1
|
Miao C, Wu Z, Sun Y, Cao Z. Deoxynivalenol Induces Intestinal Epithelial Barrier Damage through RhoA/ROCK Pathway-Mediated Apoptosis and F-Actin-Associated Tight Junction Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38595054 DOI: 10.1021/acs.jafc.4c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/11/2024]
Abstract
Deoxynivalenol (DON) poses a serious global food safety risk due to its high toxicity and contamination rate. It disrupts the intestinal epithelial barrier, allowing exogenous toxins to enter the circulation and resulting in sepsis and systemic toxicity. In this research, 32 male Kunming mice and Porcine Small Intestinal Epithelial (IPEC-J2) cells were treated with DON at 0-4.8 mg/kg (7 d) and 0-12 μM (24 h), respectively. Histopathological results revealed that DON disrupted the intestinal epithelial barrier, causing apoptosis and tight junction (TJ) injury. Immunofluorescence and protein expression results showed that DON-induced p53-dependent mitochondrial pathway apoptosis and fibrillar actin (F-actin)-associated TJ injury and that the RhoA/ROCK pathway were activated in mice jejunal tissue and IPEC-J2 cells. Pretreatment with RhoA or ROCK inhibitors (Rosin or Y-27632) maintained DON-induced apoptosis and F-actin-associated TJ injury in IPEC-J2 cells. Thus, DON induces damage to the intestinal epithelial barrier through the RhoA/ROCK pathway-mediated apoptosis and F-actin-associated TJ disruption.
Collapse
Affiliation(s)
- Chenjiao Miao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zuoyao Wu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yafei Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Zhu YT, Tighe S, Chen SL, Zhang Y, Chen SY, Kao WWY, Tseng SCG. Manufacturing of human corneal endothelial grafts. Ocul Surf 2023; 29:301-310. [PMID: 37268293 PMCID: PMC10529356 DOI: 10.1016/j.jtos.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Human corneal endothelial cells (HCECs) play a significant role in maintaining visual function. However, these cells are notorious for their limited proliferative capacity in vivo. Current treatment of corneal endothelial dysfunction resorts to corneal transplantation. Herein we describe an ex vivo engineering method to manufacture HCEC grafts suitable for transplantation through reprogramming into neural crest progenitors. METHODS HCECs were isolated by collagenase A from stripped Descemet membrane of cadaveric corneoscleral rims, and induced reprogramming via knockdown with p120 and Kaiso siRNAs on collagen IV-coated atelocollagen. Engineered HCEC grafts were released after assessing their identity, potency, viability, purity and sterility. Phase contrast was used for monitoring cell shape, graft size, and cell density. Immunostaining was used to determine the normal HCEC phenotype with expression of N-cadherin, ZO-1, ATPase, acetyl-α-tubulin, γ-tubulin, p75NTR, α-catenin, β-catenin, and F-actin. Stability of manufactured HCEC graft was evaluated after transit and storage for up to 3 weeks. The pump function of HCEC grafts was measured by lactate efflux. RESULTS One HCEC graft suitable for corneal transplantation was generated from 1/8th of the donor corneoscleral rim with normal hexagonal cell shape, density, and phenotype. The manufactured grafts were stable for up to 3 weeks at 37 °C or up to 1 week at 22 °C in MESCM medium and after transcontinental shipping at room temperature by retaining normal morphology (hexagonal, >2000 cells/mm2, >8 mm diameter), phenotype, and pump function. CONCLUSIONS This regenerative strategy through knockdown with p120 and Kaiso siRNAs can be used to manufacture HCEC grafts with normal phenotype, morphology and pump function following prolonged storage and shipping.
