1
|
Zheng L, Liao Z, Zou J. Animal modeling for myopia. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:173-181. [PMID: 39263386 PMCID: PMC11385420 DOI: 10.1016/j.aopr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 09/13/2024]
Abstract
Background Myopia is one of the most common eye diseases globally, and has become an increasingly serious health concern among adolescents. Understanding the factors contributing to the onset of myopia and the strategies to slow its progression is critical to reducing its prevalence. Main text Animal models are key to understanding of the etiology of human diseases. Various experimental animal models have been developed to mimic human myopia, including chickens, rhesus monkeys, marmosets, mice, tree shrews, guinea pigs and zebrafish. Studies using these animal models have provided evidences and perspectives on the regulation of eye growth and refractive development. This review summarizes the characteristics of these models, the induction methods, common indicators of myopia in animal models, and recent findings on the pathogenic mechanism of myopia. Conclusions Investigations using experimental animal models have provided valuable information and insights into the pathogenic mechanisms of human myopia and its treatment strategies.
Collapse
Affiliation(s)
- Lingman Zheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Wilmet B, Michiels C, Zhang J, Callebert J, Sahel JA, Picaud S, Audo I, Zeitz C. Loss of ON-Pathway Function in Mice Lacking Lrit3 Decreases Recovery From Lens-Induced Myopia. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 39250117 PMCID: PMC11385651 DOI: 10.1167/iovs.65.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Purpose To determine whether the Lrit3-/- mouse model of complete congenital stationary night blindness with an ON-pathway defect harbors myopic features and whether the genetic defect influences the recovery from lens-induced myopia. Methods Retinal levels of dopamine (DA) and 3,4 dihydroxyphenylacetic acid (DOPAC) from adult isolated Lrit3-/- retinas were quantified using ultra performance liquid chromatography after light adaptation. Natural refractive development of Lrit3-/- mice was measured from three weeks to nine weeks of age using an infrared photorefractometer. Susceptibility to myopia induction was assessed using a lens-induced myopia protocol with -25 D lenses placed in front of the right eye of the animals for three weeks; the mean interocular shift was measured with an infrared photorefractometer after two and three weeks of goggling and after one and two weeks after removal of goggles. Results Compared to wild-type littermates (Lrit3+/+), both DA and DOPAC were drastically reduced in Lrit3-/- retinas. Natural refractive development was normal but Lrit3-/- mice showed a higher myopic shift and a lower ability to recover from induced myopia. Conclusions Our data consolidate the link between ON pathway defect altered dopaminergic signaling and myopia. We document for the first time the role of ON pathway on the recovery from myopia induction.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Jingyi Zhang
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA, United States
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
3
|
Wang K, Han G, Hao R. Advances in the study of the influence of photoreceptors on the development of myopia. Exp Eye Res 2024; 245:109976. [PMID: 38897270 DOI: 10.1016/j.exer.2024.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
This review examines the pivotal role of photoreceptor cells in ocular refraction development, focusing on dopamine (DA) as a key neurotransmitter. Contrary to the earlier view favoring cone cells, recent studies have highlighted the substantial contributions of both rod and cone cells to the visual signaling pathways that influence ocular refractive development. Notably, rod cells appeared to play a central role. Photoreceptor cells interact intricately with circadian rhythms, color vision pathways, and other neurotransmitters, all of which are crucial for the complex mechanisms driving the development of myopia. This review emphasizes that ocular refractive development results from a coordinated interplay between diverse cell types, signaling pathways, and neurotransmitters. This perspective has significant implications for unraveling the complex mechanisms underlying myopia and aiding in the development of more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Kailei Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| |
Collapse
|
4
|
Zuo H, Han W, Wu K, Yang H, Song H, Zhang Z, Lai Y, Pan Z, Li W, Zhao L. Prohibitin 2 deficiency in photoreceptors leads to progressive retinal degeneration and facilitated Müller glia engulfing microglia debris. Exp Eye Res 2024; 244:109935. [PMID: 38763352 DOI: 10.1016/j.exer.2024.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Müller glia and microglia are capable of phagocytosing fragments of retinal cells in response to retinal injury or degeneration. However, the direct evidence for their mutual interactions between Müller glia and microglia in the progression of retinal degeneration (RD) remains largely unclear. This study aims to construct a progressive RD mouse model and investigate the activated pattern of Müller glia and the interplay between Müller glia and microglia in the early stage or progression of RD. A Prohibitin 2 (Phb2) photoreceptor-specific knockout (RKO) mouse model was generated by crossing Phb2flox/flox mice with Rhodopsin-Cre mice. Optical Coherence Tomography (OCT), histological staining, and Electroretinography (ERG) assessed retinal structure and function, and RKO mice exhibited progressive RD from six weeks of age. In detail, six-week-old RKO mice showed no significant retinal impairment, but severe vision dysfunction and retina thinning were shown in ten-week-old RKO mice. Furthermore, RKO mice were sensitive to Light Damage (LD) and showed severe RD at an early age after light exposure. Bulk retina RNA-seq analysis from six-week-old control (Ctrl) and RKO mice showed reactive retinal glia in RKO mice. The activated pattern of Müller glia and the interplay between Müller glia and microglia was visualized by immunohistology and 3D reconstruction. In six-week-old RKO mice or light-exposed Ctrl mice, Müller glia were initially activated at the edge of the retina. Moreover, in ten-week-old RKO mice or light-exposed six-week-old RKO mice with severe photoreceptor degeneration, abundant Müller glia were activated across the whole retinas. With the progression of RD, phagocytosis of microglia debris by activated Müller glia were remarkably increased. Altogether, our study establishes a Phb2 photoreceptor-specific knockout mouse model, which is a novel mouse model of RD and can well demonstrate the phenotype of progressive RD. We also report that Müller glia in the peripheral retina is more sensitive to the early damage of photoreceptors. Our study provides more direct evidence for Müller glia engulfing microglia debris in the progression of RD due to photoreceptor Phb2 deficiency.
Collapse
Affiliation(s)
- Haoyu Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenjuan Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haohan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Huiying Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zirong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhongshu Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
5
|
Xu X, Liu N, Yu W. No Evidence of an Association between Genetic Factors Affecting Response to Vitamin A Supplementation and Myopia: A Mendelian Randomization Study and Meta-Analysis. Nutrients 2024; 16:1933. [PMID: 38931287 PMCID: PMC11206965 DOI: 10.3390/nu16121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The relationship between vitamin A supplementation and myopia has been a topic of debate, with conflicting and inconclusive findings. We aimed to determine whether there is a causal relationship between vitamin A supplementation and the risk of myopia using Mendelian randomization (MR) and meta-analytical methods. Genetic variants from the UK Biobank and FinnGen studies associated with the response to vitamin A supplementation were employed as instrumental variables to evaluate the causal relationship between vitamin A supplementation and myopia. Fixed-effects meta-analysis was then used to combine MR estimates from multiple sources for each outcome. The meta-analysis of MR results found no convincing evidence to support a direct causal relationship between vitamin A supplementation and myopia risk (odds ratio (OR) = 0.99, 95% confidence interval (CI) = 0.82-1.20, I2 = 0%, p = 0.40). The analysis of three out of the four sets of MR analyses indicated no direction of causal effect, whereas the other set of results suggested that higher vitamin A supplementation was associated with a lower risk of myopia (OR = 0.002, 95% CI 1.17 × 10-6-3.099, p = 0.096). This comprehensive MR study and meta-analysis did not find valid evidence of a direct association between vitamin A supplementation and myopia. Vitamin A supplementation may not have an independent effect on myopia, but intraocular processes associated with vitamin A may indirectly contribute to its development.
Collapse
Affiliation(s)
- Xiaotong Xu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou 325027, China
| | - Nianen Liu
- Fifth School of Clinical Medicine, Peking University, Beijing 100730, China;
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
6
|
Mazade R, Palumaa T, Pardue MT. Insights Into Myopia from Mouse Models. Annu Rev Vis Sci 2024; 10:10.1146/annurev-vision-102122-102059. [PMID: 38635876 PMCID: PMC11615738 DOI: 10.1146/annurev-vision-102122-102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Animal models are critical for understanding the initiation and progression of myopia, a refractive condition that causes blurred distance vision. The prevalence of myopia is rapidly increasing worldwide, and myopia increases the risk of developing potentially blinding diseases. Current pharmacological, optical, and environmental interventions attenuate myopia progression in children, but it is still unclear how this occurs or how these interventions can be improved to increase their protective effects. To optimize myopia interventions, directed mechanistic studies are needed. The mouse model is well-suited to these studies because of its well-characterized visual system and the genetic experimental tools available, which can be combined with pharmacological and environmental manipulations for powerful investigations of causation. This review describes aspects of the mouse visual system that support its use as a myopia model and presents genetic, pharmacological, and environmental studies that significantly contribute to our understanding of the mechanisms that underlie myopigenesis.
Collapse
Affiliation(s)
- Reece Mazade
- 1Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA; , ,
| | - Teele Palumaa
- 1Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA; , ,
- 2Institute of Genomics, University of Tartu, Tartu, Estonia
- 3Eye Clinic, East Tallinn Central Hospital, Tallinn, Estonia
| | - Machelle T Pardue
- 1Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA; , ,
- 4Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Tapia F, Peñaloza V, Silva-Olivares F, Sotomayor-Zárate R, Schmachtenberg O, Vielma AH. Glucagon Increases Retinal Rod Bipolar Cell Inhibition Through a D1 Dopamine Receptor-Dependent Pathway That Is Altered After Lens-Defocus Treatment in Mice. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 38289613 PMCID: PMC10840015 DOI: 10.1167/iovs.65.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose Members of the secretin/glucagon family have diverse roles in retinal physiological and pathological conditions. Out of them, glucagon has been associated with eye growth regulation and image defocus signaling in the eye, both processes central in myopia induction. On the other hand, dopamine is perhaps the most studied molecule in myopia and has been proposed as fundamental in myopia pathogenesis. However, glucagonergic activity in the mammalian retina and its possible link with dopaminergic signaling remain unknown. Methods To corroborate whether glucagon and dopamine participate together in the modulation of synaptic activity in the retina, inhibitory post-synaptic currents were measured in rod bipolar cells from retinal slices of wild type and negative lens-exposed mice, using whole cell patch-clamp recordings and selective pharmacology. Results Glucagon produced an increase of inhibitory post-synaptic current frequency in rod bipolar cells, which was also dependent on dopaminergic activity, as it was abolished by dopamine type 1 receptor antagonism and under scotopic conditions. The effect was also abolished after 3-week negative lens-exposure but could be recovered using dopamine type 1 receptor agonism. Conclusions Altogether, these results support a possible neuromodulatory role of glucagon in the retina of mammals as part of a dopaminergic activity-dependent synaptic pathway that is affected under myopia-inducing conditions.
