determined by behaviorally assessing parameters of the optomotor reflex. TC and TG levels were normal in both saline controls (WT) and db/db mice but were significantly elevated in the WT P-407 group (p < 0.01 for TC; p < 0.001 for TG), while levels of the same lipids were further elevated in the db/db P-407 group when compared to the WT P-407 group levels (p < 0.001 for both TC and TG). Behavioral assessment of the optomotor reflex indicated reduced visual acuity for the db/db P-407 group when compared to either the WT P-407 or the db/db groups (p < 0.001, p < 0.0001). ERG measurements of scotopic retina function showed a significant decline in the scotopic b-wave amplitude of the WT P-407 animals (p < 0.01) and a further reduction for the db/db P-407 group when compared to controls (p < 0.0001). Very significant, strong correlations between scotopic b-wave amplitude and implicit time to TC (r = - 0.8376, p = < 0.0001 and r = 0.7069, p = 0.0022, respectively) and TG levels (r = - 0.8554, p = < 0.0001 and r = 0.7150, p = 0.0019, respectively) were found. Dyslipidemia in the presence of hyperglycemia synergistically exacerbated the severity of retinal dysfunction in diabetes. P-407 administration significantly elevated plasma TC and TG levels in male wild-type (WT) and diabetic mice (db/db), but the resulting hyperlipidemia was more significantly pronounced in the diabetic mice. While elevated plasma lipid and blood glucose levels were individually correlated with a decline in retinal function, the combination of both exacerbated retinal dysfunction. This model of combined hyperglycemia and dyslipidemia can be used to dissect individual contributions of features of the metabolic syndrome to the pathogenesis of retinal dysfunction in diabetes.
Collapse
Affiliation(s)
- Thomas P Johnston
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Genea Edwards
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
3
|
Agarwal R, Agarwal P, Iezhitsa I. Exploring the current use of animal models in glaucoma drug discovery: where are we in 2023? Expert Opin Drug Discov 2023; 18:1287-1300. [PMID: 37608634 DOI: 10.1080/17460441.2023.2246892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP. AREAS COVERED Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma. EXPERT OPINION Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
4
|
Gajendran MK, Rohowetz LJ, Koulen P, Mehdizadeh A. Novel Machine-Learning Based Framework Using Electroretinography Data for the Detection of Early-Stage Glaucoma. Front Neurosci 2022; 16:869137. [PMID: 35600610 PMCID: PMC9115110 DOI: 10.3389/fnins.2022.869137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 01/05/2023] Open
Abstract
PurposeEarly-stage glaucoma diagnosis has been a challenging problem in ophthalmology. The current state-of-the-art glaucoma diagnosis techniques do not completely leverage the functional measures' such as electroretinogram's immense potential; instead, focus is on structural measures like optical coherence tomography. The current study aims to take a foundational step toward the development of a novel and reliable predictive framework for early detection of glaucoma using machine-learning-based algorithm capable of leveraging medically relevant information that ERG signals contain.MethodsERG signals from 60 eyes of DBA/2 mice were grouped for binary classification based on age. The signals were also grouped based on intraocular pressure (IOP) for multiclass classification. Statistical and wavelet-based features were engineered and extracted. Important predictors (ERG tests and features) were determined, and the performance of five machine learning-based methods were evaluated.ResultsRandom forest (bagged trees) ensemble classifier provided the best performance in both binary and multiclass classification of ERG signals. An accuracy of 91.7 and 80% was achieved for binary and multiclass classification, respectively, suggesting that machine-learning-based models can detect subtle changes in ERG signals if trained using advanced features such as those based on wavelet analyses.ConclusionsThe present study describes a novel, machine-learning-based method to analyze ERG signals providing additional information that may be used to detect early-stage glaucoma. Based on promising performance metrics obtained using the proposed machine-learning-based framework leveraging an established ERG data set, we conclude that the novel framework allows for detection of functional deficits of early/various stages of glaucoma in mice.
Collapse
Affiliation(s)
- Mohan Kumar Gajendran
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Landon J. Rohowetz
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Amirfarhang Mehdizadeh
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Amirfarhang Mehdizadeh
| |
Collapse
|
5
|
Muir ER, Chandra SB, Narayanan D, Zhang V, Zhang I, Jiang Z, Kiel JW, Duong TQ. Effects of chronic mild hyperoxia on retinal and choroidal blood flow and retinal function in the DBA/2J mouse model of glaucoma. PLoS One 2022; 17:e0266192. [PMID: 35333901 PMCID: PMC8956188 DOI: 10.1371/journal.pone.0266192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To test the hypothesis that mild chronic hyperoxia treatment would improve retinal function despite a progressive decline in ocular blood flow in the DBA/2J mouse model of glaucoma. Materials and methods DBA/2J mice were treated with chronic mild hyperoxia (30% O2) beginning at 4.5 months of age or were untreated by giving normal room air. Retinal and choroidal blood flow (RBF and ChBF, respectively) were measured at 4, 6, and 9 months of age by MRI. Blood flow was additionally measured under hypercapnia challenge (5% CO2 inhalation) to assess vascular reactivity. Intraocular pressure (IOP) was measured using a rebound tonometer at the same time points. Scotopic flash electroretinograms (ERGs) were recorded at 9 months of age. Results Both ChBF and RBF were reduced and significantly affected by age (p < 0.01), but neither were significantly affected by O2-treatment (p > 0.05). ChBF significantly increased in response to hypercapnia (p < 0.01), which was also unaffected by O2-treatment. Significant effects of age (p < 0.001) and of the interaction of age with treatment (p = 0.028) were found on IOP. IOP significantly decreased in O2-treated mice at 6 months compared to 4 months of age (p < 0.001), while IOP trended to increase with age in untreated mice. The amplitude of the b-wave from ERG was significantly increased in O2-treated DBA/2J compared to the untreated mice (p = 0.012), while the a-wave and oscillatory potentials were not significantly affected (p > 0.05). Conclusion This study investigated the effects of chronic mild hyperoxia on retinal function and on retinal and choroidal blood flow in a mouse model of glaucoma. Retinal function was improved in the O2-treated mice at late stage, despite a progressive decline of RBF and ChBF with age that was comparable to untreated mice.
Collapse
Affiliation(s)
- Eric R. Muir
- Department of Radiology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| | - Saurav B. Chandra
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Divya Narayanan
- Department of Ophthalmology, University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Vincent Zhang
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ike Zhang
- Department of Radiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Jeffrey W. Kiel
- Department of Ophthalmology, University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Timothy Q. Duong
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
6
|
Rohowetz LJ, Mardelli ME, Duncan RS, Riordan SM, Koulen P. The Contribution of Anterior Segment Abnormalities to Changes in Intraocular Pressure in the DBA/2J Mouse Model of Glaucoma: DBA/2J-Gpnmb+/SjJ Mice as Critical Controls. Front Neurosci 2022; 15:801184. [PMID: 35185449 PMCID: PMC8850401 DOI: 10.3389/fnins.2021.801184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The contributions of anterior segment abnormalities to the development of ocular hypertension was determined in the DBA/2J mouse model of glaucoma. Intraocular pressure (IOP) was measured non-invasively. Iris pigment dispersion (IPD) and corneal calcification were measured weekly starting at 20 weeks of age in DBA/2J and DBA/2J-Gpnmb+/SjJ mice. Thickness, surface area, auto-fluorescence intensity, and perimeter length of calcified regions were measured in postmortem corneas using confocal microscopy. DBA/2J mice developed elevated IOP between 9 and 12 months of age, but DBA/2J-Gpnmb+/SjJ mice did not. Corneal calcification was found at all ages observed and at similar frequencies in both strains with 83.3% of DBA/2J eyes and 60.0% of DBA/2J-Gpnmb+/SjJ eyes affected at 12 months (P = 0.11). Calcification increased with age in both DBA/2J (P = 0.049) and DBA/2J-Gpnmb+/SjJ mice (P = 0.04) when assessed qualitatively and based on mixed-effects analysis. No differences in the four objective measures of calcification were observed between strains or ages. At 12 months of age, DBA/2J mice with corneal calcification had greater mean IOP than DBA/2J mice without corneal calcification. IOP was not correlated with the qualitatively assessed measures of calcification. For the subset of eyes with ocular hypertension, which were only found in DBA/2J mice, IOP was negatively correlated with the qualitative degree of calcification, but was not correlated with the four quantitative measures of calcification. Differences in IOP were not observed between DBA/2J-Gpnmb+/SjJ mice with and without calcification at any age. IPD increased with age and demonstrated a moderate correlation with IOP in DBA/2J mice, but was not observed in DBA/2J-Gpnmb+/SjJ mice. In the DBA/2J mouse model of glaucoma, increased IPD is positively correlated with an increase in IOP and corneal calcification is present in the majority of eyes at and after age 9 months. However, while IPD causes ocular hypertension, corneal calcification does not appear to contribute to the elevation of IOP, as the control strain DBA/2J-Gpnmb+/SjJ exhibits corneal calcification similar to DBA/2J mice, but does not develop ocular hypertension. Corneal calcification, therefore, does not appear to be a contributing factor to the development of elevated IOP in DBA/2J mice.
