1
|
Dorweiler TF, Singh A, Ganju A, Lydic TA, Glazer LC, Kolesnick RN, Busik JV. Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy. Cell Metab 2024; 36:1521-1533.e5. [PMID: 38718792 PMCID: PMC11222062 DOI: 10.1016/j.cmet.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Collapse
Affiliation(s)
- Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02113, USA
| | - Arjun Singh
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Aditya Ganju
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Louis C Glazer
- Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA; Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Kolesnick
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA.
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Sajadimajd S, Khosravifar M, Bahrami G. Anti-Diabetic Effects of Isolated Lipids from Natural Sources through Modulation of Angiogenesis. Curr Mol Pharmacol 2021; 15:589-606. [PMID: 34473620 DOI: 10.2174/1874467214666210902121337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant angiogenesis plays a fateful role in the development of diabetes and diabetic complications. Lipids, as a diverse group of biomacromolecules, are able to relieve diabetes through the modulation of angiogenesis. OBJECTIVE Owing to the present remarkable anti-diabetic effects with no or few side effects of lipids, the aim of this study was to assess the state-of-the-art research on anti-diabetic effects of lipids via the modulation of angiogenesis. METHODS To study the effects of lipids in diabetes via modulation of angiogenesis, we have searched the electronic databases including Scopus, PubMed, and Cochrane. RESULTS The promising anti-diabetic effects of lipids were reported in several studies. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil (FO) were reported to significantly induce neovasculogenesis in high glucose (HG)-mediated endothelial progenitor cells (EPCs) neovasculogenic dysfunction in type 2 diabetic mice. Linoleic acid, mono-epoxy-tocotrienol-α (MeT3α), and ginsenoside Rg1 facilitate wound closure and vessel formation. N-Palmitoylethanolamine (PEA), α-linolenic acid (ALA), omega-3 (ω3) lipids from flaxseed (FS) oil, ω-3 polyunsaturated fatty acids (PUFA), lipoic acid, taurine, and zeaxanthin (Zx) are effective in diabetic retinopathy via suppression of angiogenesis. Lysophosphatidic acid, alkyl-glycerophosphate, crocin, arjunolic acid, α-lipoic acid, and FS oil are involved in the management of diabetes and its cardiac complications. Furthermore, in two clinical trials, R-(+)-lipoic acid (RLA) in combination with hyperbaric oxygenation therapy (HBOT) for treatment of chronic wound healing in DM patients, as well as supplementation with DHA plus antioxidants along with intravitreal ranibizumab were investigated for its effects on diabetic macular edema. CONCLUSION Proof-of-concept studies presented here seem to well shed light on the anti-diabetic effects of lipids via modulation of angiogenesis.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Mina Khosravifar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Busik JV. Lipid metabolism dysregulation in diabetic retinopathy. J Lipid Res 2021; 62:100017. [PMID: 33581416 PMCID: PMC7892987 DOI: 10.1194/jlr.tr120000981] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolic abnormalities have emerged as potential risk factors for the development and progression of diabetic complications, including diabetic retinopathy (DR). This review article provides an overview of the results of clinical trials evaluating the potential benefits of lipid-lowering drugs, such as fibrates, omega-3 fatty acids, and statins, for the prevention and treatment of DR. Although several clinical trials demonstrated that treatment with fibrates leads to improvement of DR, there is a dissociation between the protective effects of fibrates in the retina, and the intended blood lipid classes, including plasma triglycerides, total cholesterol, or HDL:LDL cholesterol ratio. Guided by these findings, plasma lipid and lipoprotein-independent mechanisms are addressed based on clinical, cell culture, and animal model studies. Potential retinal-specific effects of fatty acid oxidation products, cholesterol, and ceramide, as well as lipid-independent effects of PPAR alpha activation, are summarized based on the current literature. Overall, this review highlights promising potential of lipid-based treatment strategies further enhanced by the new knowledge of intraretinal lipids and lipoproteins in DR.