Collapse
Affiliation(s)
- Felipe Tapia
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentín Peñaloza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Francisco Silva-Olivares
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
8
|
Deng B, Li W, Chen Z, Zeng J, Zhao F. Temporal bright light at low frequency retards lens-induced myopia in guinea pigs. PeerJ 2023; 11:e16425. [PMID: 38025747 PMCID: PMC10655705 DOI: 10.7717/peerj.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Bright light conditions are supposed to curb eye growth in animals with experimental myopia. Here we investigated the effects of temporal bright light at very low frequencies exposures on lens-induced myopia (LIM) progression. Methods Myopia was induced by application of -6.00 D lenses over the right eye of guinea pigs. They were randomly divided into four groups based on exposure to different lighting conditions: constant low illumination (CLI; 300 lux), constant high illumination (CHI; 8,000 lux), very low frequency light (vLFL; 300/8,000 lux, 10 min/c), and low frequency light (LFL; 300/8,000 lux, 20 s/c). Refraction and ocular dimensions were measured per week. Changes in ocular dimensions and refractions were analyzed by paired t-tests, and differences among the groups were analyzed by one-way ANOVA. Results Significant myopic shifts in refractive error were induced in lens-treated eyes compared with contralateral eyes in all groups after 3 weeks (all P < 0.05). Both CHI and LFL conditions exhibited a significantly less refractive shift of LIM eyes than CLI and vLFL conditions (P < 0.05). However, only LFL conditions showed significantly less overall myopic shift and axial elongation than CLI and vLFL conditions (both P < 0.05). The decrease in refractive error of both eyes correlated significantly with axial elongation in all groups (P < 0.001), except contralateral eyes in the CHI group (P = 0.231). LFL condition significantly slacked lens thickening in the contralateral eyes. Conclusions Temporal bright light at low temporal frequency (0.05 Hz) appears to effectively inhibit LIM progression. Further research is needed to determine the safety and the potential mechanism of temporal bright light in myopic progression.
Collapse
Affiliation(s)
- Baodi Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wentao Li
- Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Ziping Chen
- Guangdong Light Visual Health Research Institute, Guangzhou, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
9
|
Yao Y, Chen Z, Wu Q, Lu Y, Zhou X, Zhu X. Single-cell RNA sequencing of retina revealed novel transcriptional landscape in high myopia and underlying cell-type-specific mechanisms. MedComm (Beijing) 2023; 4:e372. [PMID: 37746666 PMCID: PMC10511833 DOI: 10.1002/mco2.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
High myopia is a leading cause of blindness worldwide with increasing prevalence. Retina percepts visual information and triggers myopia development, but the underlying etiology is not fully understood because of cellular heterogeneity. In this study, single-cell RNA sequencing analysis was performed on retinas of mouse highly myopic and control eyes to dissect the involvement of each cell type during high myopia progression. For highly myopic photoreceptors, Hk2 inhibition underlying metabolic remodeling from aerobic glycolysis toward oxidative phosphorylation and excessive oxidative stress was identified. Importantly, a novel Apoe + rod subpopulation was specifically identified in highly myopic retina. In retinal neurons of highly myopic eyes, neurodegeneration was generally discovered, and the imbalanced ON/OFF signaling driven by cone-bipolar cells and the downregulated dopamine receptors in amacrine cells were among the most predominant findings, indicating the aberrant light processing in highly myopic eyes. Besides, microglia exhibited elevated expression of cytokines and TGF-β receptors, suggesting enhanced responses to inflammation and the growth-promoting states involved in high myopia progression. Furthermore, cell-cell communication network revealed attenuated neuronal interactions and increased glial/vascular interactions in highly myopic retinas. In conclusion, this study outlines the transcriptional landscape of highly myopic retina, providing novel insights into high myopia development and prevention.
Collapse
Affiliation(s)
- Yunqian Yao
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Research Center of Ophthalmology and OptometryShanghaiChina
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development BiologyChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development BiologyChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Children's HospitalCapital Medical UniversityBeijingChina
| | - Yi Lu
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghaiChina
- State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Xingtao Zhou
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Research Center of Ophthalmology and OptometryShanghaiChina
| | - Xiangjia Zhu
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghaiChina
- State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Leighton RE, Breslin KM, Richardson P, Doyle L, McCullough SJ, Saunders KJ. Relative peripheral hyperopia leads to greater short-term axial length growth in White children with myopia. Ophthalmic Physiol Opt 2023; 43:985-996. [PMID: 37340533 DOI: 10.1111/opo.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Controversy exists regarding the influence of peripheral visual experience on the onset and progression of childhood myopia. This longitudinal, observational study evaluated the relationship between relative peripheral refraction (RPR) and changes in refractive error and axial length (AL) over 12 months in White children aged 6-7 and 12-13 years with a range of baseline refractive errors. METHODS Cycloplegic baseline autorefraction at horizontal retinal eccentricities of 0° and ±30° were recorded with the Shin-Nippon NVision-K 5001 while AL was measured using the Zeiss IOLMaster 700. Measurements were repeated after 12 months on a subgroup. Refractive data were transposed into power vectors as mean spherical equivalent (M), J0 and J45 . RPR was calculated by subtracting central from peripheral measurements. Participants were defined as myopic (M ≤ -0.50 D), premyopic (-0.50 D < M ≤ +0.75 D), emmetropic (+0.75 D < M < +2.00 D) or hyperopic (M ≥ +2.00 D). RESULTS Data were collected from 222 and 245 participants aged 6-7 and 12-13 years, respectively. Myopic eyes demonstrated, on average, more hyperopic RPR. Emmetropes and premyopes displayed emmetropic RPR, and hyperopes showed a myopic RPR. Fifty-six 6- to 7-year-olds and seventy 12- to 13-year-olds contributed 12-month repeated measures. Longitudinal data demonstrated a significant relationship between a more hyperopic RPR in the nasal retina and greater short-term axial elongation in teens with myopia at baseline (β = 0.69; p = 0.04). Each dioptre of relative peripheral hyperopia in the nasal retina was associated with an additional 0.10 mm (95% CI: 0.02-0.18 mm) annual increase in AL. CONCLUSIONS Hyperopic RPR in the nasal retina of myopic children is indicative of increased risk for rapid axial elongation and may be a useful metric to support decision-making in myopia management.
Collapse
Affiliation(s)
- Rebecca E Leighton
- Centre for Optometry and Vision Science Research, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Karen M Breslin
- Centre for Optometry and Vision Science Research, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Patrick Richardson
- Centre for Optometry and Vision Science Research, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Lesley Doyle
- Centre for Optometry and Vision Science Research, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Sara J McCullough
- Centre for Optometry and Vision Science Research, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Kathryn J Saunders
- Centre for Optometry and Vision Science Research, School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
11
|
Applications of Genomics and Transcriptomics in Precision Medicine for Myopia Control or Prevention. Biomolecules 2023; 13:biom13030494. [PMID: 36979429 PMCID: PMC10046175 DOI: 10.3390/biom13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Myopia is a globally emerging concern accompanied by multiple medical and socio-economic burdens with no well-established causal treatment to control thus far. The study of the genomics and transcriptomics of myopia treatment is crucial to delineate disease pathways and provide valuable insights for the design of precise and effective therapeutics. A strong understanding of altered biochemical pathways and underlying pathogenesis leading to myopia may facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the genomics and transcriptomics of myopia in human and animal models. We also discuss the potential applicability of these findings to precision medicine for myopia treatment.
Collapse
|
12
|
Wilmet B, Callebert J, Duvoisin R, Goulet R, Tourain C, Michiels C, Frederiksen H, Schaeffel F, Marre O, Sahel JA, Audo I, Picaud S, Zeitz C. Mice Lacking Gpr179 with Complete Congenital Stationary Night Blindness Are a Good Model for Myopia. Int J Mol Sci 2022; 24:ijms24010219. [PMID: 36613663 PMCID: PMC9820543 DOI: 10.3390/ijms24010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mutations in GPR179 are one of the most common causes of autosomal recessive complete congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by impaired dim and night vision, associated with other ocular symptoms, including high myopia. cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid chromatography, we show that adult Gpr179-/- mice have a significant decrease in both retinal dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced myopia but does not affect the natural refractive development. Altogether, our data added a novel myopia model, which could be used to identify therapeutic interventions.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, AP-HP, 75010 Paris, France
| | - Robert Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruben Goulet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, 75270 Paris, France
| | - Christelle Michiels
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4056 Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
- Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France
- Académie des Sciences, Institut de France, 75006 Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| |
Collapse
|
13
|
Tang YL, Liu AL, Lv SS, Zhou ZR, Cao H, Weng SJ, Zhang YQ. Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus. Sci Transl Med 2022; 14:eabq6474. [PMID: 36475906 DOI: 10.1126/scitranslmed.abq6474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Collapse
Affiliation(s)
- Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Rui Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Huang Y, Chen X, Zhuang J, Yu K. The Role of Retinal Dysfunction in Myopia Development. Cell Mol Neurobiol 2022:10.1007/s10571-022-01309-1. [DOI: 10.1007/s10571-022-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
|
15
|
Gupta SK, Chakraborty R, Verkicharla PK. Electroretinogram responses in myopia: a review. Doc Ophthalmol 2022; 145:77-95. [PMID: 34787722 PMCID: PMC9470726 DOI: 10.1007/s10633-021-09857-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 11/02/2022]
Abstract
The stretching of a myopic eye is associated with several structural and functional changes in the retina and posterior segment of the eye. Recent research highlights the role of retinal signaling in ocular growth. Evidence from studies conducted on animal models and humans suggests that visual mechanisms regulating refractive development are primarily localized at the retina and that the visual signals from the retinal periphery are also critical for visually guided eye growth. Therefore, it is important to study the structural and functional changes in the retina in relation to refractive errors. This review will specifically focus on electroretinogram (ERG) changes in myopia and their implications in understanding the nature of retinal functioning in myopic eyes. Based on the available literature, we will discuss the fundamentals of retinal neurophysiology in the regulation of vision-dependent ocular growth, findings from various studies that investigated global and localized retinal functions in myopia using various types of ERGs.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, Brien Holden Institute of Optometry and Vision Sciences, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Ranjay Chakraborty
- Caring Futures Institute, College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Adelaide, South Australia, Australia
| | - Pavan Kumar Verkicharla
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, Brien Holden Institute of Optometry and Vision Sciences, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
16
|
Qian KW, Li YY, Wu XH, Gong X, Liu AL, Chen WH, Yang Z, Cui LJ, Liu YF, Ma YY, Yu CX, Huang F, Wang Q, Zhou X, Qu J, Zhong YM, Yang XL, Weng SJ. Altered Retinal Dopamine Levels in a Melatonin-proficient Mouse Model of Form-deprivation Myopia. Neurosci Bull 2022; 38:992-1006. [PMID: 35349094 PMCID: PMC9468212 DOI: 10.1007/s12264-022-00842-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
Abstract
Reduced levels of retinal dopamine, a key regulator of eye development, are associated with experimental myopia in various species, but are not seen in the myopic eyes of C57BL/6 mice, which are deficient in melatonin, a neurohormone having extensive interactions with dopamine. Here, we examined the relationship between form-deprivation myopia (FDM) and retinal dopamine levels in melatonin-proficient CBA/CaJ mice. We found that these mice exhibited a myopic refractive shift in form-deprived eyes, which was accompanied by altered retinal dopamine levels. When melatonin receptors were pharmacologically blocked, FDM could still be induced, but its magnitude was reduced, and retinal dopamine levels were no longer altered in FDM animals, indicating that melatonin-related changes in retinal dopamine levels contribute to FDM. Thus, FDM is mediated by both dopamine level-independent and melatonin-related dopamine level-dependent mechanisms in CBA/CaJ mice. The previously reported unaltered retinal dopamine levels in myopic C57BL/6 mice may be attributed to melatonin deficiency.