Collapse
Affiliation(s)
- Landon J. Rohowetz
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Marc E. Mardelli
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
| | - R. Scott Duncan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
7
|
Retinal bioavailability and functional effects of a synthetic very-long-chain polyunsaturated fatty acid in mice. Proc Natl Acad Sci U S A 2021; 118:2017739118. [PMID: 33526677 DOI: 10.1073/pnas.2017739118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rare, nondietary very-long-chain polyunsaturated fatty acids (VLC-PUFAs) are uniquely found in the retina and a few other vertebrate tissues. These special fatty acids play a clinically significant role in retinal degeneration and development, but their physiological and interventional research has been hampered because pure VLC-PUFAs are scarce. We hypothesize that if Stargardt-3 or age-related macular degeneration patients were to consume an adequate amount of VLC-PUFAs that could be directly used in the retina, it may be possible to bypass the steps of lipid elongation mediated by the retina's ELOVL4 enzyme and to delay or prevent degeneration. We report the synthesis of a VLC-PUFA (32:6 n-3) in sufficient quantity to study its bioavailability and functional benefits in the mouse retina. We acutely and chronically gavage fed wild-type mice and Elovl4 rod-cone conditional knockout mice this synthetic VLC-PUFA to understand its bioavailability and its role in visual function. VLC-PUFA-fed wild-type and Elovl4 conditional knockout mice show a significant increase in retinal VLC-PUFA levels in comparison to controls. The VLC-PUFA-fed mice also had improvement in the animals' visual acuity and electroretinography measurements. Further studies with synthetic VLC-PUFAs will continue to expand our understanding of the physiological roles of these unique retinal lipids, particularly with respect to their potential utility for the treatment and prevention of retinal degenerative diseases.
Collapse
|
8
|
Li Z, Xie F, Yang N, Yang J, Luo J, Hua D, He T, Xing Y. Krüppel-like factor 7 protects retinal ganglion cells and promotes functional preservation via activating the Akt pathway after retinal ischemia-reperfusion injury. Exp Eye Res 2021; 207:108587. [PMID: 33891954 DOI: 10.1016/j.exer.2021.108587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate the effects of Krüppel-like factor 7 (KLF7) on retinal ganglion cells (RGCs) and retinal function after retinal ischemia-reperfusion (RIR) injury in mice. METHODS Male C57BL/6J mice were intravitreally injected with recombinant adeno-associated vectors (rAAV-KLF7-EGFP or rAAV-EGFP), and subsequently used to induce RIR injury. Retinal cryosections were used to access the efficacy of virus transfection, 1, 2, 3, and 4 weeks after rAAV-KLF7-EGFP transfer. RGCs survival rate was observed and quantified by immunofluorescent staining, 7 days after RIR injury. Meanwhile, electroretinogram (ERG) and optomotor response were used to evaluate the electrophysiological functions and visual acuity. Apoptosis was evaluated by TUNEL staining 1 day after RIR injury. Expression of KLF7, Akt, phospho-Akt, Bcl-2, and Bax were further detected by western blot to excavate the underlying mechanism. RESULTS The transfection efficiency of rAAV-KLF7-EGFP was increased in a time-dependent manner, and the number of EGFP-positive cells was increased significantly 3 weeks after rAAV-KLF7-EGFP transfer. RGCs survival rates, amplitudes of ERG a-, b-wave, Ops, PhNR, and visual acuity of mice were decreased after RIR injury. With the increase of light intensity, the amplitudes of scotopic ERG a- and b-wave were gradually increased while the incubation period was gradually shortened. RGCs survival rates, amplitudes of ERG a-, b-wave, Ops, PhNR, and visual acuity of mice were increased after rAAV-KLF7-EGFP transfer. The protein level of KLF7 was up-regulated after rAAV-KLF7-EGFP transfer. Up-regulation of KLF7 significantly inhibited cells apoptosis, increased phospho-Akt and Bcl-2 expression, and decreased Bax expression. There were no significant changes in Akt expression. CONCLUSION Overexpression of KLF7 can not only prevent the loss of RGCs, but also preserve the electrophysiological function. In addition, overexpression of KLF7 can ameliorate the retinal dysfunction after RIR injury, and ultimately improve the visual acuity of mice. The activation of Akt pathway and the suppression of the mitochondrial apoptotic pathway contribute to the neuroprotection of KLF7.
Collapse
Affiliation(s)
- Zongyuan Li
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| | - Feijia Xie
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Ning Yang
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Jiayi Yang
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Jinyuan Luo
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Dihao Hua
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Tao He
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
9
|
Fernández-Vega Cueto A, Álvarez L, García M, Artime E, Álvarez Barrios A, Rodríguez-Uña I, Coca-Prados M, González-Iglesias H. Systemic Alterations of Immune Response-Related Proteins during Glaucoma Development in the Murine Model DBA/2J. Diagnostics (Basel) 2020; 10:E425. [PMID: 32585848 PMCID: PMC7345206 DOI: 10.3390/diagnostics10060425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/20/2022] Open
Abstract
Animal models of glaucoma, a neurodegenerative disease affecting the retina, offer the opportunity to study candidate molecular biomarkers throughout the disease. In this work, the DBA/2J glaucomatous mouse has been used to study the systemic levels of several proteins previously identified as potential biomarkers of glaucoma, along the pre- to post-glaucomatous transition. Serum samples obtained from glaucomatous and control mice at 4, 10, and 14 months, were classified into different experimental groups according to the optic nerve damage at 14 months old. Quantifications of ten serum proteins were carried out by enzyme immunoassays. Changes in the levels of some of these proteins in the transition to glaucomatous stages were identified, highlighting the significative decrease in the concentration of complement C4a protein. Moreover, the five-protein panel consisting of complement C4a, complement factor H, ficolin-3, apolipoprotein A4, and transthyretin predicted the transition to glaucoma in 78% of cases, and to the advanced disease in 89%. Our data, although still preliminary, suggest that disease development in DBA/2J mice is associated with important molecular changes in immune response and complement system proteins and demonstrate the utility of this model in identifying, at systemic level, potential markers for the diagnosis of glaucoma.
