1
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Williams L, Larsen J. Nanoparticle-mediated delivery of non-viral gene editing technology to the brain. Prog Neurobiol 2024; 232:102547. [PMID: 38042249 PMCID: PMC10872436 DOI: 10.1016/j.pneurobio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Neurological disorders pose a significant burden on individuals and society, affecting millions worldwide. These disorders, including but not limited to Alzheimer's disease, Parkinson's disease, and Huntington's disease, often have limited treatment options and can lead to progressive degeneration and disability. Gene editing technologies, including Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR-Cas9), offer a promising avenue for potential cures by targeting and correcting the underlying genetic mutations responsible for neurologic disorders. However, efficient delivery methods are crucial for the successful application of gene editing technologies in the context of neurological disorders. The central nervous system presents unique challenges to treatment development due to the blood-brain barrier, which restricts the entry of large molecules. While viral vectors are traditionally used for gene delivery, nonviral delivery methods, such as nanoparticle-mediated delivery, offer safer alternatives that can efficiently transport gene editing components. Herein we aim to introduce the three main gene editing nucleases as nonviral treatments for neurologic disorders, the delivery barriers associated with brain targeting, and the current nonviral techniques used for brain-specific delivery. We highlight the challenges and opportunities for future research in this exciting and growing field that could lead to blood-brain barrier bypassing therapeutic gene editing.
Collapse
Affiliation(s)
- Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA; Department of Chemical Engineering, Clemson University, Clemson, SC 29631, USA.
| |
Collapse
|
3
|
Sundberg JP, Rice RH. Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet Pathol 2023; 60:829-842. [PMID: 37191004 DOI: 10.1177/03009858231170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The skin and adnexa can be difficult to interpret because they change dramatically with the hair cycle throughout life. However, a variety of methods are commonly available to collect skin and perform assays that can be useful for figuring out morphological and molecular changes. This overview provides information on basic approaches to evaluate skin and its molecular phenotype, with references for more detail, and interpretation of results on the skin and adnexa in the mouse. These approaches range from mouse genetic nomenclature, setting up a cutaneous phenotyping study, skin grafts, hair follicle reconstitution, wax stripping, electron microscopy, and Köbner reaction to very specific approaches such as lipid and protein analyses on a large scale.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
4
|
Clark B, Kuwalekar M, Fischer B, Woltering J, Biran J, Juntti S, Kratochwil CF, Santos ME, Almeida MV. Genome editing in East African cichlids and tilapias: state-of-the-art and future directions. Open Biol 2023; 13:230257. [PMID: 38018094 PMCID: PMC10685126 DOI: 10.1098/rsob.230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Muktai Kuwalekar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joost Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Baden-Württemberg 78457, Germany
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Scott Juntti
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Claudius F. Kratochwil
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | | | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Cheng YM, Ma C, Jin K, Jin ZB. Retinal organoid and gene editing for basic and translational research. Vision Res 2023; 210:108273. [PMID: 37307693 DOI: 10.1016/j.visres.2023.108273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The rapid evolution of two technologies has greatly transformed the basic, translational, and clinical research in the mammalian retina. One is the retinal organoid (RO) technology. Various induction methods have been created or adapted to generate species-specific, disease-specific, and experimental-targeted retinal organoids (ROs). The process of generating ROs can highly mimic the in vivo retinal development, and consequently, the ROs resemble the retina in many aspects including the molecular and cellular profiles. The other technology is the gene editing, represented by the classical CRISPR-Cas9 editing and its derivatives such as prime editing, homology independent targeted integration (HITI), base editing and others. The combination of ROs and gene editing has opened up countless possibilities in the study of retinal development, pathogenesis, and therapeutics. We review recent advances in the ROs, gene editing methodologies, delivery vectors, and related topics that are particularly relevant to retinal studies.
Collapse
Affiliation(s)
- You-Min Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Chao Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| |
Collapse
|
6
|
Phan HTL, Kim K, Lee H, Seong JK. Progress in and Prospects of Genome Editing Tools for Human Disease Model Development and Therapeutic Applications. Genes (Basel) 2023; 14:483. [PMID: 36833410 PMCID: PMC9957140 DOI: 10.3390/genes14020483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas, are widely accepted because of their diversity and enormous potential for targeted genomic modifications in eukaryotes and other animals. Moreover, rapid advances in genome editing tools have accelerated the ability to produce various genetically modified animal models for studying human diseases. Given the advances in gene editing tools, these animal models are gradually evolving toward mimicking human diseases through the introduction of human pathogenic mutations in their genome rather than the conventional gene knockout. In the present review, we summarize the current progress in and discuss the prospects for developing mouse models of human diseases and their therapeutic applications based on advances in the study of programmable nucleases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of diseases that affect more than 2 million people worldwide. Gene therapy (GT) has emerged as an exciting treatment modality with the potential to provide long-term benefit to patients. Today, gene addition is the most straightforward GT for autosomal recessive IRDs. However, there are three scenarios where this approach falls short. First, in autosomal dominant diseases caused by gain-of-function or dominant-negative mutations, the toxic mutated protein needs to be silenced. Second, a number of IRD genes exceed the limited carrying capacity of adeno-associated virus vectors. Third, there are still about 30% of patients with unknown mutations. In the first two contexts, precise editing tools, such as CRISPR-Cas9, base editors, or prime editors, are emerging as potential GT solutions for the treatment of IRDs. Here, we review gene editing tools based on CRISPR-Cas9 technology that have been used in vivo and the recent first-in-human application of CRISPR-Cas9 in an IRD.