Collapse
Affiliation(s)
- Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Steinle JJ. Review: Role of cAMP signaling in diabetic retinopathy. Mol Vis 2020; 26:355-358. [PMID: 32476815 PMCID: PMC7245604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022] Open
Abstract
Despite decades of research, diabetic retinopathy remains the leading cause of blindness in working age adults. Treatments for early phases for the disease remain elusive. One pathway that appears to regulate neuronal, vascular, and inflammatory components of diabetic retinopathy is the cyclic adenosine 3', 5'-monophosphate (cAMP) pathway. In this review, we discuss the current literature on cAMP actions on the retina, with a focus on neurovascular changes commonly associated with preproliferative diabetic retinopathy models.
Collapse
|
6
|
Rao P, Suvas PK, Jerome AD, Steinle JJ, Suvas S. Role of Insulin-Like Growth Factor Binding Protein-3 in the Pathogenesis of Herpes Stromal Keratitis. Invest Ophthalmol Vis Sci 2020; 61:46. [PMID: 32106295 PMCID: PMC7329945 DOI: 10.1167/iovs.61.2.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose The goal of this study was to determine the role of insulin-like growth factor-binding protein-3 (IGFBP-3) in the pathogenesis of herpes stromal keratitis (HSK). Methods In an unbiased approach, a membrane-based protein array was carried out to determine the level of expression of pro- and anti-angiogenic molecules in uninfected and HSV-1 infected corneas. Quantitative RT-PCR and ELISA assays were performed to measure the amounts of IGFBP-3 at mRNA and protein levels. Confocal microscopy documented the localization of IGFBP-3 in uninfected and infected corneal tissue. Flow cytometry assay showed the frequency of immune cell types in infected corneas from C57BL/6J (B6) and IGFBP-3 knockout (IGFBP-3-/-) mice. Slit-lamp microscopy was used to quantitate the development of opacity and neovascularization in infected corneas from both groups of mice. Results Quantitation of protein array dot blot showed an increased level of IGFBP-3 protein in HSV-1 infected than uninfected corneas and was confirmed with ELISA and quantitative RT-PCR assays. Cytosolic and nuclear localization of IGFBP-3 were detected in the cells of corneal epithelium, whereas scattered IGFBP-3 staining was evident in the stroma of HSK developing corneas. Increased opacity and hemangiogenesis were noted in the corneas of IGFBP-3-/- than B6 mice during the clinical period of HSK. Furthermore, an increased number of leukocytes comprising of neutrophils and CD4 T cells were found in HSK developing corneas of IGFBP-3-/- than B6 mice. Conclusions Our data showed that lack of IGFBP-3 exacerbates HSK, suggesting the protective effect of IGFBP-3 protein in regulating the severity of HSK.
Collapse
|
7
|
Murugesan N, Fickweiler W, Clermont AC, Zhou Q, Feener EP. Retinal proteome associated with bradykinin-induced edema. Exp Eye Res 2019; 186:107744. [PMID: 31351056 DOI: 10.1016/j.exer.2019.107744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/19/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
The plasma kallikrein-stimulated generation of bradykinin (BK) has been implicated in diabetic macular edema (DME). This study characterizes the effects of BK on the ultrastructure and proteome of the rat retina. The effects of intravitreal injection of BK on retinal thickness and vascular ultrastructure in Sprague Dawley rats were analyzed and compared with the effects of VEGF using spectral-domain optical coherence tomography. At 24 h post intravitreal injection of BK or saline vehicle retina were harvested and solubilized proteins were analyzed by mass spectrometry-based proteomics. Proteins were identified using X!Tandem and spectral counts were used as a semiquantitative measurement of protein abundance. Proteins identified from retinal extracts were annotated by Gene Ontology (GO) slim terms and compared with a human DME vitreous proteome. Intravitreal injection of BK and VEGF induced transient increases in retinal thickness of 46 μm (24.6%, p = 0.015) and 39 μm (20.3%, p = 0.004), respectively at 24 h, which were resolved to baseline thicknesses at 96 h post injection. BK and VEGF also increased retinal vessel diameters and tortuosity at 24 h post intravitreal injection. Proteomic analyses identified 1757 non-redundant proteins in the rat retina, including 1739 and 1725 proteins from BK- and saline control-injected eyes, respectively. Eighteen proteins, including two proteins associated with intercellular junctions, filamin A and actinin alpha 4, were decreased by at least 50% (p < 0.05) in retina from BK-injected eyes compare with retina from eyes injected with saline. In addition, 32 proteins were increased by > 2-fold (p < 0.05) in retina from BK-injected eyes. Eight proteins, including complement C3, were identified to be increased in both BK-stimulated rat retina and in human DME vitreous. Western blot analysis showed that Complement 3 levels in vitreous from BK-injected eyes in rats and clinical DME samples were increased by 6.6-fold (p = 0.039) and 4.3-fold (p = 0.02), compared with their respective controls. In summary, this study identifies protein changes in rat retina that are associated with BK-induced retinal thickening, including 8 proteins that were previously reported to be increased in the human DME vitreous proteome.