Collapse
Affiliation(s)
- Andrés Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Ana Álvarez Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Ignacio Rodríguez-Uña
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
| | - Miguel Coca-Prados
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| |
Collapse
|
10
|
Quantification of Changes in Visual Function During Disease Development in a Mouse Model of Pigmentary Glaucoma. J Glaucoma 2019; 27:828-841. [PMID: 30001268 DOI: 10.1097/ijg.0000000000001024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We investigated the relationship between visual parameters that are commonly affected during glaucomatous disease progression with functional measures of retina physiology using electroretinography and behavioral measures of visual function in a mouse model of glaucoma. Electroretinogram components measuring retinal ganglion cell (RGC) responses were determined using the non-invasive Ganzfeld flash electroretinography (fERG) to assess RGC loss in a mouse model of glaucoma. METHODS Intraocular pressure (IOP), behaviorally assessed measures of visual function, namely visual acuity and contrast sensitivity as well as fERG responses were recorded in 4- and 11-month-old male DBA/2 mice. Scotopic threshold response (STR) and photopic negative response components as well as oscillatory potentials (OPs) were isolated from fERG responses and correlated with IOP, optomotor reflex measurements, and RGC counts. RESULTS The 11-month-old DBA/2 mice had significantly elevated IOP, reduced visual performance, as assessed behaviorally, significant RGC loss, deficits in standardized fERG responses, reduced STRs, and differences in OP amplitudes and latencies, when compared with 4-month-old mice of the same strain. STRs and OPs correlated with some visual and physiological parameters. In addition, elevated IOP and RGC loss correlated positively with measures of visual function, specifically with surrogate measures of RGC function derived from fERG. CONCLUSIONS Our data suggest that RGC function as well as interactions of RGCs with other retinal cell types is impaired during glaucoma. In addition, a later OP wavelet denoted as OP4 in this study was identified as a very reproducible indicator of loss of visual function in the glaucoma mouse model.
Collapse
|
11
|
Zhang J, Li L, Huang H, Fang F, Webber HC, Zhuang P, Liu L, Dalal R, Tang PH, Mahajan VB, Sun Y, Li S, Zhang M, Goldberg JL, Hu Y. Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse. eLife 2019; 8:45881. [PMID: 31090540 PMCID: PMC6533060 DOI: 10.7554/elife.45881] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular mechanism of glaucoma and development of neuroprotectants is significantly hindered by the lack of a reliable animal model that accurately recapitulates human glaucoma. Here, we sought to develop a mouse model for the secondary glaucoma that is often observed in humans after silicone oil (SO) blocks the pupil or migrates into the anterior chamber following vitreoretinal surgery. We observed significant intraocular pressure (IOP) elevation after intracameral injection of SO, and that SO removal allows IOP to return quickly to normal. This simple, inducible and reversible mouse ocular hypertension model shows dynamic changes of visual function that correlate with progressive retinal ganglion cell (RGC) loss and axon degeneration. It may be applicable with only minor modifications to a range of animal species in which it will generate stable, robust IOP elevation and significant neurodegeneration that will facilitate selection of neuroprotectants and investigating the pathogenesis of ocular hypertension-induced glaucoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hannah C Webber
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Pei Zhuang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Liang Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Peter H Tang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Veterans Affairs Palo Alto Health Care, Palo Alto, United States
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Veterans Affairs Palo Alto Health Care, Palo Alto, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Veterans Affairs Palo Alto Health Care, Palo Alto, United States
| | - Shaohua Li
- Department of Ophthalmology, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Mingchang Zhang
- Department of Ophthalmology, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| |
Collapse
|
12
|
Mead B, Ahmed Z, Tomarev S. Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Promote Neuroprotection in a Genetic DBA/2J Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2019; 59:5473-5480. [PMID: 30452601 PMCID: PMC6735616 DOI: 10.1167/iovs.18-25310] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine if bone marrow-derived stem cell (BMSC) small extracellular vesicles (sEV) promote retinal ganglion cell (RGC) neuroprotection in the genetic DBA/2J mouse model of glaucoma for 12 months. Methods BMSC sEV and control fibroblast-derived sEV were intravitreally injected into 3-month-old DBA/2J mice once a month for 9 months. IOP and positive scotopic threshold responses were measured from 3 months: IOP was measured monthly and positive scotopic threshold responses were measured every 3 months. RGC neuroprotection was determined in wholemounts stained with RNA binding protein with multiple splicing (RBPMS), whereas axonal damage was assessed using paraphenylenediamine staining. Results As expected, DBA/2J mice developed chronic ocular hypertension beginning at 6 months. The delivery of BMSC sEV, but not fibroblast sEV, provided significant neuroprotective effects for RBPMS+ RGC while significantly reducing the number of degenerating axons seen in the optic nerve. BMSC sEV significantly preserved RGC function in 6-month-old mice, but provided no benefit at 9 and 12 months. Conclusions BMSC sEV are an effective neuroprotective treatment in a chronic model of ocular hypertension for 1 year, preserving RGC numbers and protecting against axonal degeneration.
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
13
|
Enlarged Optic Nerve Axons and Reduced Visual Function in Mice with Defective Microfibrils. eNeuro 2018; 5:eN-NWR-0260-18. [PMID: 30406200 PMCID: PMC6220594 DOI: 10.1523/eneuro.0260-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Glaucoma is a leading cause of irreversible vision loss due to retinal ganglion cell (RGC) degeneration that develops slowly with age. Elevated intraocular pressure (IOP) is a significant risk factor, although many patients develop glaucoma with IOP in the normal range. Mutations in microfibril-associated genes cause glaucoma in animal models, suggesting the hypothesis that microfibril defects contribute to glaucoma. To test this hypothesis, we investigated IOP and functional/structural correlates of RGC degeneration in mice of either sex with abnormal microfibrils due to heterozygous Tsk mutation of the fibrilin-1 gene (Fbn1Tsk/+). Although IOP was not affected, Fbn1Tsk/+ mice developed functional deficits at advanced age consistent with glaucoma, including reduced RGC responses in electroretinogram (ERG) experiments. While RGC density in the retina was not affected, the density of RGC axons in the optic nerve was significantly reduced in Fbn1Tsk/+ mice. However, reduced axon density correlated with expanded optic nerves, resulting in similar numbers of axons in Fbn1Tsk/+ and control nerves. Axons in the optic nerves of Fbn1Tsk/+ mice were significantly enlarged and axon diameter was strongly correlated with optic nerve area, as has been reported in early pathogenesis of the DBA/2J mouse model of glaucoma. Our results suggest that microfibril abnormalities can lead to phenotypes found in early-stage glaucomatous neurodegeneration. Thinning of the elastic fiber-rich pia mater was found in Fbn1Tsk/+ mice, suggesting mechanisms allowing for optic nerve expansion and a possible biomechanical contribution to determination of axon caliber.
Collapse
|
14
|
Mechanisms Underlying Early-Stage Changes in Visual Performance and Retina Function After Experimental Induction of Sustained Dyslipidemia. Neurochem Res 2018; 43:1500-1510. [PMID: 29860619 DOI: 10.1007/s11064-018-2563-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Visual and retinal function was measured in a mouse model of chemically induced, sustained dyslipidemia to determine the contribution of dyslipidemia to the pathogenesis of retinopathy in the context of metabolic syndrome. Fifteen male C57BL/6Crl mice were divided into three groups. Poloxamer 407 (P-407), 14.5% w/w was delivered at a rate of 6 µl/day by implanted osmotic mini-pumps either subcutaneously (P-407 SQ) or intraperitoneally (P-407 IP) to P-407-treated mice, whereas saline was administered at the same rate to control mice using only the subcutaneous route of administration. Total cholesterol (TC) and true triglyceride (TG) levels were quantified from plasma. Optomotor responses to stimuli of varying spatial frequency or contrast were used to measure visual acuity and contrast sensitivity. Retinal function was determined using Ganzfeld flash electroretinography (ERG). At 32 days, TC for the P-407 IP group was significantly elevated compared to saline controls (169.4 ± 16.5 mg/dl, 0.001 < P < 0.01). TG levels for both the P-407 SQ (59.3 ± 22.4 mg/dl, 0.01 < P < 0.05) and P-407 IP groups (67.7 ± 18.0 mg/dl, 0.001 < P < 0.01) were significantly elevated relative to controls. Electroretinography demonstrated a very significant decline in the b/a ratio (1.80 ± 0.11, P < 0.01) for the P-407 IP group. The b/a ratio exhibited a moderate, significant correlation with TC levels (r = - 0.4425, P = 0.0392) and a strong, very significant correlation with TG levels (r = - 0.6190, P = 0.0021). Delivery of P-407 via osmotic mini-pump resulted in the sustained, significant elevation of plasma TC and TG levels. This elevation in plasma lipid levels was correlated with a decline in inner retinal function.