Collapse
Affiliation(s)
- Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
8
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
9
|
Qiang W, Wei R, Chen Y, Chen D. Clinical Pathological Features and Current Animal Models of Type 3 Macular Neovascularization. Front Neurosci 2021; 15:734860. [PMID: 34512255 PMCID: PMC8427186 DOI: 10.3389/fnins.2021.734860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Type 3 macular neovascularization (MNV3), or retinal angiomatous proliferation (RAP), is a distinct type of neovascular age-related macular degeneration (AMD), which is a leading cause of vision loss in older persons. During the past decade, systematic investigation into the clinical, multimodal imaging, and histopathological features and therapeutic outcomes has provided important new insight into this disease. These studies favor the retinal origin of MNV3 and suggest the involvement of retinal hypoxia, inflammation, von Hippel–Lindau (VHL)–hypoxia-inducible factor (HIF)–vascular endothelial growth factor (VEGF) pathway, and multiple cell types in the development and progression of MNV3. Several mouse models, including the recently built Rb/p107/Vhl triple knockout mouse model by our group, have induced many of the histological features of MNV3 and provided much insight into the underlying pathological mechanisms. These models have revealed the roles of retinal hypoxia, inflammation, lipid metabolism, VHL/HIF pathway, and retinoblastoma tumor suppressor (Rb)–E2F cell cycle pathway in the development of MNV3. This article will summarize the clinical, multimodal imaging, and pathological features of MNV3 and the diversity of animal models that exist for MNV3, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Sterling N, Duncan AR, Park R, Koolen DA, Shi J, Cho SH, Benke PJ, Grant PE, Genetti CA, VanNoy GE, Juusola J, McWalter K, Parboosingh JS, Lamont RE, Bernier FP, Smith C, Harris DJ, Stegmann APA, Innes AM, Kim S, Agrawal PB. De novo variants in MPP5 cause global developmental delay and behavioral changes. Hum Mol Genet 2021; 29:3388-3401. [PMID: 33073849 DOI: 10.1093/hmg/ddaa224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/27/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein essential for cell polarity, fate and survival. Defects in cell polarity are associated with neurologic disorders including autism and microcephaly. MPP5 is essential for neurogenesis in animal models, but human variants leading to neurologic impairment have not been described. We identified three patients with heterozygous MPP5 de novo variants (DNV) and global developmental delay (GDD) and compared their phenotypes and magnetic resonance imaging (MRI) to ascertain how MPP5 DNV leads to GDD. All three patients with MPP5 DNV experienced GDD with language delay/regression and behavioral changes. MRI ranged from normal to decreased gyral folding and microcephaly. The effects of MPP5 depletion on the developing brain were assessed by creating a heterozygous conditional knock out (het CKO) murine model with central nervous system (CNS)-specific Nestin-Cre drivers. In the het CKO model, Mpp5 depletion led to microcephaly, decreased cerebellar volume and cortical thickness. Het CKO mice had decreased ependymal cells and Mpp5 at the apical surface of cortical ventricular zone compared with wild type. Het CKO mice also failed to maintain progenitor pools essential for neurogenesis. The proportion of cortical cells undergoing apoptotic cell death increased, suggesting that cell death reduces progenitor population and neuron number. Het CKO mice also showed behavioral changes, similar to our patients. To our knowledge, this is the first report to show that variants in MPP5 are associated with GDD, behavioral abnormalities and language regression/delay. Murine modeling shows that neurogenesis is likely altered in these individuals, with cell death and skewed cellular composition playing significant roles.
Collapse
Affiliation(s)
- Noelle Sterling
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - Anna R Duncan
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Raehee Park
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Seo-Hee Cho
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - Paul J Benke
- Division of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL 33021, USA
| | - Patricia E Grant
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Casie A Genetti
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Grace E VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jane Juusola
- Clinical Genomics Program, GeneDx, Gaithersburg, MD 20877, USA
| | - Kirsty McWalter
- Clinical Genomics Program, GeneDx, Gaithersburg, MD 20877, USA
| | - Jillian S Parboosingh
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Ryan E Lamont
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Francois P Bernier
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Christopher Smith
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - David J Harris
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1A4, Canada
| | - Seonhee Kim
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine. Temple University, Philadelphia, PA, 19140, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
11
|
Abstract
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) was developed in 2006 and represented a major breakthrough in stem cell research. A more recent milestone in biomedical research was reached in 2013 when the CRISPR/Cas9 system was used to edit the genome of mammalian cells. The coupling of both human (h)iPSCs and CRISPR/Cas9 technology offers great promise for cell therapy and regenerative medicine. However, several limitations including time and labor consumption, efficiency and efficacy of the system, and the potential off-targets effects induced by the Cas9 nuclease still need to be addressed. Here, we describe a detailed method for easily engineering genetic changes in hiPSCs, using a nucleofection-mediated protocol to deliver the CRISPR/Cas9 components into the cells, and discuss key points to be considered when designing your experiment. The clonal, genome-edited hiPSC line generated via our method can be directly used for downstream applications.
Collapse
|
12
|
Teboul L, Herault Y, Wells S, Qasim W, Pavlovic G. Variability in Genome Editing Outcomes: Challenges for Research Reproducibility and Clinical Safety. Mol Ther 2020; 28:1422-1431. [PMID: 32243835 PMCID: PMC7264426 DOI: 10.1016/j.ymthe.2020.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome editing tools have already revolutionized biomedical research and are also expected to have an important impact in the clinic. However, their extensive use in research has revealed much unpredictability, both off and on target, in the outcome of their application. We discuss the challenges associated with this unpredictability, both for research and in the clinic. For the former, an extensive validation of the model is essential. For the latter, potential unpredicted activity does not preclude the use of these tools but requires that molecular evidence to underpin the relevant risk:benefit evaluation is available. Safe and successful clinical application will also depend on the mode of delivery and the cellular context.
Collapse
Affiliation(s)
- Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Campus, Didcot OX11 0RD, Oxon, UK.
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-Institut Clinique de la Souris, Celphedia, Strasbourg 67404, France
| | - Sara Wells
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Campus, Didcot OX11 0RD, Oxon, UK
| | - Waseem Qasim
- Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK.
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-Institut Clinique de la Souris, Celphedia, Strasbourg 67404, France.
| |
Collapse
|
13
|
Farooq R, Hussain K, Tariq M, Farooq A, Mustafa M. CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. J Appl Genet 2020; 61:51-65. [PMID: 31912450 DOI: 10.1007/s13353-019-00535-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Hereditary hearing loss (HHL) is a neurosensory disorder that affects every 1/500 newborns worldwide and nearly 1/3 people over the age of 65. Congenital deafness is inherited as monogenetic or polygenic disorder. The delicacy, tissue heterogeneity, deep location of the inner ear down the brainstem, and minute quantity of cells present in cochlea are the major challenges for current therapeutic approaches to cure deafness. Targeted genome editing is considered a suitable approach to treat HHL since it can target defective molecular components of auditory transduction to restore normal cochlear function. With the advent of CRISPR/Cas9 technique, targeted genome editing and biomedical research have been revolutionized. The robustness and simplicity of this technology lie in its design and delivery methods. It can directly deliver a complex of Cas9 endonuclease and single guide RNA (sgRNA) into zygote using either vector-mediated stable transfection or transient delivery of ribonucleoproteins complexes. This strategy induces DNA double strand breaks (DSBs) at target site followed by endogenous DNA repairing mechanisms of the cell. CRISPR/Cas9 has been successfully used in model animals to edit hearing genes like calcium and integrin-binding protein 2, myosin VIIA, Xin-actin binding repeat containing 2, leucine-zipper and sterile-alpha motif kinase Zak, epiphycan, transmembrane channel-like protein 1, and cadherin 23. This review discusses the utility of lipid-mediated transient delivery of Cas9/sgRNA complexes, an efficient way to restore hearing in humans, suffering from HHL. Notwithstanding, challenges like PAM requirement, HDR efficiency, off-target activity, and optimized delivery systems need to be addressed.