Collapse
Affiliation(s)
- Kang-Wei Qian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun-Yun Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Hua Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Discipline of Neuroscience and Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Hao Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ling-Jie Cui
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuan-Yuan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Furong Huang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiongsi Wang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
18
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Liu H, Chen D, Yang Z, Li X. Atropine Affects the Outer Retina During Inhibiting Form Deprivation Myopia in Guinea Pigs. Curr Eye Res 2022; 47:614-623. [PMID: 35021941 DOI: 10.1080/02713683.2021.2009515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Atropine has been proven to be effective in retarding myopia progression. However, the underlying mechanism remains unknown. Our purpose was to detect morphological and functional changes caused by atropine during myopic inhibition. METHOD Twenty 2-week-old guinea pigs were randomly assigned to either the saline group (n = 10) or the atropine group (n = 10). Form-deprived myopia (FDM) and intravitreal injections were applied on the right eyes. The injections were given every 3 days, lasting for 2 weeks. The left eyes served as control. Ocular refraction, axial length, retinal, and choroidal thickness were collected at the start and the end of the experiment. Retinal function was evaluated via full-field electroretinogram (ERG) at the end of treatment. RESULTS The interocular differences (experimental eye minus control eye) of refraction error (RE), vitreous chamber depth (VCD), and axial length (AL) in the saline group were significantly greater than those in the atropine group (RE, VCD: P < .001, AL: P < .0001). The differences in choroidal thickness between the two groups did not reach statistical significance. However, a decreasing trend of choroidal thickness was observed in the saline group but not in the atropine group. Furthermore, the interocular differences of total retinal and outer retinal thickness in the atropine group were much thicker than in the saline group (P < .001 and P < .01, respectively). The treatment did not affect inner retinal thickness. In photopic ERG, the atropine-treated FDM eyes showed significantly greater a-wave amplitudes compared to the saline group. CONCLUSION During the process of inhibiting FDM, atropine showed an effect on the outer retina, most likely on the cones, in guinea pigs.
Collapse
Affiliation(s)
- Hong Liu
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China.,Aier Institute of Optometry and Vision Science, Changsha, Hunan Province, China
| | | | - Zhikuan Yang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China.,Aier Institute of Optometry and Vision Science, Changsha, Hunan Province, China.,Aier School of Optometry, Hubei University of Science and Technology, Xianning, Hubei Province, China
| | - Xiaoning Li
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China.,Aier Institute of Optometry and Vision Science, Changsha, Hunan Province, China.,Aier School of Optometry, Hubei University of Science and Technology, Xianning, Hubei Province, China
| |
Collapse
|
20
|
Chakraborty R, Landis EG, Mazade R, Yang V, Strickland R, Hattar S, Stone RA, Iuvone PM, Pardue MT. Melanopsin modulates refractive development and myopia. Exp Eye Res 2022; 214:108866. [PMID: 34838844 PMCID: PMC8792255 DOI: 10.1016/j.exer.2021.108866] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Myopia, or nearsightedness, is the most common form of refractive abnormality and is characterized by excessive ocular elongation in relation to ocular power. Retinal neurotransmitter signaling, including dopamine, is implicated in myopic ocular growth, but the visual pathways that initiate and sustain myopia remain unclear. Melanopsin-expressing retinal ganglion cells (mRGCs), which detect light, are important for visual function, and have connections with retinal dopamine cells. Here, we investigated how mRGCs influence normal and myopic refractive development using two mutant mouse models: Opn4-/- mice that lack functional melanopsin photopigments and intrinsic mRGC responses but still receive other photoreceptor-mediated input to these cells; and Opn4DTA/DTA mice that lack intrinsic and photoreceptor-mediated mRGC responses due to mRGC cell death. In mice with intact vision or form-deprivation, we measured refractive error, ocular properties including axial length and corneal curvature, and the levels of retinal dopamine and its primary metabolite, L-3,4-dihydroxyphenylalanine (DOPAC). Myopia was measured as a myopic shift, or the difference in refractive error between the form-deprived and contralateral eyes. We found that Opn4-/- mice had altered normal refractive development compared to Opn4+/+ wildtype mice, starting ∼4D more myopic but developing ∼2D greater hyperopia by 16 weeks of age. Consistent with hyperopia at older ages, 16 week-old Opn4-/- mice also had shorter eyes compared to Opn4+/+ mice (3.34 vs 3.42 mm). Opn4DTA/DTA mice, however, were more hyperopic than both Opn4+/+ and Opn4-/- mice across development ending with even shorter axial lengths. Despite these differences, both Opn4-/- and Opn4DTA/DTA mice had ∼2D greater myopic shifts in response to form-deprivation compared to Opn4+/+ mice. Furthermore, when vision was intact, dopamine and DOPAC levels were similar between Opn4-/- and Opn4+/+ mice, but higher in Opn4DTA/DTA mice, which differed with age. However, form-deprivation reduced retinal dopamine and DOAPC by ∼20% in Opn4-/- compared to Opn4+/+ mice but did not affect retinal dopamine and DOPAC in Opn4DTA/DTA mice. Lastly, systemically treating Opn4-/- mice with the dopamine precursor L-DOPA reduced their form-deprivation myopia by half compared to non-treated mice. Collectively our findings show that disruption of retinal melanopsin signaling alters the rate and magnitude of normal refractive development, yields greater susceptibility to form-deprivation myopia, and changes dopamine signaling. Our results suggest that mRGCs participate in the eye's response to myopigenic stimuli, acting partly through dopaminergic mechanisms, and provide a potential therapeutic target underling myopia progression. We conclude that proper mRGC function is necessary for correct refractive development and protection from myopia progression.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Bedford Park, SA, 5001, Adelaide, Australia; Caring Futures Institute, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
| | - Erica G Landis
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, United States
| | - Reece Mazade
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, United States
| | - Victoria Yang
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, United States
| | - Ryan Strickland
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms, NIMH, NIH, 9000 Rockville Pike, Bethesda, MD, USA, 20892
| | - Richard A Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Department of Pharmacology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, United States; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, United States.
| |
Collapse
|
21
|
Stofkova A, Zloh M, Andreanska D, Fiserova I, Kubovciak J, Hejda J, Kutilek P, Murakami M. Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex. Int J Mol Sci 2021; 23:ijms23010453. [PMID: 35008877 PMCID: PMC8745287 DOI: 10.3390/ijms23010453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodeling of retinal neural activity, which influences the blood–retinal barrier and the development of retinal inflammation. We evaluated this hypothesis using Gnat1rd17 mice, a model of night blindness with late-onset rod-cone dystrophy, and experimental autoimmune uveoretinitis (EAU). Retinal remodeling and its effect on EAU development were investigated by transcriptome profiling, target identification, and functional validation. We showed that Gnat1rd17 mice primarily underwent alterations in their retinal dopaminergic system, triggering the development of an exacerbated EAU, which was counteracted by dopamine replacement with L-DOPA administered either systemically or locally. Remarkably, dopamine acted on retinal endothelial cells to inhibit NF-κB and STAT3 activity and the expression of downstream target genes such as chemokines involved in T cell recruitment. These results suggest that rod-mediated dopamine release functions in a gateway reflex manner in the homeostatic control of immune cell entry into the retina, and the loss of retinal dopaminergic activity in conditions associated with rod dysfunction increases the susceptibility to autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Correspondence: ; Tel.: +420-224-902-718
| | - Miloslav Zloh
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Dominika Andreanska
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Ivana Fiserova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Jan Hejda
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Patrik Kutilek
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan;
| |
Collapse
|
22
|
Swiatczak B, Schaeffel F. "Emmetropic, but not myopic human eyes distinguish positive defocus from calculated defocus in monochromatic red light". Vision Res 2021; 192:107974. [PMID: 34875443 DOI: 10.1016/j.visres.2021.107974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Studies in animal models have provided evidence that broadband light and chromatic cues are necessary for successful emmetropization. We have studied this question in young human subjects by measuring short-term changes in axial length when they watched movies with calculated defocus (2.5D) or optically defocused movies (+2.5D) with red interference filters (620 ± 10 nm). Since filters cut luminance down by a factor of 10, a control experiment with neutral density filters (ND 1.0) was done. Ten myopes and 10 emmetropes were studied. Four experimental conditions were tested on two separate days. On the first day, movies with calculated defocus, and defocused by positive lenses were watched with ND filters. On the second day, movies with the same defocus patterns were watched with the red filters. Movies were presented on a large TV screen (LG OLED65C9, 65″) in a dark room at 2 m distance for 30 min. Changes in axial length before and after each stimulation were measured with the Lenstar (LS 900, with autopositioning system; Haag-Streit). Interestingly, the effects of calculated defocus or optical positive defocus on axial length were suppressed by 1.0 ND filters in myopes and emmetropes, with no clear trend. In contrast, narrow-band red light suppressed eye elongation with calculated defocus but not eye shortening with positive defocus in emmetropes. In myopes, as previously found in white light, there was a trend of axial eye elongation with positive lenses. In conclusion, the effect of positive lenses on eye growth did not require chromatic cues.