Collapse
Affiliation(s)
- Nivetha Murugesan
- Joslin Diabetes Center, Boston, MA, USA; KalVista Pharmaceuticals Inc, Cambridge, MA, USA
| | - Ward Fickweiler
- Joslin Diabetes Center, Boston, MA, USA; Beetham Eye Institute. Joslin Diabetes Center, Boston, MA, USA
| | - Allen C Clermont
- Joslin Diabetes Center, Boston, MA, USA; Beetham Eye Institute. Joslin Diabetes Center, Boston, MA, USA
| | | | - Edward P Feener
- Joslin Diabetes Center, Boston, MA, USA; KalVista Pharmaceuticals Inc, Cambridge, MA, USA.
| |
Collapse
|
8
|
Malek G, Busik J, Grant MB, Choudhary M. Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 2018; 13:359-377. [PMID: 29382242 DOI: 10.1080/17460441.2018.1430136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The impact of vision debilitating diseases is a global public health concern, which will continue until effective preventative and management protocols are developed. Two retinal diseases responsible for the majority of vision loss in the working age adults and elderly populations are diabetic retinopathy (DR) and age-related macular degeneration (AMD), respectively. Model systems, which recapitulate aspects of human pathology, are valid experimental modalities that have contributed to the identification of signaling pathways involved in disease development and consequently potential therapies. Areas covered: The pathology of DR and AMD, which serve as the basis for designing appropriate models of disease, is discussed. The authors also review in vitro and in vivo models of DR and AMD and evaluate the utility of these models in exploratory and pre-clinical studies. Expert opinion: The complex nature of non-Mendelian diseases such as DR and AMD has made identification of effective therapeutic treatments challenging. However, the authors believe that while in vivo models are often criticized for not being a 'perfect' recapitulation of disease, they have been valuable experimentally when used with consideration of the strengths and limitations of the experimental model selected and have a place in the drug discovery process.
Collapse
Affiliation(s)
- Goldis Malek
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pathology , Duke University School of Medicine , Durham , NC , USA
| | - Julia Busik
- c Department of Physiology , Michigan State University , East Lansing , MI , USA
| | - Maria B Grant
- d Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , Al , USA
| | - Mayur Choudhary
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
9
|
Involvement of p53 in insulin-like growth factor binding protein-3 regulation in the breast cancer cell response to DNA damage. Oncotarget 2016; 6:26583-98. [PMID: 26378048 PMCID: PMC4694938 DOI: 10.18632/oncotarget.5612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy drugs that induce apoptosis by causing DNA double-strand breaks, upregulate the tumor suppressor p53. This study investigated the regulation of the growth-regulatory protein insulin-like growth factor binding protein-3 (IGFBP-3), a p53 target, by DNA-damaging agents in breast cancer cells. IGFBP-3 was upregulated 1.4- to 13-fold in response to doxorubicin and etoposide in MCF-10A, Hs578T, MCF-7 and T47D cells, which express low to moderate basal levels of IGFBP-3. In contrast, IGFBP-3 was strongly downregulated by these agents in cells with high basal levels of IGFBP-3 (MDA-MB-231, MDA-MB-436 and MDA-MB-468). In MDA-MB-468 cells containing the R273H p53 mutation, reported to display gain-of-function properties, chemotherapy-induced suppression of IGFBP-3 was not reversed by the p53 reactivating drug, PRIMA-1, or by p53 silencing, suggesting that the decrease in IGFBP-3 following DNA damage is not a mutant p53 gain-of-function response. SiRNA-mediated downregulation of endogenous IGFBP-3 modestly attenuated doxorubicin-induced apoptosis in MDA-MB-468 and Hs578T cells. IGFBP-3 downregulation in some breast cancer cell lines in response to DNA-damaging chemotherapy may have clinical implications because suppression of IGFBP-3 may modulate the apoptotic response. These observations provide further evidence that endogenous IGFBP-3 plays a role in breast cancer cell responsiveness to DNA damaging therapy.