Collapse
Affiliation(s)
- Rimsha Farooq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.,Department of Biological Sciences, Forman Christian College University Lahore, Lahore, Pakistan
| | - Khadim Hussain
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering (NIBGE) College Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ali Farooq
- Primary and Secondary Healthcare Department, Lahore, Government of Punjab, Pakistan
| | - Muhammad Mustafa
- Department of Biological Sciences, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Félix AJ, Ciudad CJ, Noé V. Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:683-695. [PMID: 31945727 PMCID: PMC6965513 DOI: 10.1016/j.omtn.2019.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023]
Abstract
In this study, we describe the correction of single-point mutations in mammalian cells by repair-polypurine reverse Hoogsteen hairpins (repair-PPRHs). These molecules consist of (1) a PPRH hairpin core that binds to a polypyrimidine target sequence in the double-stranded DNA (dsDNA), producing a triplex structure, and (2) an extension sequence homologous to the DNA sequence to be repaired but containing the wild-type nucleotide instead of the mutation and acting as a donor DNA to correct the mutation. We repaired different point mutations in the adenosyl phosphoribosyl transferase (aprt) gene contained in different aprt-deficient Chinese hamster ovary (CHO) cell lines. Because we had previously corrected mutations in the dihydrofolate reductase (dhfr) gene, in this study, we demonstrate the generality of action of the repair-PPRHs. Repaired cells were analyzed by DNA sequencing, mRNA expression, and enzymatic activity to confirm the correction of the mutation. Moreover, whole-genome sequencing analyses did not detect any off-target effect in the repaired genome. We also performed gel-shift assays to show the binding of the repair-PPRH to the target sequence and the formation of a displacement-loop (D-loop) structure that can trigger a homologous recombination event. Overall, we demonstrate that repair-PPRHs achieve the permanent correction of point mutations in the dsDNA at the endogenous level in mammalian cells without off-target activity.
Collapse
Affiliation(s)
- Alex J Félix
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute for Nanoscience and Nanotechnology IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute for Nanoscience and Nanotechnology IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute for Nanoscience and Nanotechnology IN2UB, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Vázquez-Domínguez I, Garanto A, Collin RWJ. Molecular Therapies for Inherited Retinal Diseases-Current Standing, Opportunities and Challenges. Genes (Basel) 2019; 10:genes10090654. [PMID: 31466352 PMCID: PMC6770110 DOI: 10.3390/genes10090654] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal diseases (IRDs) are both genetically and clinically highly heterogeneous and have long been considered incurable. Following the successful development of a gene augmentation therapy for biallelic RPE65-associated IRD, this view has changed. As a result, many different therapeutic approaches are currently being developed, in particular a large variety of molecular therapies. These are depending on the severity of the retinal degeneration, knowledge of the pathophysiological mechanism underlying each subtype of IRD, and the therapeutic target molecule. DNA therapies include approaches such as gene augmentation therapy, genome editing and optogenetics. For some genetic subtypes of IRD, RNA therapies and compound therapies have also shown considerable therapeutic potential. In this review, we summarize the current state-of-the-art of various therapeutic approaches, including the pros and cons of each strategy, and outline the future challenges that lie ahead in the combat against IRDs.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
16
|
|
17
|
Chang B, FitzMaurice B, Wang J, Low BE, Wiles MV, Nishina PM. Spontaneous Posterior Segment Vascular Disease Phenotype of a Mouse Model, rnv3, Is Dependent on the Crb1rd8 Allele. Invest Ophthalmol Vis Sci 2019; 59:5127-5139. [PMID: 30372741 PMCID: PMC6203173 DOI: 10.1167/iovs.18-25046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To determine the molecular basis of lesion development in a murine model of spontaneous retinal vascularization, rnv3 (retinal vascularization 3, aka JR5558). Methods Disease progression of rnv3 was examined in longitudinal studies by clinical evaluation, electroretinography (ERG) and light microscopy analyses. The chromosomal position for the recessive rnv3 mutation was determined by DNA pooling and genome-wide linkage analysis. The causative mutation was discovered by comparison of whole exome sequences of rnv3 mutant and wild-type (WT) controls. In order to confirm the causative mutation, transcription activator-like effector nuclease (TALEN)-mediated oligonucleotide directed repair (ODR) was utilized to correct the mutant allele. Phenotypic correction was assessed by fundus imaging and optical coherence tomography of live mice. Results rnv3 exhibits early-onset, multifocal depigmented retinal lesions observable by fundus examination starting at 18 days of age. The retinal lesions are associated with fluorescein leakage around 25 days of age, with peak leakage at about 4 weeks of age. ERG responses deteriorate as rnv3 mutants age, concomitant with progressive photoreceptor disruption and loss that is observable by histology. Genetic analysis localized rnv3 to mouse chromosome (Chr) 1. By high throughput sequencing of a whole exome capture library of a rnv3/rnv3 mutant and subsequent sequence analysis, a single base deletion (del) in the Crb1 [crumbs family member 1] gene, which was previously reported to cause retinal degeneration 8, was identified. The TALEN-mediated ODR rescued the posterior segment vascularization phenotype; heterozygous Crb1rd8+em1Boc/Crb1rd8 and homozygous Crb1rd8+em1Boc/Crb1rd8+em1Boc mice showed a normal retinal phenotype. Additionally, six novel disruptions of Crb1 that were generated through aberrant non-homologous end joining induced by TALEN exhibited variable levels of vascularization, suggesting allelic effects. Conclusions The rnv3 model and the models of six novel disruptions of Crb1 are all reliable, novel mouse models for the study of both early and late events associated with posterior segment vascularization and can also be used to test the effects of pharmacological targets for treating human ocular vascular disorders. Further study of these models may provide a greater understanding about how different Crb1 alleles result in aberrant angiogenesis.