Collapse
Affiliation(s)
- Barbara Swiatczak
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
23
|
Yang J, Ouyang X, Fu H, Hou X, Liu Y, Xie Y, Yu H, Wang G. Advances in biomedical study of the myopia-related signaling pathways and mechanisms. Biomed Pharmacother 2021; 145:112472. [PMID: 34861634 DOI: 10.1016/j.biopha.2021.112472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Myopia has become one of the most critical health problems in the world with the increasing time spent indoors and increasing close work. Pathological myopia may have multiple complications, such as myopic macular degeneration, retinal detachment, cataracts, open-angle glaucoma, and severe cases that can cause blindness. Mounting evidence suggests that the cause of myopia can be attributed to the complex interaction of environmental exposure and genetic susceptibility. An increasing number of researchers have focused on the genetic pathogenesis of myopia in recent years. Scleral remodeling and excessive axial elongating induced retina thinning and even retinal detachment are myopia's most important pathological manifestations. The related signaling pathways are indispensable in myopia occurrence and development, such as dopamine, nitric oxide, TGF-β, HIF-1α, etc. We review the current major and recent progress of biomedicine on myopia-related signaling pathways and mechanisms.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinli Ouyang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hong Fu
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinyu Hou
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Yan Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yongfang Xie
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Haiqun Yu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
24
|
Tian T, Zou L, Wang S, Liu R, Liu H. The Role of Dopamine in Emmetropization Modulated by Wavelength and Temporal Frequency in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34546324 PMCID: PMC8458992 DOI: 10.1167/iovs.62.12.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Wavelength and temporal frequency have been found to influence refractive development. This study investigated whether retinal dopamine (DA) plays a role in these processes. Methods Guinea pigs were randomly divided into nine groups that received different lighting conditions for 4 weeks, as follows: white, green, or blue light at 0, 0.5, or 20.0 Hz. Refractions and axial lengths were measured using streak retinoscopy and A-scan ultrasound imaging. DA and its metabolites were measured by high-pressure liquid chromatography-electrochemical detection. Results At 0 Hz, green and blue light produced myopic and hyperopic shifts compared with that of white light. At 0.5 Hz, no significant changes were observed compared with those of green or blue light at 0 Hz, whereas white light at 0.5 Hz induced a myopic shift compared with white light at 0 or 20 Hz. At 20 Hz, green and blue light acted like white light. Among all levels of DA and its metabolites, only vitreous 3, 4-dihydroxyphenylacetic acid (DOPAC) levels and retinal DOPAC/DA ratios were dependent on wavelength, frequency, and their interaction. Specifically, retinal DOPAC/DA ratios were positively correlated with refractions in white and green light conditions. However, blue light (0, 0.5, and 20.0 Hz) produced hyperopic shifts but decreased vitreous DOPAC levels and retinal DOPAC/DA ratios. Conclusions The retinal DOPAC/DA ratio, indicating the metabolic efficiency of DA, is correlated with ocular growth. It may underlie myopic shifts from light exposure with a long wavelength and low temporal frequency. However, different biochemical pathways may contribute to the hyperopic shifts from short wavelength light.
Collapse
Affiliation(s)
- Tian Tian
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Leilei Zou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Shu Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Rui Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Hong Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhi Z, Xiang J, Fu Q, Pei X, Zhou D, Cao Y, Xie L, Zhang S, Chen S, Qu J, Zhou X. The Role of Retinal Connexins Cx36 and Horizontal Cell Coupling in Emmetropization in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34283211 PMCID: PMC8300059 DOI: 10.1167/iovs.62.9.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine whether retinal gap junctions (GJs) via connexin 36 (Cx36, mediating coupling of many retinal cell types) and horizontal cell (HC-HC) coupling, are involved in emmetropization. Methods Guinea pigs (3 weeks old) were monocularly form deprived (FD) or raised without FD (in normal visual [NV] environment) for 2 days or 4 weeks; alternatively, they wore a -4 D lens (hyperopic defocus [HD]) or 0 D lens for 2 days or 1 week. FD and NV eyes received daily subconjunctival injections of a nonspecific GJ-uncoupling agent, 18-β-Glycyrrhetinic Acid (18-β-GA). The amounts of total Cx36 and of phosphorylated Cx36 (P-Cx36; activated state that increases cell-cell coupling), in the inner and outer plexiform layers (IPLs and OPLs), were evaluated by quantitative immunofluorescence (IF), and HC-HC coupling was evaluated by cut-loading with neurobiotin. Results FD per se (excluding effect of light-attenuation) increased HC-HC coupling in OPL, whereas HD did not affect it. HD for 2 days or 1 week had no significant effect on retinal content of Cx36 or P-Cx36. FD for 4 weeks decreased the total amounts of Cx36 and P-Cx36, and the P-Cx36/Cx36 ratio, in the IPL. Subconjunctival 18-β-GA induced myopia in NV eyes and increased the myopic shifts in FD eyes, while reducing the amounts of Cx36 and P-Cx36 in both the IPL and OPL. Conclusions These results suggest that cell-cell coupling via GJs containing Cx36 (particularly those in the IPL) plays a role in emmetropization and form deprivation myopia (FDM) in mammals. Although both FD and 18-β-GA induced myopia, they had opposite effects on HC-HC coupling. These findings suggest that HC-HC coupling in the OPL might not play a significant role in emmetropization and myopia development.
Collapse
Affiliation(s)
- Zhina Zhi
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jing Xiang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qian Fu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiaomeng Pei
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Dengke Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liqin Xie
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Sen Zhang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Si Chen
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Thomson K, Karouta C, Ashby R. Form-Deprivation and Lens-Induced Myopia Are Similarly Affected by Pharmacological Manipulation of the Dopaminergic System in Chicks. Invest Ophthalmol Vis Sci 2021; 61:4. [PMID: 33016984 PMCID: PMC7545069 DOI: 10.1167/iovs.61.12.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Animal models have demonstrated a link between decreases in retinal dopamine levels and the development of form-deprivation myopia (FDM). However, the consistency of dopamine's role in the other major form of experimental myopia, that of lens-induced myopia (LIM), is less clear, raising the question as to what extent dopamine plays a role in human myopia. Therefore, to better define the role of dopamine in both forms of experimental myopia, we examined how consistent the protection afforded by dopamine and the dopamine agonist 6-amino-5,6,7,8-tetrahydronaphthalene-2,3-diol hydrobromide (ADTN) is between FDM and LIM. Methods Intravitreal injections of dopamine (0.002, 0.015, 0.150, 1.500 µmol) or ADTN (0.001, 0.010, 0.100, 1.000 µmol) were administered daily to chicks developing FDM or LIM. Axial length and refraction were measured following 4 days of treatment. To determine the receptor subtype by which dopamine and ADTN inhibit FDM and LIM, both compounds were coadministered with either the dopamine D2-like antagonist spiperone (0.005 µmol) or the D1-like antagonist SCH-23390 (0.005 µmol). Results Intravitreal administration of dopamine or ADTN inhibited the development of FDM (ED50 = 0.003 µmol and ED50 = 0.011 µmol, respectively) and LIM (ED50 = 0.002 µmol and ED50 = 0.010 µmol, respectively) in a dose-dependent manner, with a similar degree of protection observed in both paradigms (P = 0.471 and P = 0.969, respectively). Coadministration with spiperone, but not SCH-23390, inhibited the protective effects of dopamine and ADTN against the development of both FDM (P = 0.214 and P = 0.138, respectively) and LIM (P = 0.116 and P = 0.100, respectively). Conclusions pharmacological targeting of the retinal dopamine system inhibits FDM and LIM in a similar dose-dependent manner through a D2-like mechanism.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
27
|
Jong M, Jonas JB, Wolffsohn JS, Berntsen DA, Cho P, Clarkson-Townsend D, Flitcroft DI, Gifford KL, Haarman AEG, Pardue MT, Richdale K, Sankaridurg P, Tedja MS, Wildsoet CF, Bailey-Wilson JE, Guggenheim JA, Hammond CJ, Kaprio J, MacGregor S, Mackey DA, Musolf AM, Klaver CCW, Verhoeven VJM, Vitart V, Smith EL. IMI 2021 Yearly Digest. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 33909031 PMCID: PMC8088231 DOI: 10.1167/iovs.62.5.7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose The International Myopia Institute (IMI) Yearly Digest highlights new research considered to be of importance since the publication of the first series of IMI white papers. Methods A literature search was conducted for articles on myopia between 2019 and mid-2020 to inform definitions and classifications, experimental models, genetics, interventions, clinical trials, and clinical management. Conference abstracts from key meetings in the same period were also considered. Results One thousand articles on myopia have been published between 2019 and mid-2020. Key advances include the use of the definition of premyopia in studies currently under way to test interventions in myopia, new definitions in the field of pathologic myopia, the role of new pharmacologic treatments in experimental models such as intraocular pressure-lowering latanoprost, a large meta-analysis of refractive error identifying 336 new genetic loci, new clinical interventions such as the defocus incorporated multisegment spectacles and combination therapy with low-dose atropine and orthokeratology (OK), normative standards in refractive error, the ethical dilemma of a placebo control group when myopia control treatments are established, reporting the physical metric of myopia reduction versus a percentage reduction, comparison of the risk of pediatric OK wear with risk of vision impairment in myopia, the justification of preventing myopic and axial length increase versus quality of life, and future vision loss. Conclusions Large amounts of research in myopia have been published since the IMI 2019 white papers were released. The yearly digest serves to highlight the latest research and advances in myopia.