Collapse
Affiliation(s)
| | - Sean Tighe
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | | | - Yuan Zhang
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Szu-Yu Chen
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA
| | | |
Collapse
|
3
|
Kopecny LR, Lee BWH, Coroneo MT. A systematic review on the effects of ROCK inhibitors on proliferation and/or differentiation in human somatic stem cells: A hypothesis that ROCK inhibitors support corneal endothelial healing via acting on the limbal stem cell niche. Ocul Surf 2023; 27:16-29. [PMID: 36586668 DOI: 10.1016/j.jtos.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Rho kinase inhibitors (ROCKi) have attracted growing multidisciplinary interest, particularly in Ophthalmology where the question as to how they promote corneal endothelial healing remains unresolved. Concurrently, stem cell biology has rapidly progressed in unravelling drivers of stem cell (SC) proliferation and differentiation, where mechanical niche factors and the actin cytoskeleton are increasingly recognized as key players. There is mounting evidence from the study of the peripheral corneal endothelium that supports the likelihood of an internal limbal stem cell niche. The possibility that ROCKi stimulate the endothelial SC niche has not been addressed. Furthermore, there is currently a paucity of data that directly evaluates whether ROCKi promotes corneal endothelial healing by acting on this limbal SC niche located near the transition zone. Therefore, we performed a systematic review examining the effects ROCKi on the proliferation and differentiation of human somatic SC, to provide insight into its effects on various human SC populations. An appraisal of electronic searches of four databases identified 1 in vivo and 58 in vitro studies (36 evaluated proliferation while 53 examined differentiation). Types of SC studied included mesenchymal (n = 32), epithelial (n = 11), epidermal (n = 8), hematopoietic and other (n = 8). The ROCK 1/2 selective inhibitor Y-27632 was used in almost all studies (n = 58), while several studies evaluated ≥2 ROCKi (n = 4) including fasudil, H-1152, and KD025. ROCKi significantly influenced human somatic SC proliferation in 81% of studies (29/36) and SC differentiation in 94% of studies (50/53). The present systemic review highlights that ROCKi are influential in regulating human SC proliferation and differentiation, and provides evidence to support the hypothesis that ROCKi promotes corneal endothelial division and maintenance via acting on the inner limbal SC niche.
Collapse
Affiliation(s)
- Lloyd R Kopecny
- School of Clinical Medicine, University of New South Wales, Sydney, Australia.
| | - Brendon W H Lee
- Department of Ophthalmology, School of Clinical Medicine, University of New South Wales, Level 2 South Wing, Edmund Blacket Building, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Minas T Coroneo
- Department of Ophthalmology, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
4
|
Hazra S, Sneha IV, Chaurasia S, Ramachandran C. In Vitro Expansion of Corneal Endothelial Cells for Clinical Application: Current Update. Cornea 2022; 41:1313-1324. [PMID: 36107851 DOI: 10.1097/ico.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2021] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Endothelial dysfunction is one of the leading causes of corneal blindness and one of the common indications for keratoplasty. At present, the standard of treatment involves the replacement of the dysfunctional endothelium with healthy tissue taken from a donor. Because there is a paucity of healthy donor tissues, research on the corneal endothelium has focused primarily on expanding these cells in the laboratory for transplantation in an attempt to reduce the gap between the demand and supply of donor tissues for transplantation. To expand these cells, which are nonmitotic in vivo, various mitogens, substrates, culture systems, and alternate strategies have been tested with varying success. The biggest challenge has been the limited proliferative capacity of these cells compounded with endothelial to mesenchymal transition that alters the functioning of these cells and renders them unsuitable for human transplantation. This review aims to give a comprehensive overview of the most common and successful techniques used in the culture of the cells, the current available evidence in support of epithelial to mesenchymal transition (EMT), alternate sources for deriving the corneal endothelial cells, and advances made in transplantation of these cells.