Collapse
|
10
|
Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy. EBioMedicine 2016; 11:138-150. [PMID: 27531575 PMCID: PMC5049929 DOI: 10.1016/j.ebiom.2016.08.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 08/06/2016] [Indexed: 11/22/2022] Open
Abstract
Activation of pro-inflammatory and pro-angiogenic pathways in the retina and the bone marrow contributes to pathogenesis of diabetic retinopathy. We identified miR-15a as key regulator of both pro-inflammatory and pro-angiogenic pathways through direct binding and inhibition of the central enzyme in the sphingolipid metabolism, ASM, and the pro-angiogenic growth factor, VEGF-A. miR-15a was downregulated in diabetic retina and bone marrow cells. Over-expression of miR-15a downregulated, and inhibition of miR-15a upregulated ASM and VEGF-A expression in retinal cells. In addition to retinal effects, migration and retinal vascular repair function was impaired in miR-15a inhibitor-treated circulating angiogenic cells (CAC). Diabetic mice overexpressing miR-15a under Tie-2 promoter had normalized retinal permeability compared to wild type littermates. Importantly, miR-15a overexpression led to modulation toward nondiabetic levels, rather than complete inhibition of ASM and VEGF-A providing therapeutic effect without detrimental consequences of ASM and VEGF-A deficiencies.
Collapse
|
11
|
Clemmons DR. Role of IGF Binding Proteins in Regulating Metabolism. Trends Endocrinol Metab 2016; 27:375-391. [PMID: 27117513 DOI: 10.1016/j.tem.2016.03.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023]
Abstract
Insulin-like growth factors (IGFs) circulate in extracellular fluids bound to a family of binding proteins. Although they function in a classical manner to limit the access of the IGFs to their receptors they also have a multiplicity of actions that are independent of this property; they bind to their own receptors or are transported to intracellular and intranuclear sites to influence cellular functions that may directly or indirectly modify IGF actions. The availability of genetically modified animals has helped to determine their functions in a physiological context. These results show that many of their actions are cell type- and context-specific, and have led to a broader understanding of how these proteins function coordinately with IGF-I and -II to regulate growth and metabolism.
Collapse
Affiliation(s)
- David R Clemmons
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Chakravarthy H, Navitskaya S, O'Reilly S, Gallimore J, Mize H, Beli E, Wang Q, Kady N, Huang C, Blanchard GJ, Grant MB, Busik JV. Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy. Stem Cells 2016; 34:972-83. [PMID: 26676316 DOI: 10.1002/stem.2259] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022]
Abstract
The metabolic insults associated with diabetes lead to low-grade chronic inflammation, retinal endothelial cell damage, and inadequate vascular repair. This is partly due to the increased activation of bone marrow (BM)-derived proinflammatory monocytes infiltrating the retina, and the compromised function of BM-derived reparative circulating angiogenic cells (CACs), which home to sites of endothelial injury and foster vascular repair. We now propose that a metabolic link leading to activated monocytes and dysfunctional CACs in diabetes involves upregulation of a central enzyme of sphingolipid signaling, acid sphingomyelinase (ASM). Selective inhibition of ASM in the BM prevented diabetes-induced activation of BM-derived microglia-like cells and normalized proinflammatory cytokine levels in the retina. ASM upregulation in diabetic CACs caused accumulation of ceramide on their cell membrane, thereby reducing membrane fluidity and impairing CAC migration. Replacing sphingomyelin with ceramide in synthetic membrane vesicles caused a similar decrease in membrane fluidity. Inhibition of ASM in diabetic CACs improved membrane fluidity and homing of these cells to damaged retinal vessels. Collectively, these findings indicate that selective modulation of sphingolipid metabolism in BM-derived cell populations in diabetes normalizes the reparative/proinflammatory cell balance and can be explored as a novel therapeutic strategy for treating diabetic retinopathy.