Collapse
Affiliation(s)
- Monica Jong
- Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australian Capital Territory, Australia
- Brien Holden Vision Institute, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Jost B. Jonas
- Department of Ophthalmology Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - James S. Wolffsohn
- Optometry and Vision Science Research Group, Aston University, Birmingham, United Kingdom
| | - David A. Berntsen
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | - Pauline Cho
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, United States
| | - Daniel I. Flitcroft
- Department of Ophthalmology, Children's University Hospital, Dublin, Ireland
| | - Kate L. Gifford
- Myopia Profile Pty Ltd, Brisbane, Queensland, Australia
- Queensland University of Technology (QUT) School of Optometry and Vision Science, Kelvin Grove, Queensland, Australia
| | - Annechien E. G. Haarman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Machelle T. Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Kathryn Richdale
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Milly S. Tedja
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony M. Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States
| | - Caroline C. W. Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Virginie J. M. Verhoeven
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
28
|
Andersen MKG, Kessel L. Ametropia and Emmetropization in CNGB3 Achromatopsia. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 33560291 PMCID: PMC7873492 DOI: 10.1167/iovs.62.2.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Emmetropization is the process of adjusting ocular growth to the focal plane in order to achieve a clear image. Chromatic light may be involved as a cue to guide this process. Achromats are color blind and lack normal cone function; they are often described as being hyperopic, indicating a failure to emmetropize. We aim to describe the refraction and refractive development in a population of genetically characterized achromats. Methods Refractive error data were collected retrospectively from 28 medical records of CNGB3 c.1148delC homozygous achromats. The distribution of spherical equivalent refractive error (SER) and spherical error was analyzed in adults. The refractive development in children was analyzed by documenting astigmatic refractive error and calculating median SER in 1-year age groups and by analyzing the individual development when possible. Results The distribution of SER and spherical error resembled a Gaussian distribution, indicating that emmetropization was disturbed in achromats, but we found indication of some decrease in SER during the first years of childhood. The prevalence of refractive errors was high and broadly distributed. Astigmatic refractive errors were frequent but did not seem to increase with age. Conclusions Refractive development in achromats is more complicated than a complete failure to emmetropize. The spread of refractive errors is larger than previously documented. Results presented here support the theory that chromatic cues and cone photoreceptors may play a role in emmetropization in humans but that it is not essential.
Collapse
Affiliation(s)
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Huang F, Wang Q, Yan T, Tang J, Hou X, Shu Z, Wan F, Yang Y, Qu J, Zhou X. The Role of the Dopamine D2 Receptor in Form-Deprivation Myopia in Mice: Studies With Full and Partial D2 Receptor Agonists and Knockouts. Invest Ophthalmol Vis Sci 2021; 61:47. [PMID: 32572456 PMCID: PMC7415310 DOI: 10.1167/iovs.61.6.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The purpose of this study was to explore the role and mechanism of D2 receptor (D2R) involvement in myopia development and the effects of the full D2R agonist quinpirole and partial D2R agonist aripiprazole on postnatal refractive development and form-deprivation myopia (FDM). Methods C57BL/6 (“B6”) mice, raised either in a visually normal or unilateral form-deprivation environment, were divided into three subgroups, including an intraperitoneally injected (IP) vehicle group and two quinpirole (1 and 10 µg/g body weight) treatment groups. The effects of quinpirole on FDM were further verified in D2R-knockout (KO) mice and corresponding wild-type littermates. Then, the modulation of normal vision development and FDM by aripiprazole (1 and 10 µg/g body weight, IP) was assessed in C57BL/6 mice. All biometric parameters were measured before and after treatments, and retinal cyclic adenosine phosphate (cAMP) and phosphorylated ERK (pERK) levels were analyzed to assess D2R-mediated signal transduction. Results Neither quinpirole nor aripiprazole affected normal refractive development. FDM development was inhibited by quinpirole at low dose but enhanced at high dose, and these bidirectional effects were validated by D2R-specificity. FDM development was attenuated by the partial D2R agonist aripiprazole, at high dose but not at low dose. Quinpirole caused a dose-dependent reduction in cAMP levels, but had no effect on pERK. Aripiprazole reduced cAMP levels at both doses, but caused a dose-dependent increase of pERK in the form-deprived eyes. Conclusions Reduction of D2R-mediated signaling contributes to myopia development, which can be selectively attenuated by partial D2R agonists that activate D2Rs under the low dopamine levels that occur with FDM.
Collapse
|
30
|
Landis EG, Park HN, Chrenek M, He L, Sidhu C, Chakraborty R, Strickland R, Iuvone PM, Pardue MT. Ambient Light Regulates Retinal Dopamine Signaling and Myopia Susceptibility. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33502461 PMCID: PMC7846952 DOI: 10.1167/iovs.62.1.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Exposure to high-intensity or outdoor lighting has been shown to decrease the severity of myopia in both human epidemiological studies and animal models. Currently, it is not fully understood how light interacts with visual signaling to impact myopia. Previous work performed in the mouse retina has demonstrated that functional rod photoreceptors are needed to develop experimentally-induced myopia, alluding to an essential role for rod signaling in refractive development. Methods To determine whether dim rod-dominated illuminance levels influence myopia susceptibility, we housed male C57BL/6J mice under 12:12 light/dark cycles with scotopic (1.6 × 10−3 candela/m2), mesopic (1.6 × 101 cd/m2), or photopic (4.7 × 103 cd/m2) lighting from post-natal day 23 (P23) to P38. Half the mice received monocular exposure to −10 diopter (D) lens defocus from P28–38. Molecular assays to measure expression and content of DA-related genes and protein were conducted to determine how illuminance and lens defocus alter dopamine (DA) synthesis, storage, uptake, and degradation and affect myopia susceptibility in mice. Results We found that mice exposed to either scotopic or photopic lighting developed significantly less severe myopic refractive shifts (lens treated eye minus contralateral eye; –1.62 ± 0.37D and −1.74 ± 0.44D, respectively) than mice exposed to mesopic lighting (–3.61 ± 0.50D; P < 0.005). The 3,4-dihydroxyphenylacetic acid /DA ratio, indicating DA activity, was highest under photopic light regardless of lens defocus treatment (controls: 0.09 ± 0.011 pg/mg, lens defocus: 0.08 ± 0.008 pg/mg). Conclusions Lens defocus interacted with ambient conditions to differentially alter myopia susceptibility and DA-related genes and proteins. Collectively, these results show that scotopic and photopic lighting protect against lens-induced myopia, potentially indicating that a broad range of light levels are important in refractive development.
Collapse
Affiliation(s)
- Erica G Landis
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States
| | - Han Na Park
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Li He
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Curran Sidhu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Ranjay Chakraborty
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States
| | - Ryan Strickland
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Department of Pharmacology, Emory University, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Department of Neuroscience, Emory University, Atlanta, Georgia, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
31
|
Wang WY, Chen C, Chang J, Chien L, Shih YF, Lin LLK, Pang CP, Wang IJ. Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother 2021; 133:111092. [PMID: 33378986 DOI: 10.1016/j.biopha.2020.111092] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
This review provides insights into the mechanism underlying the pathogenesis of myopia and potential targets for clinical intervention. Although the etiology of myopia involves both environmental and genetic factors, recent evidence has suggested that the prevalence and severity of myopia appears to be affected more by environmental factors. Current pharmacotherapeutics are aimed at inhibiting environmentally induced changes in visual input and subsequent changes in signaling pathways during myopia pathogenesis and progression. Recent studies on animal models of myopia have revealed specific molecules potentially involved in the regulation of eye development. Among them, the dopamine receptor plays a critical role in controlling myopia. Subsequent studies have reported pharmacotherapeutic treatments to control myopia progression. In particular, atropine treatment yielded favorable outcomes and has been extensively used; however, current studies are aimed at optimizing its efficacy and confirming its safety. Furthermore, future studies are required to assess the efficacy of combinatorial use of low-dose atropine and contact lenses or orthokeratology.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Camille Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Justine Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Lillian Chien
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Feng Shih
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Luke L K Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, KLN, Hong Kong, China.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
32
|
She Z, Hung LF, Arumugam B, Beach KM, Smith EL. Effects of low intensity ambient lighting on refractive development in infant rhesus monkeys (Macaca mulatta). Vision Res 2020; 176:48-59. [PMID: 32777589 PMCID: PMC7487012 DOI: 10.1016/j.visres.2020.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Studies in chickens suggest low intensity ambient lighting causes myopia. The purpose of this experiment was to examine the effects of low intensity ambient lighting (dim light) on normal refractive development in macaque monkeys. Seven infant rhesus monkeys were reared under dim light (room illumination level: ~55 lx) from 24 to ~310 days of age with otherwise unrestricted vision. Refractive error, corneal power, ocular axial dimensions, and choroidal thickness were measured in anesthetized animals at the onset of the experiment and periodically throughout the dim-light-rearing period, and were compared with those of normal-light-reared monkeys. We found that dim light did not produce myopia; instead, dim-light monkeys were hyperopic relative to normal-light monkeys (median refractive errors at ~155 days, OD: +3.13 D vs. +2.31 D; OS: +3.31D vs. +2.44 D; at ~310 days, OD: +2.75D vs. +1.78D, OS: +3.00D vs. +1.75D). In addition, dim-light rearing caused sustained thickening in the choroid, but it did not alter corneal power development, nor did it change the axial nature of the refractive errors. These results showed that, for rhesus monkeys and possibly other primates, low ambient lighting by itself is not necessarily myopiagenic, but might compromise the efficiency of emmetropization.