Collapse
Affiliation(s)
- Swatilekha Hazra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Manipal University, Manipal, Karnataka, India ; and
| | - Iskala V Sneha
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | | | | |
Collapse
|
5
|
Compagnoni C, Zelli V, Bianchi A, Di Marco A, Capelli R, Vecchiotti D, Brandolini L, Cimini AM, Zazzeroni F, Allegretti M, Alesse E, Tessitore A. MicroRNAs Expression in Response to rhNGF in Epithelial Corneal Cells: Focus on Neurotrophin Signaling Pathway. Int J Mol Sci 2022; 23:ijms23073597. [PMID: 35408969 PMCID: PMC8998691 DOI: 10.3390/ijms23073597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Nerve growth factor efficacy was demonstrated for corneal lesions treatment, and recombinant human NGF (rhNGF) was approved for neurotrophic keratitis therapy. However, NGF-induced molecular responses in cornea are still largely unknown. We analyzed microRNAs expression in human epithelial corneal cells after time-dependent rhNGF treatment. METHODS Nearly 700 microRNAs were analyzed by qRT-PCR. MicroRNAs showing significant expression differences were examined by DIANA-miRpath v.3.0 to identify target genes and pathways. Immunoblots were performed to preliminarily assess the strength of the in silico results. RESULTS Twenty-one microRNAs (miR-26a-1-3p, miR-30d-3p, miR-27b-5p, miR-146a-5p, miR-362-5p, mir-550a-5p, mir-34a-3p, mir-1227-3p, mir-27a-5p, mir-222-5p, mir-151a-5p, miR-449a, let7c-5p, miR-337-5p, mir-29b-3p, miR-200b-3p, miR-141-3p, miR-671-3p, miR-324-5p, mir-411-3p, and mir-425-3p) were significantly regulated in response to rhNGF. In silico analysis evidenced interesting target genes and pathways, including that of neurotrophin, when analyzed in depth. Almost 80 unique target genes (e.g., PI3K, AKT, MAPK, KRAS, BRAF, RhoA, Cdc42, Rac1, Bax, Bcl2, FasL) were identified as being among those most involved in neurotrophin signaling and in controlling cell proliferation, growth, and apoptosis. AKT and RhoA immunoblots demonstrated congruence with microRNA expression, providing preliminary validation of in silico data. CONCLUSIONS MicroRNA levels in response to rhNGF were for the first time analyzed in corneal cells. Novel insights about microRNAs, target genes, pathways modulation, and possible biological responses were provided. Importantly, given the putative role of microRNAs as biomarkers or therapeutic targets, our results make available data which might be potentially exploitable for clinical applications.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Andrea Bianchi
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Antinisca Di Marco
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.zza S. Tommasi, 67100 L’Aquila, Italy;
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-086-243-3518; Fax: +39-0862433131
| |
Collapse
|
6
|
Arras W, Vercammen H, Ní Dhubhghaill S, Koppen C, Van den Bogerd B. Proliferation Increasing Genetic Engineering in Human Corneal Endothelial Cells: A Literature Review. Front Med (Lausanne) 2021; 8:688223. [PMID: 34268324 PMCID: PMC8275833 DOI: 10.3389/fmed.2021.688223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The corneal endothelium is the inner layer of the cornea. Despite comprising only a monolayer of cells, dysfunction of this layer renders millions of people visually impaired worldwide. Currently, corneal endothelial transplantation is the only viable means of restoring vision for these patients. However, because the supply of corneal endothelial grafts does not meet the demand, many patients remain on waiting lists, or are not treated at all. Possible alternative treatment strategies include intracameral injection of human corneal endothelial cells (HCEnCs), biomedical engineering of endothelial grafts and increasing the HCEnC density on grafts that would otherwise have been unsuitable for transplantation. Unfortunately, the limited proliferative capacity of HCEnCs proves to be a major bottleneck to make these alternatives beneficial. To tackle this constraint, proliferation enhancing genetic engineering is being investigated. This review presents the diverse array of genes that have been targeted by different genetic engineering strategies to increase the proliferative capacity of HCEnCs and their relevance for clinical and research applications. Together these proliferation-related genes form the basis to obtain a stable and safe supply of HCEnCs that can tackle the corneal endothelial donor shortage.