Collapse
Affiliation(s)
| | - Svetlana Navitskaya
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Sandra O'Reilly
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Jacob Gallimore
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Hannah Mize
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qi Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Nermin Kady
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Chao Huang
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Zhang Q, Jiang Y, Steinle JJ. IGFBP-3 reduces eNOS and PKCzeta phosphorylation, leading to lowered VEGF levels. Mol Vis 2015; 21:604-11. [PMID: 26015772 PMCID: PMC4443585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/20/2015] [Indexed: 10/25/2022] Open
Abstract
PURPOSE In models of diabetic retinopathy, insulin-like growth factor binding protein-3 (IGFBP-3) is protective to the retina, especially retinal microvascular endothelial cells (RECs), but the underlying mechanisms are unclear. For this study, we hypothesized that IGFBP-3 may reduce vascular endothelial growth factor (VEGF) levels through reduced endothelial nitric oxide synthase (eNOS) activity, which may be protective against macular edema. METHODS To test this hypothesis, we grew primary human retinal endothelial cells in normal glucose (5 mM) or high glucose (25 mM) for three days, treated with IGFBP-3 NB plasmid (a plasmid of IGFBP-3 that cannot bind IGF-1), followed by western blotting for eNOS, protein kinase C zeta (PKCzeta), and VEGF. Additionally, we treated some cells with recombinant eNOS or PKCzeta, after IGFBP-3 NB plasmid transfection to validate that these pathways regulate VEGF levels. Immunoprecipitation experiments were done with the eNOS antibody, followed by western blotting for PKCzeta, to determine if eNOS and PKCzeta interact directly. RESULTS Our results suggest that 1) IGFBP-3 inhibits the endothelial nitric oxide synthase (eNOS) and protein kinase C zeta (PKCzeta) pathway, which in turn inhibits VEGF production, and 2) that eNOS plays a role in activating PKCzeta to increase VEGF levels in diabetic retinopathy. CONCLUSIONS In conclusion, IGFBP-3 may be a novel treatment for macular edema through the inhibition of eNOS and PKCzeta activation, leading to reduced VEGF levels.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN
| | - Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI
| | - Jena J. Steinle
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN,Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI,Department of Ophthalmology, Wayne State University, Detroit, MI
| |
Collapse
|
14
|
Jiang Y, Zhang Q, Steinle JJ. Beta-adrenergic receptor agonist decreases VEGF levels through altered eNOS and PKC signaling in diabetic retina. Growth Factors 2015; 33:192-9. [PMID: 26115368 PMCID: PMC4791949 DOI: 10.3109/08977194.2015.1054990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular endothelial cell growth factor (VEGF) is increased in diabetic macular edema. Compound 49b, a novel β-adrenergic receptor agonist, is protective in a type 1 diabetic rat model. We questioned whether Compound 49b could decrease VEGF levels, suggesting that Compound 49b may be effective against edema. Two-month diabetic rats received topical Compound 49b for 7 days only and/or insulin-like growth factor binding protein 3 (IGFBP-3) siRNA. We also measured endothelial nitric oxide synthase (eNOS) and protein kinase C (PKC)ζ and PKCδ phosphorylation. Retinal endothelial cells (RECs) cultured in high glucose were treated with Compound 49b and IGFBP-3 siRNA for evaluation of the same signaling pathways. Compound 49b significantly decreased VEGF through increased IGFBP-3 in the diabetic retina. Compound 49b also reduced eNOS, PKCζ and PKCδ phosphorylation in the diabetic retina and REC. Compound 49b regulated a number of proteins involved in REC barrier properties.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jena J. Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
- Department of Ophthalmology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Abstract
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
16
|