Collapse
Affiliation(s)
- Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia.
| |
Collapse
|
33
|
Thomson K, Karouta C, Ashby R. Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks. Exp Eye Res 2020; 200:108233. [PMID: 32919992 DOI: 10.1016/j.exer.2020.108233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Animal models have demonstrated a link between dysregulation of the retinal dopamine system and the development of experimental myopia (short-sightedness). However, pharmacological investigations of dopamine in animal models rely heavily on intravitreal or systemic administration, which have several limitations for longer-term experiments. We therefore investigated whether administration of dopamine as a topical eye drop can inhibit the development of form-deprivation myopia (FDM) in chicks. We also examined whether chemical modification of dopamine through deuterium substitution, which might enhance stability and bioavailability, can increase dopamine's effectiveness against FDM when given topically. METHODS Dopamine or deuterated dopamine (Dopamine-1,1,2,2-d4 hydrochloride) was administered as a daily intravitreal injection or as daily topical eye drops to chicks developing FDM over an ascending dose range (min. n = 6 per group). Axial length and refraction were measured following 4 days of treatment. RESULTS Both intravitreal (ED50 = 0.002μmoles) and topical application (ED50 = 6.10μmoles) of dopamine inhibited the development of FDM in a dose-dependent manner. Intravitreal injections, however, elicited a significantly higher level of protection relative to topical eye drops (p < 0.01). Deuterated dopamine inhibited FDM to a similar extent as unmodified dopamine when administered as intravitreal injections (p = 0.897) or topical eye drops (p = 0.921). CONCLUSIONS Both intravitreal and topical application of dopamine inhibit the development of FDM in a dose-dependent manner, indicating that topical administration may be an effective avenue for longer-term dopamine experiments. Deuterium substitution does not alter the protection afforded by dopamine against FDM when given as either an intravitreal injection or topical eye drop.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Australia.
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Australia
| |
Collapse
|
34
|
Gisbert S, Feldkaemper M, Wahl S, Schaeffel F. Interactions of cone abundancies, opsin expression, and environmental lighting with emmetropization in chickens. Exp Eye Res 2020; 200:108205. [PMID: 32866531 DOI: 10.1016/j.exer.2020.108205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
We had previously found that M to L cone abundancy ratios in the chicken retina are correlated with vitreous chamber depth and refractive state in chickens eyes, when they have normal visual exposure but not when they develop deprivation myopia. The finding suggests an interaction between cone abundancies and emmetropization. In the current study, we analyzed how stable this correlation was against changes in environmental variables and strain differences. We found that the correlation was preserved in two chicken strains, as long as they were raised in the laboratory facilities and not in the animal facilities of the institute. To determine the reasons for this difference, spectral and temporal lighting parameters were better adjusted in both places, whereas temperature, humidity, food, diurnal lighting cycles and illuminance were already matched. It was also verified that both strains of chickens had the same cone opsin amino acid sequences. The correlation between M to L cone abundancy and ocular biometry is highly susceptible to changes in environmental variables. Yet undetermined differences in lighting parameters were the most likely reasons. Other striking findings were that green cone opsin mRNA expression was downregulated when deprivation myopia developed. Similarly, red opsin mRNA was downregulated when chicks wore red spectacles, which made them more hyperopic. In summary, our experiments show that photoreceptor abundancies, opsin expression, and the responses to deprivation, and therefore emmetropization, are surprisingly dependent on subtle differences in lighting parameters.
Collapse
Affiliation(s)
- Sandra Gisbert
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, Elfriede Aulhorn Strasse 7, 72076, Tübingen, Germany
| | - Marita Feldkaemper
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, Elfriede Aulhorn Strasse 7, 72076, Tübingen, Germany
| | - Siegfried Wahl
- ZEISS Vision Science Lab, Ophthalmic Research Institute, Elfriede Aulhorn Strasse 7, 72076, Tübingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, Elfriede Aulhorn Strasse 7, 72076, Tübingen, Germany; ZEISS Vision Science Lab, Ophthalmic Research Institute, Elfriede Aulhorn Strasse 7, 72076, Tübingen, Germany; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, CH-4031 Basel, Switzerland.
| |
Collapse
|
35
|
Increased endogenous dopamine prevents myopia in mice. Exp Eye Res 2020; 193:107956. [PMID: 32032629 DOI: 10.1016/j.exer.2020.107956] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/01/2023]
Abstract
Experimental evidence suggests that dopamine (DA) modulates refractive eye growth. We evaluated whether increasing endogenous DA activity using pharmacological or genetic approaches decreased myopia susceptibility in mice. First, we assessed the effects of systemic L-3,4-dihydroxyphenylalanine (L-DOPA) injections on form deprivation myopia (FDM) in C57BL/6 J (WTC57) mice. WTC57 mice received daily systemic injections of L-DOPA (n = 11), L-DOPA + ascorbic acid (AA, n = 22), AA (n = 20), or Saline (n = 16). Second, we tested transgenic mice with increased or decreased expression of vesicular monoamine transporter 2 (VMAT2HI, n = 22; WTHI, n = 18; VMAT2LO, n = 18; or WTLO, n = 9) under normal and form deprivation conditions. VMAT2 packages DA into vesicles, affecting DA release. At post-natal day 28 (P28), monocular FD was induced in each genotype. Weekly measurements of refractive error, corneal curvature, and ocular biometry were performed until P42 or P49. WTC57 mice exposed to FD developed a significant myopic shift (treated-contralateral eye) in AA (-3.27 ± 0.73D) or saline (-3.71 ± 0.80D) treated groups that was significantly attenuated by L-DOPA (-0.73 ± 0.90D, p = 0.0002) or L-DOPA + AA (-0.11 ± 0.46D, p = 0.0103). The VMAT2LO mice, with under-expression of VMAT2, were most susceptible to FDM. VMAT2LO mice developed significant myopic shifts to FD after one week compared to VMAT2HI and WT mice (VMAT2LO: -5.48 ± 0.54D; VMAT2HI: -0.52 ± 0.92D, p < 0.05; WT: -2.13 ± 0.78D, p < 0.05; ungoggled control: -0.22 ± 0.24D, p < 0.001). These results indicate that endogenously increasing DA synthesis and release by genetic and pharmacological methods prevents FDM in mice.
Collapse
|
36
|
Wang M, Aleman AC, Schaeffel F. Probing the Potency of Artificial Dynamic ON or OFF Stimuli to Inhibit Myopia Development. Invest Ophthalmol Vis Sci 2019; 60:2599-2611. [PMID: 31219534 DOI: 10.1167/iovs.18-26471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether equiluminant artificial dynamic ON or OFF stimuli on a computer screen can induce bidirectional changes in choroidal thickness (ChTh) in both humans and chickens, and whether such changes are associated with bidirectional changes in retinal dopamine release in chickens. Methods Experiment 1: Before and after ON or OFF stimulation for 1 hour, ChTh was measured with optical coherence tomography (OCT). Experiment 2: chicks (n = 14) were raised under ON or OFF stimulation for 3 hours. ChTh was determined by OCT. Experiment 3: chicks were raised for 7 days either under room light (500 lux, n = 11), dynamic ON stimulus (700 lux, n = 15), or dynamic OFF stimulus (700 lux, n = 7). In addition, negative lenses were attached to their right eyes. After experiments 2 and 3, retinal and vitreal dopamine (DA), and its metabolites, were measured by HPLC-electrochemical detection. Results Experiment 1: Dynamic ON stimuli caused thicker choroids (+5.3 ± 2.0 μm), whereas OFF stimuli caused choroidal thinning (-4.7 ± 0.5 μm) (right eye data only, P < 0.001). Experiment 2: After 3 hours, chickens developed thicker choroids with ON stimuli (+37.4 ± 12.4 μm) and thinner choroids with OFF stimuli (-11.3 ± 3.6 μm, difference P < 0.01). Vitreal DA, 3-methoxytyramine, and homovanillic acid levels were elevated after ON stimulation, compared with the OFF (P < 0.05). Experiment 3: After 7 days, chickens with lenses developed more myopia both with ON and OFF stimulation, compared with room light. ON stimulation increased vitreal DA compared with OFF. Conclusions Artificial dynamic ON or OFF stimuli had similar effects on ChTh in humans and chickens, but more work will be necessary to determine whether such stimuli can be used as novel interventions of myopia.
Collapse
Affiliation(s)
- Min Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Hunan Province, China.,Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| | - Andrea C Aleman
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Germany
| |
Collapse
|
37
|
Kim TH, Son T, Le D, Yao X. Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice. Sci Rep 2019; 9:16685. [PMID: 31723168 PMCID: PMC6853881 DOI: 10.1038/s41598-019-53082-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
The hyaloid vascular system (HVS) is known to have an important role in eye development. However, physiological mechanisms of HVS regression and their correlation with developmental eye disorders remain unclear due to technical limitations of conventional ending point examination with fixed tissues. Here, we report comparative optical coherence tomography (OCT) and OCT angiography (OCTA) monitoring of HVS regression in wild-type and retinal degeneration 10 (rd10) mice. Longitudinal OCTA monitoring revealed accelerated regression of hyaloid vessels correlated with retinal degeneration in rd10. Quantitative OCT measurement disclosed significant distortions of both retinal thickness and the vitreous chamber in rd10 compared to WT mice. These OCT/OCTA observations confirmed the close relationship between HVS physiology and retinal neurovascular development. The distorted HVS regression might result from retinal hyperoxia or dopamine abnormality due to retinal remodeling in rd10 retina. By providing a noninvasive imaging platform for longitudinal monitoring of HVS regression, further OCT/OCTA study may lead to in-depth understanding of the physiological mechanisms of HVS regression in normal and diseased eyes, which is not only important for advanced study of the nature of the visual system but also may provide insights into the development of better treatment protocols of congenital eye disorders.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - David Le
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
38
|
Gong X, Wu XH, Liu AL, Qian KW, Li YY, Ma YY, Huang F, Wang Q, Wu H, Zhou X, Qu J, Yuan F, Zhong YM, Yang XL, Weng SJ. Optic nerve crush modulates refractive development of the C57BL/6 mouse by changing multiple ocular dimensions. Brain Res 2019; 1726:146537. [PMID: 31672473 DOI: 10.1016/j.brainres.2019.146537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 01/16/2023]
Abstract
Higher visual centers could modulate visually-guided ocular growth, in addition to local mechanisms intrinsic to the eye. There is evidence that such central modulations could be species (even subspecies)-dependent. While the mouse has recently become an important experimental animal in myopia studies, it remains unclear whether and how visual centers modulate refractive development in mice, an issue that was examined in the present study. We found that optic nerve crush (ONC), performed at P18, could modify normal refractive development in the C57BL/6 mouse raised in normal visual environment. Unexpectedly, sham surgery caused a steeper cornea, leading to a modest myopic refractive shift, but did not induce significant changes in ocular axis length. ONC caused corneal flattening and re-calibrated the refractive set-point in a bidirectional manner, causing significant myopic (<-3 D, 54.5%) or hyperopic (>+3 D, 18.2%) shifts in refractive error in most (totally 72.7%) animals, both due to changes in ocular axial length. ONC did not change the density of dopaminergic amacrine cells, but increased retinal levels of dopamine and DOPAC. We conclude that higher visual centers are likely to play a role in fine-tuning of ocular growth, thus modifying refractive development in the C57BL/6 mouse. The changes in refractive error induced by ONC are accounted for by alternations in multiple ocular dimensions, including corneal curvature and axial length.