Collapse
|
15
|
Huang R, Liang S, Fang L, Wu M, Cheng H, Mi X, Ding Y. Low-dose minocycline mediated neuroprotection on retinal ischemia-reperfusion injury of mice. Mol Vis 2018; 24:367-378. [PMID: 29853771 PMCID: PMC5957545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/16/2018] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of minocycline (MC) on the survival of retinal ganglion cells (RGCs) in an ischemic-reperfusion (I/R) injury model of retinal degeneration. METHODS Retinal I/R injury was induced in the left eye of mice for 60 min by maintaining intraocular pressure at 90 mmHg. Low- or high-dose MC (20 or 100 mg/kg, respectively) was administered by intravenous injection at 5 min after the retinal ischemic insult and then administered once daily until the mice were euthanized. RGCs and microglial cells were counted using immunofluorescence staining. Functional changes in the RGCs were evaluated using electroretinography. The visual function was assessed using an optokinetic test. RESULTS The data demonstrated that the effect of MC was dose dependent. Low-dose MC showed protective effects, with reduced RGC loss and microglial activation, while the high-dose MC showed damage effects, with more RGC loss and microglial activation when compared with the vehicle group. The electroretinography and optokinetic test results were consistent with the morphologic observations. CONCLUSIONS These data suggested that appropriate concentrations of MC can protect the retina against retinal ischemic-reperfusion injury, while excessive MC has detrimental effects.
Collapse
Affiliation(s)
- Ruojing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaomin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lyujie Fang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Wu
- Department of Ophthalmology, Guangzhou first people’s hospital, Guangzhou, China
| | - Huanhuan Cheng
- Department of Ophthalmology,The third Affiliated Hospital, Sun YAT-SEN University
| | - Xuesong Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China,Changsha Academician Expert Workstation, Aier Eye Hospital Group, Changsha, China,School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Age-related Changes in Eye, Brain and Visuomotor Behavior in the DBA/2J Mouse Model of Chronic Glaucoma. Sci Rep 2018; 8:4643. [PMID: 29545576 PMCID: PMC5854610 DOI: 10.1038/s41598-018-22850-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Although elevated intraocular pressure (IOP) and age are major risk factors for glaucoma, their effects on glaucoma pathogenesis remain unclear. This study examined the onset and progression of glaucomatous changes to ocular anatomy and physiology, structural and physiological brain integrity, and visuomotor behavior in the DBA/2J mice via non-invasive tonometry, multi-parametric magnetic resonance imaging (MRI) and optokinetic assessments from 5 to 12 months of age. Using T2-weighted MRI, diffusion tensor MRI, and manganese-enhanced MRI, increasing IOP elevation at 9 and 12 months old coincided with anterior chamber deepening, altered fractional anisotropy and radial diffusivity of the optic nerve and optic tract, as well as reduced anterograde manganese transport along the visual pathway respectively in the DBA/2J mice. Vitreous body elongation and visuomotor function deterioration were observed until 9 months old, whereas axial diffusivity only decreased at 12 months old in diffusion tensor MRI. Under the same experimental settings, C57BL/6J mice only showed modest age-related changes. Taken together, these results indicate that the anterior and posterior visual pathways of the DBA/2J mice exhibit differential susceptibility to glaucomatous neurodegeneration observable by in vivo multi-modal examinations.
Collapse
|
17
|
van der Heijden ME, Shah P, Cowan CS, Yang Z, Wu SM, Frankfort BJ. Effects of Chronic and Acute Intraocular Pressure Elevation on Scotopic and Photopic Contrast Sensitivity in Mice. Invest Ophthalmol Vis Sci 2017; 57:3077-87. [PMID: 27286365 PMCID: PMC4913820 DOI: 10.1167/iovs.16-19312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To compare the impact of intraocular pressure (IOP) elevation on scotopic and photopic contrast sensitivity in mice. METHODS We chronically elevated the IOP of wild-type mice via injection of polystyrene beads or acutely via injection of highly cohesive sodium hyaluronate. Some eyes with chronically elevated IOP were treated with either topical brimonidine tartrate 0.1% or brinzolamide 1%. Scotopic and photopic contrast sensitivity was assessed at peak spatiotemporal frequencies at multiple time points, with an established optokinetic technique. Retinal ganglion cell (RGC) counts were determined with an antibody to class III beta-tubulin. Correlations among IOP level, RGC count, and scotopic or photopic contrast sensitivity were performed. RESULTS Six weeks of IOP elevation caused a generalized reduction of photopic contrast sensitivity and a preferential reduction of scotopic contrast sensitivity at peak spatiotemporal frequencies. The administration of brinzolamide but not brimonidine caused a significant reduction in cumulative IOP, whereas brimonidine, but not brinzolamide, prevented RGC loss. Both brimonidine and brinzolamide prevented contrast sensitivity loss, but brimonidine did so at earlier time points and across a wider range of lighting conditions. Following either chronic or acute IOP elevation, scotopic contrast sensitivity was impacted most prominently by IOP level and not by RGC count, while photopic contrast sensitivity was impacted by a combination of factors. CONCLUSIONS It is possible that scotopic-specific retinal circuitry is altered preferentially by IOP elevation, and that changes in scotopic contrast sensitivity will assist with glaucoma detection. Brimonidine appears to prevent RGC loss via an IOP-independent mechanism.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Priya Shah
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Zhuo Yang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
18
|
Wilson GN, Smith MA, Inman DM, Dengler-Crish CM, Crish SD. Early Cytoskeletal Protein Modifications Precede Overt Structural Degeneration in the DBA/2J Mouse Model of Glaucoma. Front Neurosci 2016; 10:494. [PMID: 27857681 PMCID: PMC5093131 DOI: 10.3389/fnins.2016.00494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins, and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau), calpain-mediated spectrin breakdown product (145/150 kDa), β–tubulin, and amyloid-β42 proteins based on age and transport outcome to the superior colliculus (SC; the main retinal target in mice). Phosphorylated neurofilament-heavy chain (pNF-H) was elevated within the optic nerve (ON) and SC of 8–10 month-old DBA/2J mice, but was not evident in the retina until 12–15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau) occurred in ON and SC between 3 and 8 month of age while retinal ptau accumulations occurred at 12–15 months in DBA/2J mice. In vitro co-immunoprecipitation experiments suggested increased affinity of ptau for the retrograde motor complex protein dynactin. We observed a transport-related decrease of β-tubulin in ON of 10–12 month-old DBA/2J mice, suggesting destabilized microtubule array. Elevations in calpain-mediated spectrin breakdown product were seen in ON and SC at the earliest age examined, well before axonal transport loss is evident. Finally, transport-independent elevations of amyloid-β42, unlike pNF-H or ptau, occurred first in the retina of DBA/2J mice, and then progressed to SC. These data demonstrate distal-to-proximal progression of cytoskeletal modifications in the progression of glaucoma, with many of these changes occurring prior to complete loss of functional transport and axon degeneration. The earliest changes, such as elevated spectrin breakdown and amyloid-β levels, may make retinal ganglion cells susceptible to future stressors. As such, targeting modification of the axonal cytoskeleton in glaucoma may provide unique opportunities to slow disease progression.