Collapse
Affiliation(s)
- Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | | | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Benjamin E Low
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | | | | |
Collapse
|
18
|
Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68:31-53. [DOI: 10.1016/j.preteyeres.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
|
19
|
Moore BA, Leonard BC, Sebbag L, Edwards SG, Cooper A, Imai DM, Straiton E, Santos L, Reilly C, Griffey SM, Bower L, Clary D, Mason J, Roux MJ, Meziane H, Herault Y, McKerlie C, Flenniken AM, Nutter LMJ, Berberovic Z, Owen C, Newbigging S, Adissu H, Eskandarian M, Hsu CW, Kalaga S, Udensi U, Asomugha C, Bohat R, Gallegos JJ, Seavitt JR, Heaney JD, Beaudet AL, Dickinson ME, Justice MJ, Philip V, Kumar V, Svenson KL, Braun RE, Wells S, Cater H, Stewart M, Clementson-Mobbs S, Joynson R, Gao X, Suzuki T, Wakana S, Smedley D, Seong JK, Tocchini-Valentini G, Moore M, Fletcher C, Karp N, Ramirez-Solis R, White JK, de Angelis MH, Wurst W, Thomasy SM, Flicek P, Parkinson H, Brown SDM, Meehan TF, Nishina PM, Murray SA, Krebs MP, Mallon AM, Lloyd KCK, Murphy CJ, Moshiri A. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun Biol 2018; 1:236. [PMID: 30588515 PMCID: PMC6303268 DOI: 10.1038/s42003-018-0226-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease. Bret Moore et al. from the International Mouse Phenotyping Consortium report the identification of 347 mouse genes that influence ocular phenotypes when knocked out. 75% of the identified genes have not previously been associated with any ocular pathology.
Collapse
Affiliation(s)
- Bret A Moore
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lionel Sebbag
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Sydney G Edwards
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Ann Cooper
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ewan Straiton
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Luis Santos
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Christopher Reilly
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lynette Bower
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - David Clary
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Hamid Meziane
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | | | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Celeste Owen
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Hibret Adissu
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mohammed Eskandarian
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Uchechukwu Udensi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ritu Bohat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juan J Gallegos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica J Justice
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vivek Philip
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Sara Wells
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Michelle Stewart
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Sharon Clementson-Mobbs
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Russell Joynson
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | | | | | - Damian Smedley
- Clinical Pharmacology, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - J K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Glauco Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, I-00015, Monterotondo Scalo, Italy
| | - Mark Moore
- International Mouse Phenotyping Consortium, San Anselmo, CA, 94960, USA
| | | | - Natasha Karp
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ramiro Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | | | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - K C Kent Lloyd
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA. .,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
20
|
Codner GF, Mianné J, Caulder A, Loeffler J, Fell R, King R, Allan AJ, Mackenzie M, Pike FJ, McCabe CV, Christou S, Joynson S, Hutchison M, Stewart ME, Kumar S, Simon MM, Agius L, Anstee QM, Volynski KE, Kullmann DM, Wells S, Teboul L. Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol 2018; 16:70. [PMID: 29925374 PMCID: PMC6011369 DOI: 10.1186/s12915-018-0530-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 01/22/2023] Open
Abstract
Background Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing have led to the use of long single-stranded DNA (lssDNA) molecules for generating conditional mutations. However, there is still limited available data on the efficiency and reliability of this method. Results We generated conditional mouse alleles using lssDNA donor templates and performed extensive characterization of the resulting mutations. We observed that the use of lssDNA molecules as donors efficiently yielded founders bearing the conditional allele, with seven out of nine projects giving rise to modified alleles. However, rearranged alleles including nucleotide changes, indels, local rearrangements and additional integrations were also frequently generated by this method. Specifically, we found that alleles containing unexpected point mutations were found in three of the nine projects analyzed. Alleles originating from illegitimate repairs or partial integration of the donor were detected in eight projects. Furthermore, additional integrations of donor molecules were identified in four out of the seven projects analyzed by copy counting. This highlighted the requirement for a thorough allele validation by polymerase chain reaction, sequencing and copy counting of the mice generated through this method. We also demonstrated the feasibility of using lssDNA donors to generate thus far problematic point mutations distant from active CRISPR cutting sites by targeting two distinct genes (Gckr and Rims1). We propose a strategy to perform extensive quality control and validation of both types of mouse models generated using lssDNA donors. Conclusion lssDNA donors reproducibly generate conditional alleles and can be used to introduce point mutations away from CRISPR/Cas9 cutting sites in mice. However, our work demonstrates that thorough quality control of new models is essential prior to reliably experimenting with mice generated by this method. These advances in genome editing techniques shift the challenge of mutagenesis from generation to the validation of new mutant models. Electronic supplementary material The online version of this article (10.1186/s12915-018-0530-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Joffrey Mianné
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Jorik Loeffler
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Rachel Fell
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Ruairidh King
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Alasdair J Allan
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Matthew Mackenzie
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Fran J Pike
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | | | | | - Sam Joynson
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Marie Hutchison
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | | | - Saumya Kumar
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Michelle M Simon
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Loranne Agius
- Institute of Cellular Medicine and Ageing and Health, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Quentin M Anstee
- Institute of Cellular Medicine and Ageing and Health, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Kirill E Volynski
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK.
| |
Collapse
|
21
|
Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy. Neural Plast 2018; 2018:5056279. [PMID: 29853845 PMCID: PMC5964415 DOI: 10.1155/2018/5056279] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a leading cause of visual impairment in the developing world. These conditions present an irreversible dysfunction or loss of neural retinal cells, which significantly impacts quality of life. Due to the anatomical accessibility and immunoprivileged status of the eye, ophthalmological research has been at the forefront of innovative and advanced gene- and cell-based therapies, both of which represent great potential as therapeutic treatments for IRD patients. However, due to a genetic and clinical heterogeneity, certain IRDs are not candidates for these approaches. New advances in the field of genome editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) have provided an accurate and efficient way to edit the human genome and represent an appealing alternative for treating IRDs. We provide a brief update on current gene augmentation therapies for retinal dystrophies. Furthermore, we discuss recent advances in the field of genome editing and stem cell technologies, which together enable precise and personalized therapies for patients. Lastly, we highlight current technological limitations and barriers that need to be overcome before this technology can become a viable treatment option for patients.