Collapse
Affiliation(s)
- Xue Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Hua Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China; Discipline of Neuroscience and Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kang-Wei Qian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Yun Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan-Yuan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Furong Huang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiongsi Wang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Wu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Yuan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Altered ocular parameters from circadian clock gene disruptions. PLoS One 2019; 14:e0217111. [PMID: 31211778 PMCID: PMC6581257 DOI: 10.1371/journal.pone.0217111] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of refractive errors is poorly understood. Myopia (nearsightedness) in particular both blurs vision and predisposes the eye to many blinding diseases during adulthood. Based on past findings of diurnal variations in the dimensions of the eyes of humans and other vertebrates, altered diurnal rhythms of these ocular dimensions with experimentally induced myopia, and evolving evidence that ambient light exposures influence refractive development, we assessed whether disturbances in circadian signals might alter the refractive development of the eye. In mice, retinal-specific knockout of the clock gene Bmal1 induces myopia and elongates the vitreous chamber, the optical compartment separating the lens and the retina. These alterations simulate common ocular findings in clinical myopia. In Drosophila melanogaster, knockouts of the clock genes cycle or period lengthen the pseudocone, the optical component of the ommatidium that separates the facet lens from the photoreceptors. Disrupting circadian signaling thus alters optical development of the eye in widely separated species. We propose that mechanisms of myopia include circadian dysregulation, a frequent occurrence in modern societies where myopia also is both highly prevalent and increasing at alarming rates. Addressing circadian dysregulation may improve understanding of the pathogenesis of refractive errors and introduce novel therapeutic approaches to ameliorate myopia development in children.
Collapse
|
40
|
Landis EG, Yang V, Brown DM, Pardue MT, Read SA. Dim Light Exposure and Myopia in Children. Invest Ophthalmol Vis Sci 2019; 59:4804-4811. [PMID: 30347074 PMCID: PMC6181186 DOI: 10.1167/iovs.18-24415] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Experimental myopia in animal models suggests that bright light can influence refractive error and prevent myopia. Additionally, animal research indicates activation of rod pathways and circadian rhythms may influence eye growth. In children, objective measures of personal light exposure, recorded by wearable light sensors, have been used to examine the effects of bright light exposure on myopia. The effect of time spent in a broad range of light intensities on childhood refractive development is not known. This study aims to evaluate dim light exposure in myopia. Methods We reanalyzed previously published data to investigate differences in dim light exposure across myopic and nonmyopic children from the Role of Outdoor Activity in Myopia (ROAM) study in Queensland, Australia. The amount of time children spent in scotopic (<1-1 lux), mesopic (1-30 lux), indoor photopic (>30-1000 lux), and outdoor photopic (>1000 lux) light over both weekdays and weekends was measured with wearable light sensors. Results We found significant differences in average daily light exposure between myopic and nonmyopic children. On weekends, myopic children received significantly less scotopic light (P = 0.024) and less outdoor photopic light than nonmyopic children (P < 0.001). In myopic children, more myopic refractive errors were correlated with increased time in mesopic light (R = -0.46, P = 0.002). Conclusions These findings suggest that in addition to bright light exposure, rod pathways stimulated by dim light exposure could be important to human myopia development. Optimal strategies for preventing myopia with environmental light may include both dim and bright light exposure.
Collapse
Affiliation(s)
- Erica G Landis
- Neuroscience, Emory University, Atlanta, Georgia, United States.,Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States
| | - Victoria Yang
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Dillon M Brown
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Neuroscience, Emory University, Atlanta, Georgia, United States.,Department of Ophthalmology, Emory University, Atlanta, Georgia, United States.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States.,Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Scott A Read
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
42
|
Chakraborty R, Yang V, Park HN, Landis EG, Dhakal S, Motz CT, Bergen MA, Iuvone PM, Pardue MT. Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice. Exp Eye Res 2018; 180:226-230. [PMID: 30605665 DOI: 10.1016/j.exer.2018.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 11/30/2022]
Abstract
Retinal photoreceptors are important in visual signaling for normal eye growth in animals. We used Gnat2cplf3/cplf3 (Gnat2-/-) mice, a genetic mouse model of cone dysfunction to investigate the influence of cone signaling in ocular refractive development and myopia susceptibility in mice. Refractive development under normal visual conditions was measured for Gnat2-/- and age-matched Gnat2+/+ mice, every 2 weeks from 4 to 14 weeks of age. Weekly measurements were performed on a separate cohort of mice that underwent monocular form-deprivation (FD) in the right eye from 4 weeks of age using head-mounted diffusers. Refraction, corneal curvature, and ocular biometrics were obtained using photorefraction, keratometry and optical coherence tomography, respectively. Retinas from FD mice were harvested, and analyzed for dopamine (DA) and 3,4-dihydroxyphenylacetate (DOPAC) using high-performance liquid chromatography. Under normal visual conditions, Gnat2+/+ and Gnat2-/- mice showed similar refractive error, axial length, and corneal radii across development (p > 0.05), indicating no significant effects of the Gnat2 mutation on normal ocular refractive development in mice. Three weeks of FD produced a significantly greater myopic shift in Gnat2-/- mice compared to Gnat2+/+ controls (-5.40 ± 1.33 D vs -2.28 ± 0.28 D, p = 0.042). Neither the Gnat2 mutation nor FD altered retinal levels of DA or DOPAC. Our results indicate that cone pathways needed for high acuity vision in primates are not as critical for normal refractive development in mice, and that both rods and cones contribute to visual signalling pathways needed to respond to FD in mammalian eyes.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, 5001, Adelaide, Australia
| | - Victoria Yang
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
| | - Han Na Park
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
| | - Erica G Landis
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
| | - Susov Dhakal
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
| | - Michael A Bergen
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Pharmacology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
43
|
Huang F, Zhang L, Wang Q, Yang Y, Li Q, Wu Y, Chen J, Qu J, Zhou X. Dopamine D1 Receptors Contribute Critically to the Apomorphine-Induced Inhibition of Form-Deprivation Myopia in Mice. ACTA ACUST UNITED AC 2018; 59:2623-2634. [PMID: 29847669 DOI: 10.1167/iovs.17-22578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Furong Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Lishuai Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Qiongsi Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yanan Yang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Qihang Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yi Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jiangfan Chen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| |
Collapse
|
44
|
Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt 2018; 38:217-245. [PMID: 29691928 PMCID: PMC6038122 DOI: 10.1111/opo.12453] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Despite extensive research, mechanisms regulating postnatal eye growth and those responsible for ametropias are poorly understood. With the marked recent increases in myopia prevalence, robust and biologically-based clinical therapies to normalize refractive development in childhood are needed. Here, we review classic and contemporary literature about how circadian biology might provide clues to develop a framework to improve the understanding of myopia etiology, and possibly lead to rational approaches to ameliorate refractive errors developing in children. RECENT FINDINGS Increasing evidence implicates diurnal and circadian rhythms in eye growth and refractive error development. In both humans and animals, ocular length and other anatomical and physiological features of the eye undergo diurnal oscillations. Systemically, such rhythms are primarily generated by the 'master clock' in the surpachiasmatic nucleus, which receives input from the intrinsically photosensitive retinal ganglion cells (ipRGCs) through the activation of the photopigment melanopsin. The retina also has an endogenous circadian clock. In laboratory animals developing experimental myopia, oscillations of ocular parameters are perturbed. Retinal signaling is now believed to influence refractive development; dopamine, an important neurotransmitter found in the retina, not only entrains intrinsic retinal rhythms to the light:dark cycle, but it also modulates refractive development. Circadian clocks comprise a transcription/translation feedback control mechanism utilizing so-called clock genes that have now been associated with experimental ametropias. Contemporary clinical research is also reviving ideas first proposed in the nineteenth century that light exposures might impact refraction in children. As a result, properties of ambient lighting are being investigated in refractive development. In other areas of medical science, circadian dysregulation is now thought to impact many non-ocular disorders, likely because the patterns of modern artificial lighting exert adverse physiological effects on circadian pacemakers. How, or if, such modern light exposures and circadian dysregulation contribute to refractive development is not known. SUMMARY The premise of this review is that circadian biology could be a productive area worthy of increased investigation, which might lead to the improved understanding of refractive development and improved therapeutic interventions.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | | | | | | | - Machelle T. Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur
| | - Richard A. Stone
- University of Pennsylvania School of Medicine, Philadelphia, USA
| |
Collapse
|
45
|
Integrated SWATH-based and targeted-based proteomics provide insights into the retinal emmetropization process in guinea pig. J Proteomics 2018; 181:1-15. [PMID: 29572162 DOI: 10.1016/j.jprot.2018.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 01/13/2023]
Abstract
Myopia is generally regarded as a failure of normal emmetropization process, however, its underlying molecular mechanisms are unclear. To investigate the retinal protein profile changes during emmetropization, we studied differential protein expressions of ocular growth in young guinea pigs at 3 and 21 days old respectively, when significant axial elongation was detected (P < 0.001, n = 10). Independent pooled retinal samples of both eyes were subjected to SWATH mass spectrometry (MS) followed by bioinformatics analysis using cloud-based platforms. A comprehensive retina SWATH ion-library consisting of 3138 (22,871) unique proteins (peptides) at 1% FDR was constructed. 40 proteins were found to be significantly up-regulated and 8 proteins down-regulated during emmetropization (≥log2 of 0.43 with ≥2 peptides matched per protein; P < 0.05). Using pathway analysis, the most significant pathway identifiable was 'phototransduction' (P = 1.412e-4). Expression patterns of 7 proteins identified in this pathway were further validated and confirmed (P < 0.05) with high-resolution Multiple Reaction Monitoring (MRM-HR) MS. Combining discovery and targeted proteomics approaches, this study for the first time comprehensively profiled protein changes in the guinea pig retina during normal emmetropization-associated eye growth. The findings of this study are also relevant to the myopia development, which is the result of failed emmetropization. SIGNIFICANCE Myopia is considered as a failure of emmetropization. However, the underlying biochemical mechanism of emmetropization, a visually guided process in which eye grows towards the optimal optical state of clear vision during early development, is not well understood. Retina is known as the key tissue to regulate this active eye growth. we studied eye growth of young guinea pigs and harvested their retinal tissues. A comprehensive SWATH ion library with identification of a total 3138 unique proteins were established, in which 48 proteins exhibited significant differential expressions between 3 and 21 days old. After MRM-HR confirmation, 'phototransduction' were found as the most active pathway during emmetropic eye growth. This study is the first in discovering key retinal protein players and pathways which are presumably orchestrated by biological mechanism(s) underlying emmetropization.