Collapse
Affiliation(s)
- Wout Arras
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sorcha Ní Dhubhghaill
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.,Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, Netherlands
| | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bert Van den Bogerd
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Hsueh YJ, Meir YJJ, Lai JY, Chen HC, Ma DHK, Huang CC, Lu TT, Cheng CM, Wu WC. Lysophosphatidic acid improves corneal endothelial density in tissue culture by stimulating stromal secretion of interleukin-1β. J Cell Mol Med 2020; 24:6596-6608. [PMID: 32333497 PMCID: PMC7299697 DOI: 10.1111/jcmm.15307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
The short supply of donor corneas is exacerbated by the unsuitability of donors with insufficient endothelial cell density. Few studies have investigated promoting corneal endothelial cell proliferation to increase the endothelial cell density. We hypothesize that pre‐transplantation treatment of proliferative tissue‐cultivated corneas may increase corneal endothelial cell density. We observed that the airlift cultures were superior to immersion cultures with respect to both transparency and thickness. In this tissue culture system, we observed that lysophosphatidic acid increased the rabbit corneal endothelial cell density, number of BrdU‐positive cells and improve wound healing. We also observed an indirect effect of lysophosphatidic acid on corneal endothelial cell proliferation mediated by the stimulation of interleukin‐1β secretion from stromal cells. Human corneal tissues treated with lysophosphatidic acid or interleukin‐1β contained significantly more Ki‐67‐positive cells than untreated group. The lysophosphatidic acid‐ or interleukin‐1β‐treated cultured tissue remained hexagon‐shaped, with ZO‐1 expression and no evidence of the endothelial‐mesenchymal transition. Our novel protocol of tissue culture may be applicable for eye banks to optimize corneal grafting.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yaa-Jyuhn James Meir
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - David Hui-Kang Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Cheng Huang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsai-Te Lu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Min Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
9
|
Abstract
Trabecular meshwork (TM) cells are a group of progenitors that have the ability to become adipocytes, chondrocytes and endothelial cells. Therefore, those adult corneal progenitors may be used as an effective therapy for trabecular meshwork diseases such as glaucoma, corneal endothelial dysfunctions such as blindness due to corneal endothelial dysfunction, and similar diseases. In order to promote the understanding of human trabecular meshwork progenitors, this article reviews human trabecular meshwork progenitor therapy and discusses its potential applications for curing human eye blindness.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University (the Second People's Hospital of Yunnan Province); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease, The Second People's Hospital of Yunnan Province (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| | - Yuan Zhang
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Min Hu
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University (the Second People's Hospital of Yunnan Province); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease, The Second People's Hospital of Yunnan Province (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| |
Collapse
|
10
|
Castro N, Gillespie SR, Bernstein AM. Ex Vivo Corneal Organ Culture Model for Wound Healing Studies. J Vis Exp 2019. [PMID: 30829330 PMCID: PMC7641194 DOI: 10.3791/58562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
The cornea has been used extensively as a model system to study wound healing. The ability to generate and utilize primary mammalian cells in two dimensional (2D) and three dimensional (3D) culture has generated a wealth of information not only about corneal biology but also about wound healing, myofibroblast biology, and scarring in general. The goal of the protocol is an assay system for quantifying myofibroblast development, which characterizes scarring. We demonstrate a corneal organ culture ex vivo model using pig eyes. In this anterior keratectomy wound, corneas still in the globe are wounded with a circular blade called a trephine. A plug of approximately 1/3 of the anterior cornea is removed including the epithelium, the basement membrane, and the anterior part of the stroma. After wounding, corneas are cut from the globe, mounted on a collagen/agar base, and cultured for two weeks in supplemented-serum free medium with stabilized vitamin C to augment cell proliferation and extracellular matrix secretion by resident fibroblasts. Activation of myofibroblasts in the anterior stroma is evident in the healed cornea. This model can be used to assay wound closure, the development of myofibroblasts and fibrotic markers, and for toxicology studies. In addition, the effects of small molecule inhibitors as well as lipid-mediated siRNA transfection for gene knockdown can be tested in this system.
Collapse
Affiliation(s)
- Nileyma Castro
- Department of Ophthalmology, SUNY Upstate Medical University
| | | | | |
Collapse
|
11
|
Chen S, Zhu Q, Sun H, Zhang Y, Tighe S, Xu L, Zhu Y. Advances in culture, expansion and mechanistic studies of corneal endothelial cells: a systematic review. J Biomed Sci 2019; 26:2. [PMID: 30609919 PMCID: PMC6320592 DOI: 10.1186/s12929-018-0492-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells are notorious for their restricted proliferative ability in vivo and in vitro. Hence, injury or dysfunction of these cells may easily result in blindness. Currently, the only treatment is to transplant a donor cornea that contains a healthy corneal endothelium. However there is a severe global shortage of donor corneas and there remains an unmet clinical need to engineer human corneal grafts with healthy corneal endothelium. In this review, we present current advances in the culture, expansion, and molecular understandings of corneal endothelial cells in vitro in order to help establish methods of engineering human corneal endothelial grafts.