Zhang Q, Jiang Y, Miller MJ, Peng B, Liu L, Soderland C, Tang J, Kern TS, Pintar J, Steinle JJ. IGFBP-3 and TNF-α regulate retinal endothelial cell apoptosis. Invest Ophthalmol Vis Sci 2013; 54:5376-84. [PMID: 23868984 DOI: 10.1167/iovs.13-12497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We hypothesized that loss of insulin-like growth factor binding protein 3 (IGFBP-3) signaling would produce neuronal changes in the retina similar to early diabetes. METHODS To understand better the role of IGFBP-3 in the retina, IGFBP-3 knockout (KO) mice were evaluated for neuronal, vascular, and functional changes compared to wild-type littermates. We also cultured retinal endothelial cells (REC) in normoglycemia or hyperglycemia to determine the interaction between IGFBP-3 and TNF-α, as data indicate that both proteins are regulated by β-adrenergic receptors and respond antagonistically. We also treated some cells with Compound 49b, a novel β-adrenergic receptor agonist we have reported previously to regulate IGFBP-3 and TNF-α. RESULTS Electroretinogram analyses showed decreased B-wave and oscillatory potential amplitudes in the IGFBP-3 KO mice, corresponding to increased apoptosis. Retinal thickness and cell numbers in the ganglion cell layer were reduced in the IGFBP-3 KO mice. As expected, loss of IGFBP-3 was associated with increased TNF-α levels. When TNF-α and IGFBP-3 were applied to REC, they worked antagonistically, with IGFBP-3 inhibiting apoptosis and TNF-α promoting apoptosis. Due to their antagonistic nature, results suggest that apoptosis of REC may depend upon which protein (IGFBP-3 versus TNF-α) is active. CONCLUSIONS Taken together, loss of IGFBP-3 signaling results in a phenotype similar to neuronal changes observed in diabetic retinopathy in the early phases, including increased TNF-α levels.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Baxter RC. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions. J Cell Commun Signal 2013; 7:179-89. [PMID: 23700234 DOI: 10.1007/s12079-013-0203-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In addition to its important role in the regulation of somatic growth by acting as the major circulating transport protein for the insulin-like growth factors (IGFs), IGF binding protein-3 (IGFBP-3) has a variety of intracellular ligands that point to its function within major signaling pathways. The discovery of its interaction with the retinoid X receptor has led to the elucidation of roles in regulating the function of several nuclear hormone receptors including retinoic acid receptor-α, Nur77 and vitamin D receptor. Its interaction with the nuclear hormone receptor peroxisome proliferator-activated receptor-γ is believed to be involved in regulating adipocyte differentiation, which is also modulated by IGFBP-3 through an interaction with TGFβ/Smad signaling. IGFBP-3 can induce apoptosis alone or in conjunction with other agents, and in different systems can activate caspases -8 and -9. At least two unrelated proteins (LRP1 and TMEM219) have been designated as receptors for IGFBP-3, the latter with a demonstrated role in inducing caspase-8-dependent apoptosis. In contrast, IGFBP-3 also has demonstrated roles in survival-related functions, including the repair of DNA double-strand breaks through interaction with the epidermal growth factor receptor and DNA-dependent protein kinase, and the induction of autophagy through interaction with GRP78. The ability of IGFBP-3 to modulate the balance between pro-apoptotic and pro-survival sphingolipids by regulating sphingosine kinase 1 and sphingomyelinases may be integral to its role at the crossroads between cell death and survival in response to a variety of stimuli. The pleiotropic nature of IGFBP-3 activity supports the idea that IGFBP-3 itself, or pathways with which it interacts, should be investigated as targets of therapy for a variety of diseases.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Level 8, Kolling Building, St Leonards, NSW, 2065, Australia,
| |
Collapse
|
18
|
Nguyen DV, Calzi SL, Shaw LC, Kielczewski JL, Korah HE, Grant MB. An ocular view of the IGF-IGFBP system. Growth Horm IGF Res 2013; 23:45-52. [PMID: 23578754 PMCID: PMC3833084 DOI: 10.1016/j.ghir.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/28/2013] [Accepted: 03/13/2013] [Indexed: 01/16/2023]
Abstract
IGFs and their binding proteins have been shown to exhibit both protective and deleterious effects in ocular disease. Recent studies have characterized the expression patterns of different IGFBPs in retinal layers and within the vitreous. IGFBP-3 has roles in vascular protection stimulating proliferation, migration, and differentiation of vascular progenitor cells to sites of injury. IGFBP-3 increases pericyte ensheathment and shows anti-inflammatory effects by reducing microglia activation in diabetes. IGFBP-5 has recently been linked to mediating fibrosis in proliferative vitreoretinopathy but also reduces neovascularization. Thus, the regulatory balance between IGF and IGFBPs can have profound impact on target tissues. This review discusses recent findings of IGF and IGFBP expression in the eye with relevance to different retinopathies.