Collapse
|
22
|
Schofield PN, Ward JM, Sundberg JP. Show and tell: disclosure and data sharing in experimental pathology. Dis Model Mech 2017; 9:601-5. [PMID: 27483498 PMCID: PMC4920154 DOI: 10.1242/dmm.026054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reproducibility of data from experimental investigations using animal models is increasingly under scrutiny because of the potentially negative impact of poor reproducibility on the translation of basic research. Histopathology is a key tool in biomedical research, in particular for the phenotyping of animal models to provide insights into the pathobiology of diseases. Failure to disclose and share crucial histopathological experimental details compromises the validity of the review process and reliability of the conclusions. We discuss factors that affect the interpretation and validation of histopathology data in publications and the importance of making these data accessible to promote replicability in research. Summary: Reproducibility of findings in experiments using model organisms has recently become a source of concern, particularly for translational science. We discuss factors affecting the interpretation and reliability of experimental pathology findings in the mouse, and how disclosure and transparent reporting are crucial for replicability.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
23
|
CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING. Retina 2017; 37:417-423. [PMID: 27753762 DOI: 10.1097/iae.0000000000001341] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. METHODS A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. RESULTS Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. CONCLUSION Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Collapse
|
24
|
Krebs MP. Using Vascular Landmarks to Orient 3D Optical Coherence Tomography Images of the Mouse Eye. ACTA ACUST UNITED AC 2017; 7:176-190. [PMID: 28884793 DOI: 10.1002/cpmo.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Comparing 3D structural information obtained by optical coherence tomography (OCT) requires accurate alignment of images acquired from individual subjects. Despite the widespread use of OCT to image the anterior and posterior mouse eye, few approaches to align the resulting image data have been described, in part due to a lack of well-characterized landmarks that are suitable for alignment. Here, we provide an OCT acquisition and analysis protocol that incorporates the use of the long posterior ciliary arteries as landmarks. In mammals, these two large choroidal vessels lie in a plane approximately parallel to the horizon. Our OCT imaging approach resolves these vessels in the mouse eye and suggests that their location is reproducible. The protocol may be useful for preparing 3D OCT data to compare experimental cohorts of mice and for standardizing results from independent research laboratories. © 2017 by John Wiley & Sons, Inc.
Collapse
|
25
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
26
|
Ledford KL, Martinez-De Luna RI, Theisen MA, Rawlins KD, Viczian AS, Zuber ME. Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation. Dev Biol 2017; 426:418-428. [PMID: 28438336 PMCID: PMC5500183 DOI: 10.1016/j.ydbio.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
The eye field transcription factor, Six6, is essential for both the early (specification and proliferative growth) phase of eye formation, as well as for normal retinal progenitor cell differentiation. While genomic regions driving six6 optic cup expression have been described, the sequences controlling eye field and optic vesicle expression are unknown. Two evolutionary conserved regions 5' and a third 3' to the six6 coding region were identified, and together they faithfully replicate the endogenous X. laevis six6 expression pattern. Transgenic lines were generated and used to determine the onset and expression patterns controlled by the regulatory regions. The conserved 3' region was necessary and sufficient for eye field and optic vesicle expression. In contrast, the two conserved enhancer regions located 5' of the coding sequence were required together for normal optic cup and mature retinal expression. Gain-of-function experiments indicate endogenous six6 and GFP expression in F1 transgenic embryos are similarly regulated in response to candidate trans-acting factors. Importantly, CRISPR/CAS9-mediated deletion of the 3' eye field/optic vesicle enhancer in X. laevis, resulted in a reduction in optic vesicle size. These results identify the cis-acting regions, demonstrate the modular nature of the elements controlling early versus late retinal expression, and identify potential regulators of six6 expression during the early stages of eye formation.
Collapse
Affiliation(s)
- Kelley L Ledford
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Reyna I Martinez-De Luna
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Matthew A Theisen
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Karisa D Rawlins
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Andrea S Viczian
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States.
| | - Michael E Zuber
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
27
|
Fernández A, Josa S, Montoliu L. A history of genome editing in mammals. Mamm Genome 2017; 28:237-246. [DOI: 10.1007/s00335-017-9699-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/31/2017] [Indexed: 12/28/2022]
|
28
|
Mianné J, Codner GF, Caulder A, Fell R, Hutchison M, King R, Stewart ME, Wells S, Teboul L. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods 2017; 121-122:68-76. [PMID: 28363792 DOI: 10.1016/j.ymeth.2017.03.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
The application of CRISPR/Cas9 technology has revolutionised genetics by greatly enhancing the efficacy of genome editing in the early embryo. Furthermore, the system has enabled the generation of allele types previously incompatible with in vivo mutagenesis. Despite its versatility and ease of implementation, CRISPR/Cas9 editing outcome is unpredictable and can generate mosaic founders. Therefore, careful genotyping and characterisation of new mutants is proving essential. The literature presents a wide range of protocols for molecular characterisation, each representing different levels of investment. We present strategies and protocols for designing, producing and screening CRISPR/Cas9 edited founders and genotyping their offspring according to desired allele type (indel, point mutation and deletion).
Collapse
Affiliation(s)
- Joffrey Mianné
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Rachel Fell
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Marie Hutchison
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Ruairidh King
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | | | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK.
| |
Collapse
|
29
|
Abstract
Genome editing allows for the versatile genetic modification of somatic cells, germ cells and embryos. In particular, CRISPR/Cas9 is worldwide used in biomedical research. Although the first report on Cas9-mediated gene modification in human embryos focused on the prevention of a genetic disease in offspring, it raised profound ethical and social concerns over the safety of subsequent generations and the potential misuse of genome editing for human enhancement. The present article considers germ line genome editing approaches from various clinical and ethical viewpoints and explores its objectives. The risks and benefits of the following three likely objectives are assessed: the prevention of monogenic diseases, personalized assisted reproductive technology (ART) and genetic enhancement. Although genetic enhancement should be avoided, the international regulatory landscape suggests the inevitability of this misuse at ART centers. Under these circumstances, possible regulatory responses and the potential roles of public dialogue are discussed.