Collapse
Affiliation(s)
- Shuangling Chen
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA
| | - Qin Zhu
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University (the Second People's Hospital of Yunnan Province), Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Provincial Innovation Team for Cataract and Ocular Fundus Disease, The Second People's Hospital of Yunnan Province, Expert Workstation of Yao Ke, Yunnan Eye Institute, Kunming, 650021, China
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Zhang
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA
| | - Sean Tighe
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA
| | - Li Xu
- The Department of Ophthalmology, The Affiliated Hospital of Inner Mongolia Medical University, Tongdao North Rd, Hohhot, Inner Mongolia, China
| | - Yingting Zhu
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA.
| |
Collapse
|
12
|
Zhu Q, Sun H, Yang D, Tighe S, Liu Y, Zhu Y, Hu M. Cellular Substrates for Cell-Based Tissue Engineering of Human Corneal Endothelial Cells. Int J Med Sci 2019; 16:1072-1077. [PMID: 31523168 PMCID: PMC6743271 DOI: 10.7150/ijms.34440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/26/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
Corneal endothelial tissue engineering aims to find solutions for blindness due to endothelial dysfunction. A suitable combination of endothelial cells, substrates and environmental cues should be deployed for engineering functional endothelial tissues. This manuscript reviews up-to-date topics of corneal endothelial tissue engineering with special emphasis on biomaterial substrates and their properties, efficacy, and mechanisms of supporting functional endothelial cells in vitro.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dongmei Yang
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming 650021, China
| |
Collapse
|
13
|
Zhu Q, Zhu Y, Tighe S, Liu Y, Hu M. Engineering of Human Corneal Endothelial Cells In Vitro. Int J Med Sci 2019; 16:507-512. [PMID: 31171901 PMCID: PMC6535652 DOI: 10.7150/ijms.30759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells are responsible for controlling corneal transparency, however they are notorious for their limited proliferative capability. Thus, damage to these cells may cause irreversible blindness. Currently, the only way to cure blindness caused by corneal endothelial dysfunction is via corneal transplantation of a cadaver donor cornea with healthy corneal endothelium. Due to severe shortage of donor corneas worldwide, it has become paramount to develop human corneal endothelial grafts in vitro that can subsequently be transplanted in humans. Recently, we have reported effective expansion of human corneal endothelial cells by reprogramming the cells into progenitor status through use of p120-Kaiso siRNA knockdown. This new reprogramming approach circumvents the need of using induced pluripotent stem cells or embryonic stem cells. Successful promotion of this technology will encourage scientists to re-think how "contact inhibition" can safely be perturbed to our benefit, i.e., effective engineering of an in vivo-like tissue while successful maintaining the normal phenotype. In this review, we present current advances in reprogramming corneal endothelial cells in vitro, detail the methods to successful engineer human corneal endothelial grafts, and discuss their future clinical applications to cure corneal blindness.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| |
Collapse
|
14
|
Blocking RhoA/ROCK inhibits the pathogenesis of pemphigus vulgaris by suppressing oxidative stress and apoptosis through TAK1/NOD2-mediated NF-κB pathway. Mol Cell Biochem 2017; 436:151-158. [DOI: 10.1007/s11010-017-3086-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
15
|
Liu Y, Sun H, Guo P, Hu M, Zhang Y, Tighe S, Chen S, Zhu Y. Characterization and Prospective of Human Corneal Endothelial Progenitors. Int J Med Sci 2017; 14:705-710. [PMID: 28824304 PMCID: PMC5562123 DOI: 10.7150/ijms.19018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/02/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Corneal endothelial cells play a critical role in maintaining corneal transparency and dysfunction of these cells caused by aging, diseases (such as Fuch's dystrophy), injury or surgical trauma, which can lead to corneal edema and blindness. Due to their limited proliferative capacity in vivo, the only treatment method is via transplantation of a cadaver donor cornea. However, there is a severe global shortage of donor corneas. To circumvent such issues, tissue engineering of corneal tissue is a viable option thanks to the recent discoveries in this field. In this review, we summarize the recent advances in reprogramming adult human corneal endothelial cells into their progenitor status, the expansion methods and characteristics of human corneal endothelial progenitors, and their potential clinical applications as corneal endothelial cell grafts.