Collapse
|
19
|
Tikhonenko M, Lydic TA, Opreanu M, Li Calzi S, Bozack S, McSorley KM, Sochacki AL, Faber MS, Hazra S, Duclos S, Guberski D, Reid GE, Grant MB, Busik JV. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS One 2013; 8:e55177. [PMID: 23383097 PMCID: PMC3558503 DOI: 10.1371/journal.pone.0055177] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/19/2012] [Indexed: 11/23/2022] Open
Abstract
Objective The vasodegenerative phase of diabetic retinopathy is characterized by not only retinal vascular degeneration but also inadequate vascular repair due to compromised bone marrow derived endothelial progenitor cells (EPCs). We propose that n-3 polyunsaturated fatty acid (PUFA) deficiency in diabetes results in activation of the central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM) and that ASM represents a molecular metabolic link connecting the initial damage in the retina and the dysfunction of EPCs. Research Design and Methods Type 2 diabetic rats on control or docosahexaenoic acid (DHA)-rich diet were studied. The number of acellular capillaries in the retinas was assessed by trypsin digest. mRNA levels of interleukin (IL)-1β, IL-6, intracellular adhesion molecule (ICAM)-1 in the retinas from diabetic animals were compared to controls and ASM protein was assessed by western analysis. EPCs were isolated from blood and bone marrow and their numbers and ability to form colonies in vitro, ASM activity and lipid profiles were determined. Results DHA-rich diet prevented diabetes-induced increase in the number of retinal acellular capillaries and significantly enhanced the life span of type 2 diabetic animals. DHA-rich diet blocked upregulation of ASM and other inflammatory markers in diabetic retina and prevented the increase in ASM activity in EPCs, normalized the numbers of circulating EPCs and improved EPC colony formation. Conclusions In a type 2 diabetes animal model, DHA-rich diet fully prevented retinal vascular pathology through inhibition of ASM in both retina and EPCs, leading to a concomitant suppression of retinal inflammation and correction of EPC number and function.
Collapse
Affiliation(s)
- Maria Tikhonenko
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Madalina Opreanu
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergio Li Calzi
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, Florida, United States of America
| | - Svetlana Bozack
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Kelly M. McSorley
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrew L. Sochacki
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Matthew S. Faber
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Sugata Hazra
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, Florida, United States of America
| | - Shane Duclos
- Biomedical Research Models, Inc., Worcester, Massachusetts, United States of America
| | - Dennis Guberski
- Biomedical Research Models, Inc., Worcester, Massachusetts, United States of America
| | - Gavin E. Reid
- Department of Chemistry and Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Maria B. Grant
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, Florida, United States of America
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bhatwadekar AD, Yan Y, Qi X, Thinschmidt JS, Neu MB, Li Calzi S, Shaw LC, Dominiguez JM, Busik JV, Lee C, Boulton ME, Grant MB. Per2 mutation recapitulates the vascular phenotype of diabetes in the retina and bone marrow. Diabetes 2013; 62. [PMID: 23193187 PMCID: PMC3526035 DOI: 10.2337/db12-0172] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we assessed whether Per2 clock gene-mutant mice exhibit a vascular phenotype similar to diabetes. Per2 (B6.129-Per2(tm1Drw)/J) or wild-type control mice 4 and 12 months of age were used. To evaluate diabetes-like phenotype in Per2 mutant mice, retina was quantified for mRNA expression, and degree of diabetic retinopathy was evaluated. Bone marrow neuropathy was studied by staining femurs for tyrosine hydroxylase (TH) and neurofilament 200 (NF-200). The rate of proliferation and quantification of bone marrow progenitor cells (BMPCs) was performed, and