Collapse
|
30
|
Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: An update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:349-366. [PMID: 27862925 DOI: 10.1002/ajmg.c.31534] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal degenerations present a unique challenge as disease progression is irreversible and the retina has little regenerative potential. No current treatments for inherited retinal disease have the ability to reverse blindness, and current dietary supplement recommendations only delay disease progression with varied results. However, the retina is anatomically accessible and capable of being monitored at high resolution in vivo. This, in addition to the immune-privileged status of the eye, has put ocular disease at the forefront of advances in gene- and cell-based therapies. This review provides an update on gene therapies and randomized control trials for inherited retinal disease, including Leber congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, X-linked retinoschisis, Leber hereditary optic neuropathy, and achromatopsia. New gene-modifying and cell-based strategies are also discussed. © 2016 Wiley Periodicals, Inc.
Collapse
|
31
|
In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Prog Retin Eye Res 2016; 56:1-18. [PMID: 27623223 DOI: 10.1016/j.preteyeres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
In vivo genome editing represents an emerging field in the treatment of monogenic disorders, as it may constitute a solution to the current hurdles in classic gene addition therapy, which are the low levels and limited duration of transgene expression. Following the introduction of a double strand break (DSB) at the mutational site by highly specific endonucleases, such as TALENs (transcription activator like effector nucleases) or RNA based nucleases (clustered regulatory interspaced short palindromic repeats - CRISPR-Cas), the cell's own DNA repair machinery restores integrity to the DNA strand and corrects the mutant sequence, thus allowing the cell to produce protein levels as needed. The DNA repair happens either through the error prone non-homologous end-joining (NHEJ) pathway or with high fidelity through homology directed repair (HDR) in the presence of a DNA donor template. A third pathway called microhomology mediated endjoining (MMEJ) has been recently discovered. In this review, the authors focus on the different DNA repair mechanisms, the current state of the art tools for genome editing and the particularities of the retina and photoreceptors with regard to in vivo therapeutic approaches. Finally, current attempts in the field of retinal in vivo genome editing are discussed and future directions of research identified.
Collapse
|
32
|
Rocha-Martins M, Cavalheiro GR, Matos-Rodrigues GE, Martins RAP. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond. AN ACAD BRAS CIENC 2016; 87:1323-48. [PMID: 26397828 DOI: 10.1590/0001-3765201520140710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR) has been the standard method to modify genomic sequences. Nevertheless, nuclease-guided genome editing methods that were developed recently, such as ZFN, TALEN and CRISPR/Cas, opened new perspectives for biomedical research. Here, we present a brief historical perspective of genome modification methods, focusing on transgenic mice models. Moreover, we describe how new techniques were discovered and improved, present the paradigm shifts and discuss their limitations and applications for biomedical research as well as possible future directions.
Collapse
Affiliation(s)
- Maurício Rocha-Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Gabriel R Cavalheiro
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | | | - Rodrigo A P Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|
33
|
Dando SJ, Naranjo Golborne C, Chinnery HR, Ruitenberg MJ, McMenamin PG. A case of mistaken identity: CD11c-eYFP(+) cells in the normal mouse brain parenchyma and neural retina display the phenotype of microglia, not dendritic cells. Glia 2016; 64:1331-49. [PMID: 27189804 DOI: 10.1002/glia.23005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Under steady-state conditions the central nervous system (CNS) is traditionally thought to be devoid of antigen presenting cells; however, putative dendritic cells (DCs) expressing enhanced yellow fluorescent protein (eYFP) are present in the retina and brain parenchyma of CD11c-eYFP mice. We previously showed that these mice carry the Crb1(rd8) mutation, which causes retinal dystrophic lesions; therefore we hypothesized that the presence of CD11c-eYFP(+) cells within the CNS may be due to pathology associated with the Crb1(rd8) mutation. We generated CD11c-eYFP Crb1(wt/wt) mice and compared the distribution and immunophenotype of CD11c-eYFP(+) cells in CD11c-eYFP mice with and without the Crb1(rd8) mutation. The number and distribution of CD11c-eYFP(+) cells in the CNS was similar between CD11c-eYFP Crb1(wt/wt) and CD11c-eYFP Crb1(rd8/rd8) mice. CD11c-eYFP(+) cells were distributed throughout the inner retina, and clustered in brain regions that receive input from the external environment or lack a blood-brain barrier. CD11c-eYFP(+) cells within the retina and cerebral cortex of CD11c-eYFP Crb1(wt/wt) mice expressed CD11b, F4/80, CD115 and Iba-1, but not DC or antigen presentation markers, whereas CD11c-eYFP(+) cells within the choroid plexus and pia mater expressed CD11c, I-A/I-E, CD80, CD86, CD103, DEC205, CD8α and CD135. The immunophenotype of CD11c-eYFP(+) cells and microglia within the CNS was similar between CD11c-eYFP Crb1(wt/wt) and CD11c-eYFP Crb1(rd8/rd8) mice; however, CD11c and I-A/I-E expression was significantly increased in CD11c-eYFP Crb1(rd8/rd8) mice. This study demonstrates that the overwhelming majority of CNS CD11c-eYFP(+) cells do not display the phenotype of DCs or their precursors and are most likely a subpopulation of microglia. GLIA 2016. GLIA 2016;64:1331-1349.
Collapse
Affiliation(s)
- Samantha J Dando
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cecilia Naranjo Golborne
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, the University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Raikwar SP, Raikwar AS, Chaurasia SS, Mohan RR. Gene editing for corneal disease management. World J Transl Med 2016; 5:1-13. [PMID: 35757280 PMCID: PMC9221704 DOI: 10.5528/wjtm.v5.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders. Recent advances in the molecular biology leading to the development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated systems, zinc finger nucleases and transcription activator like effector nucleases have ushered in a new era for high throughput in vitro and in vivo genome engineering. Genome editing can be successfully used to decipher complex molecular mechanisms underlying disease pathophysiology, develop innovative next generation gene therapy, stem cell-based regenerative therapy, and personalized medicine for corneal and other ocular diseases. In this review we describe latest developments in the field of genome editing, current challenges, and future prospects for the development of personalized gene-based medicine for corneal diseases. The gene editing approach is expected to revolutionize current diagnostic and treatment practices for curing blindness.