Collapse
Affiliation(s)
- Gina N Wilson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA; School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA; Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical UniversityRootstown, OH, USA
| | - Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University Rootstown, OH, USA
| | | | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|
19
|
Berkowitz BA, Miller RA, Roberts R. Genetically heterogeneous mice show age-related vision deficits not related to increased rod cell L-type calcium channel function in vivo. Neurobiol Aging 2016; 49:198-203. [PMID: 27823846 DOI: 10.1016/j.neurobiolaging.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Visual performance declines over time in humans and 2-18 months outbred Long-Evans (LE) rats; vision is maintained in inbred 2-18 months C57BL/6 (B6) mice. Increased rod L-type calcium channel (LTCC) function predicts visual decline in LE rats but does not occur in B6 mice. Genetic diversity may contribute to rod LTCC function escalation time. To test this hypothesis, 4 and 18 months genetically heterogeneous UM-HET3 mice were studied. Rod LTCC function (manganese-enhanced magnetic resonance imaging [MRI]) and ocular anatomy (MRI, optical coherence tomography) were measured in vivo. Light-evoked subretinal space and choroid thickness changes were measured (diffusion-weighted MRI). Visual performance declined over time in the absence of (1) increased rod LTCC function; (2) changes in light-dependent expansion of the subretinal space and choroidal thickness; and (3) retinal thinning. Aging changed anterior and vitreous chambers' axial length and decreased light-stimulated choroidal expansion. Species differences appear to contribute to the LTCC function differences. Aging-related declines in vision in the UM-HET3 mice deserve more attention than they have received so far.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA; Department Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Robin Roberts
- Department Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
20
|
Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res 2016; 151:96-106. [PMID: 27523467 DOI: 10.1016/j.exer.2016.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cells (RGC) bear the sole responsibility of propagating visual stimuli to the brain. Their axons, which make up the optic nerve, project from the retina to the brain through the lamina cribrosa and in rodents, decussate almost entirely at the optic chiasm before synapsing at the superior colliculus. For many traumatic and degenerative ocular conditions, the dysfunction and/or loss of RGC is the primary determinant of visual loss and are the measurable endpoints in current research into experimental therapies. To actually measure these endpoints in rodent models, techniques must ascertain both the quantity of surviving RGC and their functional capacity. Quantification techniques include phenotypic markers of RGC, retrogradely transported fluorophores and morphological measurements of retinal thickness whereas functional assessments include electroretinography (flash and pattern) and visual evoked potential. The importance of the accuracy and reliability of these techniques cannot be understated, nor can the relationship between RGC death and dysfunction. The existence of up to 30 types of RGC complicates the measuring process, particularly as these may respond differently to disease and treatment. Since the above techniques may selectively identify and ignore particular subpopulations, their appropriateness as measures of RGC survival and function may be further limited. This review discusses the above techniques in the context of their subtype specificity.
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
Chandra S, Muir ER, Deo K, Kiel JW, Duong TQ. Effects of Dorzolamide on Retinal and Choroidal Blood Flow in the DBA/2J Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2016; 57:826-31. [PMID: 26934140 PMCID: PMC4777278 DOI: 10.1167/iovs.15-18291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To test the hypothesis that acute topical dorzolamide (DZ) decreases intraocular pressure (IOP) and increases retinal and choroidal blood flow in the DBA/2J mouse model of glaucoma. METHODS Retinal and choroidal blood flow were measured in 4- and 9-month-old DBA/2J mice, and 4-month C57BL/6 (control) mice under isoflurane anesthesia using magnetic resonance imaging. Ocular blood flow was measured at baseline, and 1 and 2 hours after topical dorzolamide. Intraocular pressure was measured using a rebound tonometer in a subset of animals at the same time points. RESULTS Baseline IOP in the 4-month-old DBA/2J mice and C57BL/6 mice was not significantly different (P > 0.05), and IOP in both groups was less than in the 9-month-old DBA/2J mice (P < 0.05 for both). Compared to baseline, dorzolamide reduced IOP at 1 and 2 hours after dorzolamide in the 4- (P < 0.05) and 9-month-old (P < 0.01) DBA/2J mice, but not in the C57BL/6J mice (P > 0.05). Baseline retinal blood flow was lower in the 4-month and 9-month-old DBA/2J mice compared with the 4-month-old C57BL/6J mice (P < 0.05). Baseline choroidal blood flow in the 9-month-old DBA/2J mice was less than in the C57BL/6J mice (P < 0.05). Compared with baseline, both retinal and choroidal blood flow increased at 1-hour post-dorzolamide and remained elevated 2 hours later in the 9-month-old DBA/2J mice (P < 0.05). CONCLUSIONS Dorzolamide lowers IOP and raises retinal and choroidal blood flow in older DBA/2J mice, consistent with the study hypothesis.
Collapse
|
22
|
Hanif AM, Kim MK, Thomas JG, Ciavatta VT, Chrenek M, Hetling JR, Pardue MT. Whole-eye electrical stimulation therapy preserves visual function and structure in P23H-1 rats. Exp Eye Res 2016; 149:75-83. [PMID: 27327393 DOI: 10.1016/j.exer.2016.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/28/2022]
Abstract
Low-level electrical stimulation to the eye has been shown to be neuroprotective against retinal degeneration in both human and animal subjects, using approaches such as subretinal implants and transcorneal electrical stimulation. In this study, we investigated the benefits of whole-eye electrical stimulation (WES) in a rodent model of retinitis pigmentosa. Transgenic rats with a P23H-1 rhodopsin mutation were treated with 30 min of low-level electrical stimulation (4 μA at 5 Hz; n = 10) or sham stimulation (Sham group; n = 15), twice per week, from 4 to 24 weeks of age. Retinal and visual functions were assessed every 4 weeks using electroretinography and optokinetic tracking, respectively. At the final time point, eyes were enucleated and processed for histology. Separate cohorts were stimulated once for 30 min, and retinal tissue harvested at 1 h and 24 h post-stimulation for real-time PCR detection of growth factors and inflammatory and apoptotic markers. At all time-points after treatment, WES-treated rat eyes exhibited significantly higher spatial frequency thresholds than untreated eyes. Inner retinal function, as measured by ERG oscillatory potentials (OPs), showed significantly improved OP amplitudes at 8 and 12 weeks post-WES compared to Sham eyes. Additionally, while photoreceptor segment and nuclei thicknesses in P23H-1 rats did not change between treatment groups, WES-treated eyes had significantly greater numbers of retinal ganglion cell nuclei than Sham eyes at 20 weeks post-WES. Gene expression levels of brain-derived neurotrophic factor (BDNF), caspase 3, fibroblast growth factor 2 (FGF2), and glutamine synthetase (GS) were significantly higher at 1 h, but not 24 h after WES treatment. Our findings suggest that WES has a beneficial effect on visual function in a rat model of retinal degeneration and that post-receptoral neurons may be particularly responsive to electrical stimulation therapy.
Collapse
Affiliation(s)
- Adam M Hanif
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Moon K Kim
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Joel G Thomas
- Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vincent T Ciavatta
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Micah Chrenek
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - John R Hetling
- Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
23
|
Changes in Retinal N-Acylethanolamines and their Oxylipin Derivatives During the Development of Visual Impairment in a Mouse Model for Glaucoma. Lipids 2016; 51:857-66. [PMID: 27221132 DOI: 10.1007/s11745-016-4161-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
Neurons are especially susceptible to oxidative damage, which is increasingly implicated in neurodegenerative disease. Certain N-acylethanolamines (NAEs) have been shown to protect neurons from oxidative stress. Since glaucoma may be considered a neurodegenerative disorder and the survival of retinal neurons could also be influenced by N-acylethanolamines, our goal was to quantify changes in certain N-acylethanolamine species and their oxylipin derivatives in the retina of a mouse model for glaucoma. We also sought to identify relationships between these and parameters of glaucoma disease development, specifically intraocular pressure, visual acuity, and contrast sensitivity. Five N-acylethanolamine species and three NAE oxylipin derivatives were quantified in retina from young and aged DBA/2Crl mice. N-Acylethanolamines and NAE-oxylipins in retinal extracts were quantified against deuterated standards by isotope dilution gas chromatography-mass spectrometry. Levels (nmol/g dry weight) of N-arachidonoylethanolamine (anandamide; NAE 20:4) were significantly (p = 0.008) decreased in aged (2.875 ± 0.6702) compared to young animals (5.175 ± 0.971). Conversely, the anandamide oxylipin, 15(S)-HETE ethanolamide (15(S)-HETE EA), was significantly (p = 0.042) increased in aged (0.063 ± 0.009) compared to young animals (0.039 ± 0.011). Enzymatic depletion of the anandamide pool by 15-lipoxygenase and consequent accumulation of 15(S)-HETE ethanolamine may contribute to decreased visual function in glaucomatous mice. Since N-acylethanolamines effectively attenuate glaucoma pathogenesis and associated visual impairment, our data provides additional rationale and novel targets for glaucoma therapies.