Collapse
Affiliation(s)
- Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ping Guo
- Shenzhen Eye Hospital, School of Optometry & Ophthalmology of Shenzhen University, Shenzhen Key Laboratory of Department of Ophthalmology, Shenzhen, 518000, China
| | - Min Hu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Yuan Zhang
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Sean Tighe
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Shuangling Chen
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Yingting Zhu
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| |
Collapse
|
16
|
Liu X, Tseng SCG, Zhang MC, Chen SY, Tighe S, Lu WJ, Zhu YT. LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells. Cell Cycle 2016; 14:1197-206. [PMID: 25695744 DOI: 10.1080/15384101.2015.1013667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells (HCECs) responsible for corneal transparency have limited proliferative capacity in vivo because of "contact-inhibition." This feature has hampered the ability to engineer HCECs for transplantation. Previously we have reported an in vitro model of HCECs in which contact inhibition was re-established at Day 21, even though cell junction and cell matrix interaction were not perturbed during isolation. Herein, we observe that such HCEC monolayers continue to expand and retain a normal phenotype for 2 more weeks if cultured in a leukemia inhibitory factor (LIF)-containing serum-free medium. Such expansion is accompanied initially by upregulation of Cyclin E2 colocalized with nuclear translocation of phosphorylated retinoblastoma tumor suppressor (p-Rb) at Day 21 followed by a delay in contact inhibition through activation of LIF-Janus kinase1 (JAK1)-signal transducer and activator of transcription 3 (STAT3) signaling at Day 35. The LIF-JAK1-STAT3 signaling is coupled with upregulation of E2F2 colocalized with nuclear p-Rb and with concomitant downregulation of p16(INK4a), of which upregulation is linked to senescence. Hence, activation of LIF-JAK1-STAT3 signaling to delay contact inhibition can be used as another strategy to facilitate engineering of HCEC grafts to solve the unmet global shortage of corneal grafts.
Collapse
Key Words
- BMP, bone morphogenetic protein
- BrdU, bromodeoxyuridine
- CDK, cyclin-dependent kinase
- CKI, cyclin-dependent kinase inhibitors
- DMEM, Dulbecco's modified Eagle's medium
- E2F2
- EDTA, ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- EMT, endothelial mesenchymal transition
- ESC, embryonic stem cell
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3- phosphate dehydrogenase
- HBSS, Hanks’ balanced salt solution
- HCEC, human corneal endothelial cell
- ID, inhibitor of differentiation
- ITS, insulin-transferrin-sodium selenite
- JAK, Janus kinase
- JAK1
- LEF1, lymphoid enhancer-binding factor 1
- LIF
- LIF, leukemia inhibitory factor
- MESCM, modified embryonic stem cell medium
- NC, neural crest
- NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells
- PBS, phosphate-buffered saline
- RPE, retinal pigment epithelial cells
- Rb, retinoblastoma tumor suppressor
- SHEM, supplemental hormonal epithelial medium
- STAT3
- STAT3, signal transducer and activator of transcription 3
- ZO-1, Zona occludens protein 1
- bFGF, basic fibroblast growth factor
- contact inhibition
- corneal endothelium
- iPSCs, induced pluripotent stem cells
- p120, p120 catenin
- p16INK4a
- proliferation
- scRNA, scramble RNA
- siRNA, small interfering ribonucleic acid
Collapse
Affiliation(s)
- Xin Liu
- a Department of Ophthalmology; Union Hospital; Tongji Medical College ; Huazhong University of Science and Technology ; Wuhan , China
| | | | | | | | | | | | | |
Collapse
|
17
|
Koh DI, An H, Kim MY, Jeon BN, Choi SH, Hur SS, Hur MW. Transcriptional activation of APAF1 by KAISO (ZBTB33) and p53 is attenuated by RelA/p65. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1170-8. [DOI: 10.1016/j.bbagrm.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/11/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 12/21/2022]
|
18
|