Collapse
|
35
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
36
|
Mianné J, Chessum L, Kumar S, Aguilar C, Codner G, Hutchison M, Parker A, Mallon AM, Wells S, Simon MM, Teboul L, Brown SDM, Bowl MR. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med 2016; 8:16. [PMID: 26876963 PMCID: PMC4753642 DOI: 10.1186/s13073-016-0273-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/26/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nuclease-based technologies have been developed that enable targeting of specific DNA sequences directly in the zygote. These approaches provide an opportunity to modify the genomes of inbred mice, and allow the removal of strain-specific mutations that confound phenotypic assessment. One such mutation is the Cdh23 (ahl) allele, present in several commonly used inbred mouse strains, which predisposes to age-related progressive hearing loss. RESULTS We have used targeted CRISPR/Cas9-mediated homology directed repair (HDR) to correct the Cdh23 (ahl) allele directly in C57BL/6NTac zygotes. Employing offset-nicking Cas9 (D10A) nickase with paired RNA guides and a single-stranded oligonucleotide donor template we show that allele repair was successfully achieved. To investigate potential Cas9-mediated 'off-target' mutations in our corrected mouse, we undertook whole-genome sequencing and assessed the 'off-target' sites predicted for the guide RNAs (≤4 nucleotide mis-matches). No induced sequence changes were identified at any of these sites. Correction of the progressive hearing loss phenotype was demonstrated using auditory-evoked brainstem response testing of mice at 24 and 36 weeks of age, and rescue of the progressive loss of sensory hair cell stereocilia bundles was confirmed using scanning electron microscopy of dissected cochleae from 36-week-old mice. CONCLUSIONS CRISPR/Cas9-mediated HDR has been successfully utilised to efficiently correct the Cdh23 (ahl) allele in C57BL/6NTac mice, and rescue the associated auditory phenotype. The corrected mice described in this report will allow age-related auditory phenotyping studies to be undertaken using C57BL/6NTac-derived models, such as those generated by the International Mouse Phenotyping Consortium (IMPC) programme.
Collapse
Affiliation(s)
- Joffrey Mianné
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Lauren Chessum
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Saumya Kumar
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Gemma Codner
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Ann-Marie Mallon
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Michelle M Simon
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell, Harwell, Oxford, OX11 0RD, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK.
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell, Harwell, Oxford, OX11 0RD, UK.
| |
Collapse
|
37
|
Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Krebs MP, Xiao M, Sheppard K, Hicks W, Nishina PM. Bright-Field Imaging and Optical Coherence Tomography of the Mouse Posterior Eye. Methods Mol Biol 2016; 1438:395-415. [PMID: 27150100 DOI: 10.1007/978-1-4939-3661-8_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Noninvasive live imaging has been used extensively for ocular phenotyping in mouse vision research. Bright-field imaging and optical coherence tomography (OCT) are two methods that are particularly useful for assessing the posterior mouse eye (fundus), including the retina, retinal pigment epithelium, and choroid, and are widely applied due to the commercial availability of sophisticated instruments and software. Here, we provide a guide to using these approaches with an emphasis on post-acquisition image processing using Fiji, a bundled version of the Java-based public domain software ImageJ. A bright-field fundus imaging protocol is described for acquisition of multi-frame videos, followed by image registration to reduce motion artifacts, averaging to reduce noise, shading correction to compensate for uneven illumination, filtering to improve image detail, and rotation to adjust orientation. An OCT imaging protocol is described for acquiring replicate volume scans, with subsequent registration and averaging to yield three-dimensional datasets that show reduced motion artifacts and enhanced detail. The Fiji algorithms used in these protocols are designed for batch processing and are freely available. The image acquisition and processing approaches described here may facilitate quantitative phenotyping of the mouse eye in drug discovery, mutagenesis screening, and the functional cataloging of mouse genes by individual laboratories and large-scale projects, such as the Knockout Mouse Phenotyping Project and International Mouse Phenotyping Consortium.
Collapse
Affiliation(s)
- Mark P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Mei Xiao
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Keith Sheppard
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Wanda Hicks
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Patsy M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
39
|
Sundberg JP, Silva KA, King LE, Pratt CH. Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening. Methods Mol Biol 2016; 1438:199-224. [PMID: 27150092 PMCID: PMC5301944 DOI: 10.1007/978-1-4939-3661-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
A large variety of mouse models for human skin, hair, and nail diseases are readily available from investigators and vendors worldwide. Mouse skin is a simple organ to observe lesions and their response to therapy, but identifying and monitoring the progress of treatments of mouse skin diseases can still be challenging. This chapter provides an overview on how to use the laboratory mouse as a preclinical tool to evaluate efficacy of new compounds or test potential new uses for compounds approved for use for treating an unrelated disease. Basic approaches to handling mice, applying compounds, and quantifying effects of the treatment are presented.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA.
| | - Kathleen A Silva
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA
| | - Lloyd E King
- Division of Dermatology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - C Herbert Pratt
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA
| |
Collapse
|
40
|
Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nat Genet 2015; 48:144-51. [PMID: 26691986 PMCID: PMC4787620 DOI: 10.1038/ng.3474] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/25/2015] [Indexed: 11/11/2022]
Abstract
Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease.
Collapse
|
41
|
Collin GB, Hubmacher D, Charette JR, Hicks WL, Stone L, Yu M, Naggert JK, Krebs MP, Peachey NS, Apte SS, Nishina PM. Disruption of murine Adamtsl4 results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation. Hum Mol Genet 2015; 24:6958-74. [PMID: 26405179 DOI: 10.1093/hmg/ddv399] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
Human gene mutations have revealed that a significant number of ADAMTS (a disintegrin-like and metalloproteinase (reprolysin type) with thrombospondin type 1 motifs) proteins are necessary for normal ocular development and eye function. Mutations in human ADAMTSL4, encoding an ADAMTS-like protein which has been implicated in fibrillin microfibril biogenesis, cause ectopia lentis (EL) and EL et pupillae. Here, we report the first ADAMTSL4 mouse model, tvrm267, bearing a nonsense mutation in Adamtsl4. Homozygous Adamtsl4(tvrm267) mice recapitulate the EL phenotype observed in humans, and our analysis strongly suggests that ADAMTSL4 is required for stable anchorage of zonule fibers to the lens capsule. Unexpectedly, homozygous Adamtsl4(tvrm267) mice exhibit focal retinal pigment epithelium (RPE) defects primarily in the inferior eye. RPE dedifferentiation was indicated by reduced pigmentation, altered cellular morphology and a reduction in RPE-specific transcripts. Finally, as with a subset of patients with ADAMTSL4 mutations, increased axial length, relative to age-matched controls, was observed and was associated with the severity of the RPE phenotype. In summary, the Adamtsl4(tvrm267) model provides a valuable tool to further elucidate the molecular basis of zonule formation, the pathophysiology of EL and ADAMTSL4 function in the maintenance of the RPE.