Collapse
|
24
|
Kim CH, Hvoslef-Eide M, Nilsson SRO, Johnson MR, Herbert BR, Robbins TW, Saksida LM, Bussey TJ, Mar AC. The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology (Berl) 2015; 232:3947-66. [PMID: 26415954 PMCID: PMC4600477 DOI: 10.1007/s00213-015-4081-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/03/2015] [Indexed: 11/26/2022]
Abstract
RATIONALE Continuous performance tests (CPTs) are widely used to assess attentional processes in a variety of disorders including Alzheimer's disease and schizophrenia. Common human CPTs require discrimination of sequentially presented, visually patterned 'target' and 'non-target' stimuli at a single location. OBJECTIVES The aims of this study were to evaluate the performance of three popular mouse strains on a novel rodent touchscreen test (rCPT) designed to be analogous to common human CPT variants and to investigate the effects of donepezil, a cholinesterase inhibitor and putative cognitive enhancer. METHODS C57BL/6J, DBA/2J and CD1 mice (n = 15-16/strain) were trained to baseline performance using four rCPT training stages. Then, probe tests assessed the effects of parameter changes on task performance: stimulus size, duration, contrast, probability, inter-trial interval or inclusion of flanker distractors. rCPT performance was also evaluated following acute administration of donepezil (0-3 mg/kg, i.p.). RESULTS C57BL/6J and DBA/2J mice showed similar acquisition rates and final baseline performance following rCPT training. On probe tests, rCPT performance of both strains was sensitive to alteration of visual and/or attentional demands (stimulus size, duration, contrast, rate, flanker distraction). Relative to C57BL/6J, DBA/2J mice exhibited (1) decreasing sensitivity (d') across the 45-min session, (2) reduced performance on probes where the appearance of stimuli or adjacent areas were changed (size, contrast, flanking distractors) and (3) larger dose- and stimulus duration-dependent changes in performance following donepezil administration. In contrast, CD1 mice failed to acquire rCPT (stage 3) and pairwise visual discrimination tasks. CONCLUSIONS rCPT is a potentially useful translational tool for assessing attention in mice and for detecting the effects of nootropic drugs.
Collapse
Affiliation(s)
- Chi Hun Kim
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Martha Hvoslef-Eide
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Simon R O Nilsson
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Mark R Johnson
- Academic Obstetrics and Gynaecology, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, SW10 9NH, London, UK
| | - Bronwen R Herbert
- Academic Obstetrics and Gynaecology, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, SW10 9NH, London, UK
| | - Trevor W Robbins
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Adam C Mar
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK.
- Department of Neuroscience and Physiology Neuroscience Institute, New York University, New York, NY, USA.
| |
Collapse
|
25
|
Kaja S, Sumien N, Shah VV, Puthawala I, Maynard AN, Khullar N, Payne AJ, Forster MJ, Koulen P. Loss of Spatial Memory, Learning, and Motor Function During Normal Aging Is Accompanied by Changes in Brain Presenilin 1 and 2 Expression Levels. Mol Neurobiol 2015; 52:545-54. [PMID: 25204494 PMCID: PMC4362879 DOI: 10.1007/s12035-014-8877-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Mutations in presenilin (PS) proteins cause familial Alzheimer's disease. We herein tested the hypothesis that the expression levels of PS proteins are differentially affected during healthy aging, in the absence of pathological mutations. We used a preclinical model for aging to identify associations between PS expression and quantitative behavioral parameters for spatial memory and learning and motor function. We identified significant changes of PS protein expression in both cerebellum and forebrain that correlated with the performance in behavioral paradigms for motor function and memory and learning. Overall, PS1 levels were decreased, while PS2 levels were increased in aged mice compared with young controls. Our study presents novel evidence for the differential expression of PS proteins in a nongenetic model for aging, resulting in an overall increase of the PS2 to PS1 ratio. Our findings provide a novel mechanistic basis for molecular and functional changes during normal aging.
Collapse
Affiliation(s)
- Simon Kaja
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Natalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107
| | - Vidhi V. Shah
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Imran Puthawala
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Alexandra N. Maynard
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Nitasha Khullar
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Andrew J. Payne
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
- Department of Basic Medical Science, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| |
Collapse
|
26
|
Psychophysical testing in rodent models of glaucomatous optic neuropathy. Exp Eye Res 2015; 141:154-63. [PMID: 26144667 DOI: 10.1016/j.exer.2015.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022]
Abstract
Processing of visual information begins in the retina, with photoreceptors converting light stimuli into neural signals. Ultimately, signals are transmitted to the brain through signaling networks formed by interneurons, namely bipolar, horizontal and amacrine cells providing input to retinal ganglion cells (RGCs), which form the optic nerve with their axons. As part of the chronic nature of glaucomatous optic neuropathy, the increasing and irreversible damage and ultimately loss of neurons, RGCs in particular, occurs following progressive damage to the optic nerve head (ONH), eventually resulting in visual impairment and visual field loss. There are two behavioral assays that are typically used to assess visual deficits in glaucoma rodent models, the visual water task and the optokinetic drum. The visual water task can assess an animal's ability to distinguish grating patterns that are associated with an escape from water. The optokinetic drum relies on the optomotor response, a reflex turning of the head and neck in the direction of the visual stimuli, which usually consists of rotating black and white gratings. This reflex is a physiological response critical for keeping the image stable on the retina. Driven initially by the neuronal input from direction-selective RGCs, this reflex is comprised of a number of critical sensory and motor elements. In the presence of repeatable and defined stimuli, this reflex is extremely well suited to analyze subtle changes in the circuitry and performance of retinal neurons. Increasing the cycles of these alternating gratings per degree, or gradually reducing the contrast of the visual stimuli, threshold levels can be determined at which the animal is no longer tracking the stimuli, and thereby visual function of the animal can be determined non-invasively. Integrating these assays into an array of outcome measures that determine multiple aspects of visual function is a central goal in vision research and can be realized, for example, by the combination of measuring optomotor reflex function with electroretinograms (ERGs) and optical coherence tomography (OCT) of the retina. These structure-function correlations in vivo are urgently needed to identify disease mechanisms as potential new targets for drug development. Such a combination of the experimental assessment of the optokinetic reflex (OKR) or optomotor response (OMR) with other measures of retinal structure and function is especially valuable for research on GON. The chronic progression of the disease is characterized by a gradual decrease in function accompanied by a concomitant increase in structural damage to the retina, therefore the assessment of subtle changes is key to determining the success of novel intervention strategies.