Zhu YT, Tighe S, Chen SL, John T, Kao WY, Tseng SCG. Engineering of Human Corneal Endothelial Grafts. CURRENT OPHTHALMOLOGY REPORTS 2015; 3:207-217. [PMID: 26509105 DOI: 10.1007/s40135-015-0077-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Human corneal endothelial cells (HCEC) play a pivotal role in maintaining corneal transparency. Unlike in other species, HCEC are notorious for their limited proliferative capacity in vivo after diseases, injury, aging, and surgery. Persistent HCEC dysfunction leads to sight-threatening bullous keratopathy with either an insufficient cell density or retrocorneal membrane due to endothelial-mesenchymal transition (EMT). Presently, the only solution to restore vision in eyes inflicted with bullous keratopathy or retrocorneal membrane relies upon transplantation of a cadaver human donor cornea containing a healthy corneal endothelium. Due to a severe global shortage of donor corneas, in conjunction with an increasing trend toward endothelial keratoplasty, it is opportune to develop a tissue engineering strategy to produce HCEC grafts. Prior attempts of producing these grafts by unlocking the contact inhibition-mediated mitotic block using trypsin-EDTA and culturing of single HCEC in a bFGF-containing medium run the risk of losing the normal phenotype to EMT by activating canonical Wnt signaling and TGF-β signaling. Herein, we summarize our novel approach in engineering HCEC grafts based on selective activation of p120-Kaiso signaling that is coordinated with activation of Rho-ROCK-canonical BMP signaling to reprogram HCEC into neural crest progenitors. Successful commercialization of this engineering technology will not only fulfill the global unmet need but also encourage the scientific community to re-think how cell-cell junctions can be safely perturbed to uncover novel therapeutic potentials in other model systems.
Collapse
Affiliation(s)
- Ying-Ting Zhu
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL, 33173, USA
| | - Sean Tighe
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL, 33173, USA
| | - Shuang-Ling Chen
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL, 33173, USA
| | - Thomas John
- Department of Ophthalmology, Loyola University at Chicago, 2160 1 Ave, Maywood, IL 60153, USA
| | - Winston Y Kao
- Department of Ophthalmology, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA
| | - Scheffer C G Tseng
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL 33173, USA, Telephone: (305) 274-1299
| |
Collapse
|
19
|
Hsueh YJ, Chen HC, Wu SE, Wang TK, Chen JK, Ma DHK. Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15014. [PMID: 26029725 PMCID: PMC4445000 DOI: 10.1038/mtm.2015.14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/10/2014] [Revised: 02/28/2015] [Accepted: 03/19/2015] [Indexed: 12/19/2022]
Abstract
The first two authors contributed equally to this work.Silence of p120-catenin has shown promise in inducing proliferation in human corneal endothelial cells (HCECs), but there is concern regarding off-target effects in potential clinical applications. We aimed to develop ex vivo expansion of HCECs using natural compounds, and we hypothesized that lysophosphatidic acid (LPA) can unlock the mitotic block in contact-inhibited HCECs via enhancing nuclear translocation of yes-associated protein (YAP). Firstly, we verified that exogenous YAP could induce cell proliferation in contact-inhibited HCEC monolayers and postconfluent B4G12 cells. In B4G12 cells, enhanced cyclin D1 expression, reduced p27KIP1/p21CIP1 levels, and the G1/S transition were detected upon transfection with YAP. Secondly, we confirmed that LPA induced nuclear expression of YAP and promoted cell proliferation. Moreover, PI3K and ROCK, but not ERK or p38, were required for LPA-induced YAP nuclear translocation. Finally, cells treated with LPA or transfected with YAP remained hexagonal in shape, in addition to unchanged expression of ZO-1, Na/K-ATPase, and smooth muscle actin (SMA), suggestive of a preserved phenotype, without endothelial–mesenchymal transition. Collectively, our findings indicate an innovative strategy for ex vivo cultivation of HCECs for transplantation and cell therapy.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital , Linkou, Taiwan ; Center for Tissue Engineering, Chang Gung Memorial Hospital , Linkou, Taiwan
| | - Hung-Chi Chen
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital , Linkou, Taiwan ; Center for Tissue Engineering, Chang Gung Memorial Hospital , Linkou, Taiwan ; Department of Medicine, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| | - Sung-En Wu
- Department of Physiology, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| | - Tze-Kai Wang
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital , Linkou, Taiwan
| | - Jan-Kan Chen
- Department of Physiology, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| | - David Hui-Kang Ma
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital , Linkou, Taiwan ; Center for Tissue Engineering, Chang Gung Memorial Hospital , Linkou, Taiwan ; Department of Chinese Medicine, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| |
Collapse
|
20
|