a threefold decrease in proliferation and 50% reduction in nitric oxide levels were observed in Per2 mutant mice. TH-positive nerve processes and NF-200 staining were reduced in Per2 mutant mice. Both retinal protein and mRNA expression of endothelial nitric oxide synthase were decreased by twofold. Other endothelial function genes (VEGFR2, VEGFR1) were downregulated (1.5-2-fold) in Per2 mutant retinas, whereas there was an upregulation of profibrotic pathway mediated by transforming growth factor-β1. Our studies suggest that Per2 mutant mice recapitulate key aspects of diabetes without the metabolic abnormalities, including retinal vascular damage, neuronal loss in the bone marrow, and diminished BMPC function.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bharadwaj AS, Appukuttan B, Wilmarth PA, Pan Y, Stempel AJ, Chipps TJ, Benedetti EE, Zamora DO, Choi D, David LL, Smith JR. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013; 32:102-80. [PMID: 22982179 PMCID: PMC3679193 DOI: 10.1016/j.preteyeres.2012.08.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022]
Abstract
Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
Collapse
Affiliation(s)
| | | | - Phillip A. Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Yuzhen Pan
- Casey Eye Institute, Oregon Health & Science University
| | | | | | | | | | - Dongseok Choi
- Department of Public Health and Preventive Medicine, Oregon Health & Science University
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Justine R. Smith
- Casey Eye Institute, Oregon Health & Science University
- Department of Cell & Developmental Biology, Oregon Health & Science University
| |
Collapse
|
22
|
Zhang Q, Guy K, Pagadala J, Jiang Y, Walker RJ, Liu L, Soderland C, Kern TS, Ferry R, He H, Yates CR, Miller DD, Steinle JJ. Compound 49b prevents diabetes-induced apoptosis through increased IGFBP-3 levels. Invest Ophthalmol Vis Sci 2012; 53:3004-13. [PMID: 22467575 DOI: 10.1167/iovs.11-8779] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To determine whether Compound 49b, a novel PKA-activating drug, can prevent diabetic-like changes in the rat retina through increased insulin-like growth factor binding protein-3 (IGFBP-3) levels. METHODS For the cell culture studies, we used both human retinal endothelial cells (REC) and retinal Müller cells in either 5 mM (normal) or 25 mM (high) glucose. Cells were treated with 50 nM Compound 49b alone of following treatment with protein kinase A (PKA) siRNA or IGFBP-3 siRNA. Western blotting and ELISA analyses were done to verify PKA and IGFBP-3 knockdown, as well as to measure apoptotic markers. For animal studies, we used streptozotocin-treated rats after 2 and 8 months of diabetes. Some rats were treated topically with 1 mM Compound 49b. Analyses were done for retinal thickness, cell numbers in the ganglion cell layer, pericyte ghosts, and numbers of degenerate capillaries, as well as electroretinogram and heart morphology. RESULTS Compound 49b requires active PKA and IGFBP-3 to prevent apoptosis of REC. Compound 49b significantly reduced the numbers of degenerate capillaries and pericyte ghosts, while preventing the decreased retinal thickness and loss of cells in the ganglion cell layer. Compound 49b maintained a normal electroretinogram, with no changes in blood pressure, intraocular pressure, or heart morphological changes. CONCLUSIONS Topical Compound 49b is able to prevent diabetic-like changes in the rat retina, without producing systemic changes. Compound 49b is able to prevent REC apoptosis through increasing IGFBP-3 levels, which are reduced in response to hyperglycemia.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu YC, Buckner BR, Zhu M, Cavanagh HD, Robertson DM. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. Ocul Surf 2012; 10:100-7. [PMID: 22482470 DOI: 10.1016/j.jtos.2012.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 12/30/2022]
Abstract
To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real-time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes.
Collapse
Affiliation(s)
- Yu-Chieh Wu
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | | | | | |
Collapse
|