Collapse
|
27
|
Wang W, Zhang G, Gu H, Liu Y, Lao J, Li K, Guan H. Role of CtBP2 in the Apoptosis of Retinal Ganglion Cells. Cell Mol Neurobiol 2015; 35:633-40. [PMID: 25627828 DOI: 10.1007/s10571-015-0158-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Glaucoma damages the optic nerve and is a leading cause of irreversible blindness, and its pathogenesis remains unclear. C-terminal-binding protein 2 (CtBP2) is a transcriptional repressor which plays an important role in central nervous system injury and repair. Using the glaucoma model of DBA/2J mouse whose retina ganglion cells (RGCs) were degenerating with the process of glaucoma, we demonstrated for the first time the special relationship between CtBP2 protein and RGCs. Our research indicated that the expression of CtBP2 was gradually decreased with aging by the means of Western blotting. The CtBP2 immunoreactivity-positive cells were present in the various retinal layers, and CtBP2-positive cells were dramatically decreased in ganglion cell layer. Our research also found ectopic expression of CtBP2 can protect the apoptosis of primary mouse RGC cells induced by L-glutamate. These results suggest that CtBP2 may have a potential therapeutic effect in protecting RGC.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Pathology of Traditional Chinese Medicine Hospital, Jiangyin, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Kaja S, Payne AJ, Naumchuk Y, Levy D, Zaidi DH, Altman AM, Nawazish S, Ghuman JK, Gerdes BC, Moore MA, Koulen P. Plate reader-based cell viability assays for glioprotection using primary rat optic nerve head astrocytes. Exp Eye Res 2015; 138:159-66. [PMID: 26048476 DOI: 10.1016/j.exer.2015.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 12/12/2022]
Abstract
Optic nerve head astrocytes (ONHAs) are the major glia cell type in the non-myelinated optic nerve head where they contribute critically to extracellular matrix synthesis during development and throughout life. In glaucoma, and in related disorders affecting the optic nerve and the optic nerve head, pathological changes include altered astrocyte gene and protein expression resulting in their activation and extracellular matrix remodeling. ONHAs are highly sensitive to mechanical and oxidative stress resulting in the initiation of axon damage early during pathogenesis. Furthermore, ONHAs are crucial for the maintenance of retinal ganglion cell physiology and function. Therefore, glioprotective strategies with the goal to preserve and/or restore the structural and functional viability of ONHA in order to slow glaucoma and related pathologies are of high clinical relevance. Herein, we describe the development of standardized methods that will allow for the systematic advancement of such glioprotective strategies. These include isolation, purification and culture of primary adult rat ONHAs, optimized immunocytochemical protocols for cell type validation, as well as plate reader-based assays determining cellular viability, proliferation and the intracellular redox state. We validated and standardized our protocols by performing a glioprotection study using primary ONHAs. Specifically, we measured protection against exogenously-applied oxidative stress using tert-butylhydroperoxide (tBHP) as a model of disease-mediated oxidative stress in the retina and optic nerve head by the prototypic antioxidant, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Levels of oxidative stress were increased in the response to exogenously applied tBHP and were assessed by 6-carboxy-2', 7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Normalized DCFDA fluorescence showed a maximal 5.1-fold increase; the half-maximal effect (EC50) for tBHP was 212 ± 25 μM. This was paralleled very effectively in the assays measuring cell death and cell viability with half-maximal effects of 241 ± 20 μM and 194 ± 5 μM for tBHP in the lactate dehydrogenase (LDH) release and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion assays, respectively. Pre-treatment with 100 μM Trolox decreased the sensitivity of ONHAs to tBHP. Half-maximal effects increased to 396 ± 12 μM tBHP in the LDH release assay and to 383 ± 3 μM tBHP in the MTT assay. Vehicle treatment (0.1% v/v ethanol) did not significantly affect cellular responses to tBHP. Antioxidant treatment increases ONHA viability and reduces the deleterious effects of oxidative stress. Our experiments provide important feasibility data for utilizing primary rat ONHAs in plate reader-based assays assessing novel therapeutics for glioprotection of the optic nerve and the optic nerve head in glaucoma and related disorders. Furthermore, our novel, standardized protocols have the potential to be readily adapted to high-throughput and high-content testing strategies.
Collapse
Affiliation(s)
- Simon Kaja
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Andrew J Payne
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Yuliya Naumchuk
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Deborah Levy
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Danish H Zaidi
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Alexa M Altman
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Saba Nawazish
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Jasleen K Ghuman
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Bryan C Gerdes
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Mark A Moore
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA; Department of Basic Medical Science, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA.
| |
Collapse
|
29
|
Wright CB, Chrenek MA, Feng W, Getz SE, Duncan T, Pardue MT, Feng Y, Redmond TM, Boatright JH, Nickerson JM. The Rpe65 rd12 allele exerts a semidominant negative effect on vision in mice. Invest Ophthalmol Vis Sci 2014; 55:2500-15. [PMID: 24644049 PMCID: PMC3993890 DOI: 10.1167/iovs.13-13574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The rd12 mouse was reported as a recessively inherited Rpe65 mutation. We asked if the rd12 mutation resides in Rpe65 and how the mutation manifests itself. METHODS A complementation test was performed by mating Rpe65(KO) (KO/KO) and rd12 mice together to determine if the rd12 mutation is in the Rpe65 gene. Visual function of wild-type (+/+), KO/+, rd12/+, KO/KO, rd12/rd12, and KO/rd12 mice was measured by optokinetic tracking (OKT) and ERG. Morphology was assessed by retinal cross section. qRT-PCR quantified Rpe65 mRNA levels. Immunoblotting measured the size and level of RPE65 protein. Rpe65 mRNA localization was visualized with RNA fluorescence in situ hybridization (FISH). Fractions of Rpe65 mRNA-bound proteins were separated by linear sucrose gradient fractionation. RESULTS The KO and rd12 alleles did not complement. The rd12 allele induced a negative semidominant effect on visual function; OKT responses became undetectable 120 days earlier in rd12/rd12 mice compared with KO/KO mice. rd12/+ mice lost approximately 21% visual acuity by P210. rd12/rd12 mice had fewer cone photoreceptor nuclei than KO/KO mice at P60. rd12/rd12 mice expressed 71% +/+ levels of Rpe65 mRNA, but protein was undetectable. Mutant mRNA was appropriately spliced, exported to the cytoplasm, trafficked, and contained no other coding mutation aside from the known nonsense mutation. Mutant mRNA was enriched on ribosome-free messenger ribonucleoproteins (mRNPs), whereas wild-type mRNA was enriched on actively translating polyribosomes. CONCLUSIONS The rd12 lesion is in Rpe65. The rd12 mutant phenotype inherits in a semidominant manner. The effects of the mutant mRNA on visual function may result from inefficient binding to ribosomes for translation.
Collapse
Affiliation(s)
- Charles B. Wright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Wei Feng
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Shannon E. Getz
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Machelle T. Pardue
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Rehabiliation Research and Development Center of Excellence, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Yue Feng
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - T. Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
30
|
Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina. Int J Mol Sci 2014; 15:1865-86. [PMID: 24473138 PMCID: PMC3958826 DOI: 10.3390/ijms15021865] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
The molecular pathways contributing to visual signal transduction in the retina generate a high energy demand that has functional and structural consequences such as vascularization and high metabolic rates contributing to oxidative stress. Multiple signaling cascades are involved to actively regulate the redox state of the retina. Age-related processes increase the oxidative load, resulting in chronically elevated levels of oxidative stress and reactive oxygen species, which in the retina ultimately result in pathologies such as glaucoma or age-related macular degeneration, as well as the neuropathic complications of diabetes in the eye. Specifically, oxidative stress results in deleterious changes to the retina through dysregulation of its intracellular physiology, ultimately leading to neurodegenerative and potentially also vascular dysfunction. Herein we will review the evidence for oxidative stress-induced contributions to each of the three major ocular pathologies, glaucoma, age-related macular degeneration, and diabetic retinopathy. The premise for neuroprotective strategies for these ocular disorders will be discussed in the context of recent clinical and preclinical research pursuing novel therapy development approaches.