Collapse
Affiliation(s)
| | - Dirk Hubmacher
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | | | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Minzhong Yu
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA, Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA and
| | | | | | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA, Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA and Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | |
Collapse
|
42
|
Germline genome-editing research and its socioethical implications. Trends Mol Med 2015; 21:473-81. [PMID: 26078206 DOI: 10.1016/j.molmed.2015.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022]
Abstract
Genetically modifying eggs, sperm, and zygotes ('germline' modification) can impact on the entire body of the resulting individual and on subsequent generations. With the advent of genome-editing technology, human germline gene modification is no longer theoretical. Owing to increasing concerns about human germline gene modification, a voluntary moratorium on human genome-editing research and/or the clinical application of human germline genome editing has recently been called for. However, whether such research should be suspended or encouraged warrants careful consideration. The present article reviews recent research on mammalian germline genome editing, discusses the importance of public dialogue on the socioethical implications of human germline genome-editing research, and considers the relevant guidelines and legislation in different countries.
Collapse
|
43
|
|
44
|
Sommer D, Peters AE, Baumgart AK, Beyer M. TALEN-mediated genome engineering to generate targeted mice. Chromosome Res 2015; 23:43-55. [DOI: 10.1007/s10577-014-9457-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Aredo B, Zhang K, Chen X, Wang CXZ, Li T, Ufret-Vincenty RL. Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice. J Neuroinflammation 2015; 12:6. [PMID: 25588310 PMCID: PMC4305240 DOI: 10.1186/s12974-014-0221-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/11/2014] [Indexed: 01/02/2023] Open
Abstract
Background Microglia/macrophages (MG/MΦ) are found in the subretinal space in both mice and humans. Our goal was to study the spatial and temporal distribution, the phenotype, and gene expression of subretinal MG/MΦ in mice with normal retinas and compare them to mice with known retinal pathology. Methods We studied C57BL/6 mice with (C57BL/6N), or without (C57BL/6J) the rd8 mutation in the Crb1 gene (which, in the presence of yet unidentified permissive/modifying genes, leads to a retinal degeneration), and documented their fundus appearance and the change with aging. Immunostaining of retinal pigment epithelium (RPE) flat mounts was done for 1) Ionized calcium binding adaptor (Iba)-1, 2) FcγIII/II Receptor (CD16/CD32, abbreviated as CD16), and 3) Macrophage mannose receptor (MMR). Reverse-transcription quantitative PCR (RT-qPCR) was done for genes involved in oxidative stress, complement activation and inflammation. Results The number of yellow fundus spots correlated highly with subretinal Iba-1+ cells. The total number of subretinal MG/MΦ increased with age in the rd8 mutant mice, but not in the wild-type (WT) mice. There was a centripetal shift in the distribution of the subretinal MG/MΦ with age. Old rd8 mutant mice had a greater number of CD16+ MG/MΦ. CD16+ cells had morphological signs of activation, and this was most prominent in old rd8 mutant mice (P <1×10−8 versus old WT mice). Subretinal MG/MΦ in rd8 mutant mice also expressed iNOS and MHC-II, and had ultrastructural signs of activation. Finally, rd8 mutant mouse RPE/ MG/MΦ RNA isolates showed an upregulation of Ccl2, CFB, C3, NF-kβ, CD200R and TNF-alpha. The retinas of rd8 mutant mice showed upregulation of HO-1, C1q, C4, and Nrf-2. Conclusions When compared to C57BL/6J mice, C57BL/6N mice demonstrate increased accumulation of subretinal MG/MΦ, displaying phenotypical, morphological, and gene-expression characteristics consistent with a pro-inflammatory shift. These changes become more prominent with aging and are likely due to the combination of the rd8 mutation and yet unidentified permissive/modulatory genes in the C57BL/6N mice. In contrast, aging leads to a scavenging phenotype in the C57BL/6J subretinal microglia/macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0221-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bogale Aredo
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| | - Kaiyan Zhang
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA. .,Current address: Department of Ophthalmology, Hainan Provincial People's Hospital, Haikou, Hainan, 570203, PR China.
| | - Xiao Chen
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA. .,Current address: Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, PR China.
| | - Cynthia Xin-Zhao Wang
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| | - Tao Li
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| | - Rafael L Ufret-Vincenty
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9057, USA.
| |
Collapse
|
46
|
Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm 2015; 95:353-67. [PMID: 25592325 DOI: 10.1016/j.ejpb.2014.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression.
Collapse
|
47
|
Freude K, Pires C, Hyttel P, Hall VJ. Induced Pluripotent Stem Cells Derived from Alzheimer's Disease Patients: The Promise, the Hope and the Path Ahead. J Clin Med 2014; 3:1402-36. [PMID: 26237610 PMCID: PMC4470192 DOI: 10.3390/jcm3041402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023] Open
Abstract
The future hope of generated induced pluripotent stem cells (iPS cells) from Alzheimer’s disease patients is multifold. Firstly, they may help to uncover novel mechanisms of the disease, which could lead to the development of new and unprecedented drugs for patients and secondly, they could also be directly used for screening and testing of potential new compounds for drug discovery. In addition, in the case of familial known mutations, these cells could be targeted by use of advanced gene-editing techniques to correct the mutation and be used for future cell transplantation therapies. This review summarizes the work so far in regards to production and characterization of iPS cell lines from both sporadic and familial Alzheimer’s patients and from other iPS cell lines that may help to model the disease. It provides a detailed comparison between published reports and states the present hurdles we face with this new technology. The promise of new gene-editing techniques and accelerated aging models also aim to move this field further by providing better control cell lines for comparisons and potentially better phenotypes, respectively.
Collapse
Affiliation(s)
- Kristine Freude
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Carlota Pires
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Vanessa Jane Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| |
Collapse
|
48
|
Brehm MA, Wiles MV, Greiner DL, Shultz LD. Generation of improved humanized mouse models for human infectious diseases. J Immunol Methods 2014; 410:3-17. [PMID: 24607601 PMCID: PMC4155027 DOI: 10.1016/j.jim.2014.02.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 12/26/2022]
Abstract
The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rg(null)) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of "next generation" humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines.
Collapse
Affiliation(s)
- Michael A Brehm
- The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, United States.
| | - Michael V Wiles
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States.
| | - Dale L Greiner
- The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, United States.
| | - Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States.
| |
Collapse
|