Palchesko RN, Lathrop KL, Funderburgh JL, Feinberg AW. In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep 2015; 5:7955. [PMID: 25609008 PMCID: PMC4302312 DOI: 10.1038/srep07955] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2014] [Accepted: 12/24/2014] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelial (CE) cells do not divide in vivo, leading to edema, corneal clouding and vision loss when the density drops below a critical level. The endothelium can be replaced by transplanting allogeneic tissue; however, access to donated tissue is limited worldwide resulting in critical need for new sources of corneal grafts. In vitro expansion of CE cells is a potential solution, but is challenging due to limited proliferation and loss of phenotype in vitro via endothelial to mesenchymal transformation (EMT) and senescence. We hypothesized that a bioengineered substrate recapitulating chemo-mechanical properties of Descemet's membrane would improve the in vitro expansion of CE cells while maintaining phenotype. Results show that bovine CE cells cultured on a polydimethylsiloxane surface with elastic modulus of 50 kPa and collagen IV coating achieved >3000-fold expansion. Cells grew in higher-density monolayers with polygonal morphology and ZO-1 localization at cell-cell junctions in contrast to control cells on polystyrene that lost these phenotypic markers coupled with increased α-smooth muscle actin expression and fibronectin fibril assembly. In total, these results demonstrate that a biomimetic substrate presenting native basement membrane ECM proteins and mechanical environment may be a key element in bioengineering functional CE layers for potential therapeutic applications.
Collapse
Affiliation(s)
- Rachelle N Palchesko
- 1] Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 [2] Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA 15213 [3] Louis J. Fox Center for Vision Restoration, Pittsburgh PA 15213
| | - Kira L Lathrop
- 1] Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA 15213 [2] Louis J. Fox Center for Vision Restoration, Pittsburgh PA 15213
| | - James L Funderburgh
- 1] Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA 15213 [2] Louis J. Fox Center for Vision Restoration, Pittsburgh PA 15213
| | - Adam W Feinberg
- 1] Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 [2] Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA 15213
| |
Collapse
|
21
|
Zhu YT, Li F, Han B, Tighe S, Zhang S, Chen SY, Liu X, Tseng SCG. Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells. ACTA ACUST UNITED AC 2014; 206:799-811. [PMID: 25202030 PMCID: PMC4164941 DOI: 10.1083/jcb.201404032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells into neural crest–like progenitors, which effectively form corneal endothelial monolayers that may eliminate the need for corneal transplantation. Currently there are limited treatment options for corneal blindness caused by dysfunctional corneal endothelial cells. The primary treatment involves transplantation of healthy donor human corneal endothelial cells, but a global shortage of donor corneas necessitates other options. Conventional tissue approaches for corneal endothelial cells are based on EDTA-trypsin treatment and run the risk of irreversible endothelial mesenchymal transition by activating canonical Wingless-related integration site (Wnt) and TGF-β signaling. Herein, we demonstrate an alternative strategy that avoids disruption of cell–cell junctions and instead activates Ras homologue gene family A (RhoA)–Rho-associated protein kinase (ROCK)–canonical bone morphogenic protein signaling to reprogram adult human corneal endothelial cells to neural crest–like progenitors via activation of the miR302b-Oct4-Sox2-Nanog network. This approach allowed us to engineer eight human corneal endothelial monolayers of transplantable size, with a normal density and phenotype from one corneoscleral rim. Given that a similar signal network also exists in the retinal pigment epithelium, this partial reprogramming approach may have widespread relevance and potential for treating degenerative diseases.
Collapse
Affiliation(s)
- Ying-Ting Zhu
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Fu Li
- Pediatric Research Institute and Department of Pediatric Hematology, Qilu Children's Hospital, Shandong University, Jinan, Shandong 250022, People's Republic of China
| | - Bo Han
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Sean Tighe
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Suzhen Zhang
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Szu-Yu Chen
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Scheffer C G Tseng
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| |
Collapse
|