Collapse
|
31
|
Kaja S, Naumchuk Y, Grillo SL, Borden PK, Koulen P. Differential up-regulation of Vesl-1/Homer 1 protein isoforms associated with decline in visual performance in a preclinical glaucoma model. Vision Res 2014; 94:16-23. [PMID: 24219919 PMCID: PMC3890355 DOI: 10.1016/j.visres.2013.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
Abstract
Glaucoma is a multifactorial progressive ocular pathology, clinically presenting with damage to the retina and optic nerve, ultimately leading to blindness. Retinal ganglion cell loss in glaucoma ultimately results in vision loss. Vesl/Homer proteins are scaffolding proteins that are critical for maintaining synaptic integrity by clustering, organizing and functionally regulating synaptic proteins. Current anti-glaucoma therapies target IOP as the sole modifiable clinical parameters. Long-term pharmacotherapy and surgical treatment do not prevent gradual visual field loss as the disease progresses, highlighting the need for new complementary, alternative and comprehensive treatment approaches. Vesl/Homer expression was measured in the retinae of DBA/2J mice, a preclinical genetic glaucoma model with spontaneous mutations resulting in a phenotype reminiscent of chronic human pigmentary glaucoma. Vesl/Homer proteins were differentially expressed in the aged, glaucomatous DBA/2J retina, both at the transcriptional and translational level. Immunoreactivity for the long Vesl-1L/Homer 1c isoform, but not of the immediate early gene product Vesl-1S/Homer 1a was increased in the synaptic layers of the retina. This increased protein level of Vesl-1L/Homer 1c was correlated with phenotypes of increased disease severity and a decrease in visual performance. The increased expression of Vesl-1L/Homer 1c in the glaucomatous retina likely results in increased intracellular Ca(2+) release through enhancement of synaptic coupling. The ensuing Ca(2+) toxicity may thus activate neurodegenerative pathways and lead to the progressive loss of synaptic function in glaucoma. Our data suggest that higher levels of Vesl-1L/Homer 1c generate a more severe disease phenotype and may represent a viable target for therapy development.
Collapse
Affiliation(s)
- Simon Kaja
- Vision Research Center, Department Ophthalmology, University of Missouri - Kansas City, School of Medicine, Kansas City, MO 64108, United States.
| | - Yuliya Naumchuk
- Vision Research Center, Department Ophthalmology, University of Missouri - Kansas City, School of Medicine, Kansas City, MO 64108, United States
| | - Stephanie L Grillo
- Vision Research Center, Department Ophthalmology, University of Missouri - Kansas City, School of Medicine, Kansas City, MO 64108, United States
| | - Priscilla K Borden
- Vision Research Center, Department Ophthalmology, University of Missouri - Kansas City, School of Medicine, Kansas City, MO 64108, United States
| | - Peter Koulen
- Vision Research Center, Department Ophthalmology, University of Missouri - Kansas City, School of Medicine, Kansas City, MO 64108, United States; Department of Basic Medical Science, University of Missouri - Kansas City, School of Medicine, Kansas City, MO 64108, United States
| |
Collapse
|
32
|
Kaja S, Sumien N, Borden PK, Khullar N, Iqbal M, Collins JL, Forster MJ, Koulen P. Homer-1a immediate early gene expression correlates with better cognitive performance in aging. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1799-1808. [PMID: 23054826 PMCID: PMC3776093 DOI: 10.1007/s11357-012-9479-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/13/2012] [Indexed: 05/31/2023]
Abstract
The molecular mechanisms underlying cognitive decline during healthy aging remain largely unknown. Utilizing aged wild-type C57BL/6 mice as a model for normal aging, we tested the hypothesis that cognitive performance, memory, and learning as assessed in established behavioral testing paradigms are correlated with the differential expression of isoforms of the Homer family of synaptic scaffolding proteins. Here we describe a loss of cognitive and motor function that occurs when Homer-1a/Vesl-1S protein levels drop during aging. Our data describe a novel mechanism of age-related synaptic changes contributing to loss of biological function, spatial learning, and memory formation as well as motor coordination, with the dominant negative uncoupler of synaptic protein clustering, Homer-1a/Vesl-1S, as a potential target for the prophylaxis and treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Simon Kaja
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Nathalie Sumien
- />Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Priscilla K. Borden
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Nitasha Khullar
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Maaz Iqbal
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Julie L. Collins
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| | - Michael J. Forster
- />Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Peter Koulen
- />Department Ophthalmology and Vision Research Center, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
- />Department of Basic Medical Science, School of Medicine, University of Missouri—Kansas City, 2411 Holmes St., Kansas City, MO 64108 USA
| |
Collapse
|
33
|
Shi Q, Stell WK. Die Fledermaus: regarding optokinetic contrast sensitivity and light-adaptation, chicks are mice with wings. PLoS One 2013; 8:e75375. [PMID: 24098693 PMCID: PMC3787091 DOI: 10.1371/journal.pone.0075375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/14/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. METHODOLOGY/PRINCIPAL FINDINGS We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. CONCLUSION/SIGNIFICANCE Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a "day/night" or "cone/rod" switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease.
Collapse
Affiliation(s)
- Qing Shi
- Neuroscience Graduate Program, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - William K. Stell
- Department of Cell Biology and Anatomy, and Department of Surgery, and Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute; University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Prokai-Tatrai K, Xin H, Nguyen V, Szarka S, Blazics B, Prokai L, Koulen P. 17β-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Mol Pharm 2013; 10:3253-61. [PMID: 23841874 DOI: 10.1021/mp400313u] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuroprotection in glaucoma as a curative strategy complementary to current therapies to lower intraocular pressure (IOP) is highly desirable. This study was designed to investigate neuroprotection by 17β-estradiol (E2) to prevent retinal ganglion cell (RGC) death in a glaucoma model of surgically elevated IOP in rats. We found that daily treatment with E2-containing eye drops resulted in significant E2 concentration in the retina with concomitant profound neuroprotective therapeutic benefits, even in the presence of continually elevated IOP. The number of apoptotic cells in the RGC layer was significantly decreased in the E2-treated group, when compared to the vehicle-treated controls. Deterioration in visual acuity in these animals was also markedly prevented. Using mass spectrometry-based proteomics, beneficial changes in the expression of several proteins implicated in the maintenance of retinal health were also found in the retina of E2-treated animals. On the other hand, systemic side effects could not be avoided with the eye drops, as confirmed by the measured high circulating estrogen levels and through the assessment of the uterus representing a typical hormone-sensitive peripheral organ. Collectively, the demonstrated significant neuroprotective effect of topical E2 in the selected animal model of glaucoma provides a clear rationale for further studies aiming at targeting E2 into the eye while avoiding systemic E2 exposure to diminish undesirable off-target side effects.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center , 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Barabas P, Huang W, Chen H, Koehler CL, Howell G, John SWM, Tian N, Rentería RC, Krizaj D. Missing optomotor head-turning reflex in the DBA/2J mouse. Invest Ophthalmol Vis Sci 2011; 52:6766-73. [PMID: 21757588 DOI: 10.1167/iovs.10-7147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The optomotor reflex of DBA/2J (D2), DBA/2J-Gpnmb+ (D2-Gpnmb+), and C57BL/6J (B6) mouse strains was assayed, and the retinal ganglion cell (RGC) firing patterns, direction selectivity, vestibulomotor function and central vision was compared between the D2 and B6 mouse lines. METHODS Intraocular pressure (IOP) measurements, real-time PCR, and immunohistochemical analysis were used to assess the time course of glaucomatous changes in D2 retinas. Behavioral analyses of optomotor head-turning reflex, visible platform Morris water maze and Rotarod measurements were conducted to test vision and vestibulomotor function. Electroretinogram (ERG) measurements were used to assay outer retinal function. The multielectrode array (MEA) technique was used to characterize RGC spiking and direction selectivity in D2 and B6 retinas. RESULTS Progressive increase in IOP and loss of Brn3a signals in D2 animals were consistent with glaucoma progression starting after 6 months of age. D2 mice showed no response to visual stimulation that evoked robust optomotor responses in B6 mice at any age after eye opening. Spatial frequency threshold was also not measurable in the D2-Gpnmb+ strain control. ERG a- and b-waves, central vision, vestibulomotor function, the spiking properties of ON, OFF, ON-OFF, and direction-selective RGCs were normal in young D2 mice. CONCLUSIONS The D2 strain is characterized by a lack of optomotor reflex before IOP elevation and RGC degeneration are observed. This behavioral deficit is D2 strain-specific, but is independent of retinal function and glaucoma. Caution is advised when using the optomotor reflex to follow glaucoma progression in D2 mice.
Collapse
Affiliation(s)
- Peter Barabas
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|