Collapse
|
46
|
Association Between Hay Fever and High Myopia in United States Adolescents and Adults. Eye Contact Lens 2017; 43:186-191. [PMID: 26974535 DOI: 10.1097/icl.0000000000000251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the relationship between hay fever and refractive error in a representative sample of adolescents and adults in the United States. METHODS This cross-sectional study included 5,744 participants aged ≥12 years from the 2005 to 2006 National Health and Nutrition Examination Survey who participated in the allergy questionnaire, completed objective refraction and keratometry in both eyes, and had immunoglobulin E (IgE) serology. The primary predictor variable, refractive error, was classified as emmetropia (-0.99 to +0.99 diopters [D]), low myopia (-1.00 to -2.99 D), moderate myopia (-3.00 to -5.99 D), high myopia (≥-6.00 D), or hyperopia (≥1.00 D). Covariates included age, gender, race, asthma, eczema, total serum IgE ≥120 kU/L, corneal steepness, and corneal astigmatism. The primary outcome was hay fever. RESULTS The study population's mean age was 41.7 years; 48.8% of subjects were men and 51.2% were women. The prevalence of hay fever was 12.1% overall. High myopes had 2.7 times higher odds of hay fever compared to emmetropes (OR 2.67, CI, 1.57-4.51, P=0.001), which was independent of demographics, atopic conditions, IgE serology, and keratometry measurements. CONCLUSIONS The association between hay fever and high myopia identified in this large cross-sectional study remains speculative and was not mediated through corneal steepness or corneal astigmatism. Further prospective studies may help elucidate the directionality of the association between hay fever and high myopia.
Collapse
|
47
|
Zhao X, Wong KY, Zhang DQ. Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina. Sci Rep 2017; 7:7920. [PMID: 28801634 PMCID: PMC5554153 DOI: 10.1038/s41598-017-08172-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
In the vertebrate retina, dopamine is synthesized and released by a specialized type of amacrine cell, the dopaminergic amacrine cell (DAC). DAC activity is stimulated by rods, cones, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells upon illumination. However, the relative contributions of these three photoreceptor systems to the DAC light-induced response are unknown. Here we found that rods excite dark-adapted DACs across a wide range of stimulation intensities, primarily through connexin-36-dependent rod pathways. Similar rod-driven responses were observed in both ventral and dorsal DACs. We further found that in the dorsal retina, M-cones and melanopsin contribute to dark-adapted DAC responses with a similar threshold intensity. In the ventral retina, however, the threshold intensity for M-cone-driven responses was two log units greater than that observed in dorsal DACs, and melanopsin-driven responses were almost undetectable. We also examined the DAC response to prolonged adapting light and found such responses to be mediated by rods under dim lighting conditions, rods/M-cones/melanopsin under intermediate lighting conditions, and cones and melanopsin under bright lighting conditions. Our results elucidate the relative contributions of the three photoreceptor systems to DACs under different lighting conditions, furthering our understanding of the role these cells play in the visual system.
Collapse
Affiliation(s)
- Xiwu Zhao
- Eye Research Institute, Oakland University, Rochester, MI, United States.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI, United States.
| |
Collapse
|
48
|
Zhou X, Pardue MT, Iuvone PM, Qu J. Dopamine signaling and myopia development: What are the key challenges. Prog Retin Eye Res 2017; 61:60-71. [PMID: 28602573 DOI: 10.1016/j.preteyeres.2017.06.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023]
Abstract
In the face of an "epidemic" increase in myopia over the last decades and myopia prevalence predicted to reach 2.5 billion people by the end of this decade, there is an urgent need to develop effective and safe therapeutic interventions to slow down this "myopia booming" and prevent myopia-related complications and vision loss. Dopamine (DA) is an important neurotransmitter in the retina and mediates diverse functions including retina development, visual signaling, and refractive development. Inspired by the convergence of epidemiological and animal studies in support of the inverse relationship between outdoor activity and risk of developing myopia and by the close biological relationship between light exposure and dopamine release/signaling, we felt it is timely and important to critically review the role of DA in myopia development. This review will revisit several key points of evidence for and against DA mediating light control of myopia: 1) the causal role of extracellular retinal DA levels, 2) the mechanism and action of dopamine D1 and D2 receptors and 3) the roles of cellular/circuit retinal pathways. We examine the experiments that show causation by altering DA, DA receptors and visual pathways using pharmacological, transgenic, or visual environment approaches. Furthermore, we critically evaluate the safety issues of a DA-based treatment strategy and some approaches to address these issues. The review identifies the key questions and challenges in translating basic knowledge on DA signaling and myopia from animal studies into effective pharmacological treatments for myopia in children.
Collapse
Affiliation(s)
- Xiangtian Zhou
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science. 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA 30332, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, United States
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA 30322, United States; Department of Pharmacology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA 30322, United States
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science. 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China.
| |
Collapse
|
49
|
Metlapally R, Park HN, Chakraborty R, Wang KK, Tan CC, Light JG, Pardue MT, Wildsoet CF. Genome-Wide Scleral Micro- and Messenger-RNA Regulation During Myopia Development in the Mouse. Invest Ophthalmol Vis Sci 2017; 57:6089-6097. [PMID: 27832275 PMCID: PMC5104419 DOI: 10.1167/iovs.16-19563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose MicroRNA (miRNAs) have been previously implicated in scleral remodeling in normal eye growth. They have the potential to be therapeutic targets for prevention/retardation of exaggerated eye growth in myopia by modulating scleral matrix remodeling. To explore this potential, genome-wide miRNA and messenger RNA (mRNA) scleral profiles in myopic and control eyes from mice were studied. Methods C57BL/6J mice (n = 7; P28) reared under a 12L:12D cycle were form-deprived (FD) unilaterally for 2 weeks. Refractive error and axial length changes were measured using photorefraction and 1310-nm spectral-domain optical coherence tomography, respectively. Scleral RNA samples from FD and fellow control eyes were processed for microarray assay. Statistical analyses were performed using National Institute of Aging array analysis tool; group comparisons were made using ANOVA, and gene ontologies were identified using software available on the Web. Findings were confirmed using quantitative PCR in a separate group of mice (n = 7). Results Form-deprived eyes showed myopic shifts in refractive error (−2.02 ± 0.47 D; P < 0.01). Comparison of the scleral RNA profiles of test eyes with those of control eyes revealed 54 differentially expressed miRNAs and 261 mRNAs fold-change >1.25 (maximum fold change = 1.63 and 2.7 for miRNAs and mRNAs, respectively) (P < 0.05; minimum, P = 0.0001). Significant ontologies showing gene over-representation (P < 0.05) included intermediate filament organization, scaffold protein binding, detection of stimuli, calcium ion, G protein, and phototransduction. Significant differential expression of Let-7a and miR-16-2, and Smok4a, Prph2, and Gnat1 were confirmed. Conclusions Scleral mi- and mRNAs showed differential expression linked to myopia, supporting the involvement of miRNAs in eye growth regulation. The observed general trend of relatively small fold-changes suggests a tightly controlled, regulatory mechanism for scleral gene expression.
Collapse
Affiliation(s)
- Ravikanth Metlapally
- School of Optometry, University of California at Berkeley, Berkeley, California, United States
| | - Han Na Park
- Department of Ophthalmology at Emory University, Atlanta, Georgia, United States
| | - Ranjay Chakraborty
- Department of Ophthalmology at Emory University, Atlanta, Georgia, United States 3Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, Georgia, United States
| | - Kevin K Wang
- School of Optometry, University of California at Berkeley, Berkeley, California, United States
| | - Christopher C Tan
- Department of Ophthalmology at Emory University, Atlanta, Georgia, United States
| | - Jacob G Light
- Department of Ophthalmology at Emory University, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Department of Ophthalmology at Emory University, Atlanta, Georgia, United States 3Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, Georgia, United States 4Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Christine F Wildsoet
- School of Optometry, University of California at Berkeley, Berkeley, California, United States 5Vision Science Graduate Group University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
50
|
Bergen MA, Park HN, Chakraborty R, Landis EG, Sidhu C, He L, Iuvone PM, Pardue MT. Altered Refractive Development in Mice With Reduced Levels of Retinal Dopamine. Invest Ophthalmol Vis Sci 2017; 57:4412-4419. [PMID: 27750284 PMCID: PMC5015967 DOI: 10.1167/iovs.15-17784] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose The neuromodulator dopamine (DA) has been implicated in the prevention of excessive ocular elongation and myopia in various animal models. This study used retina-specific DA knockout mice to investigate the role of retinal DA in refractive development and susceptibility to experimental myopia. Methods Measurements of refractive error, corneal curvature, and ocular biometrics were obtained as a function of age for both untreated and form-deprived (FD) groups of retina-specific tyrosine hydroxylase knockout (rTHKO) and control (Ctrl) mice. Retinas from each group were analyzed by HPLC for levels of DA and its primary metabolite (DOPAC). Results Under normal visual conditions, rTHKO mice showed significantly myopic refractions (F(1,188) = 7.602, P < 0.001) and steeper corneas (main effect of genotype F(1,180) = 5.1, P < 0.01) at 4 and 6 weeks of age compared with Ctrl mice. Retina-specific THKO mice also had thinner corneas (main effect of genotype F(1,181) = 37.17, P < 0.001), thinner retinas (F(6,181) = 6.07, P < 0.001), and shorter axial lengths (F(6,181) = 3.78, P < 0.01) than Ctrl mice. Retina-specific THKO retinas contained less than 15% of DA and DOPAC compared with Ctrl retinas, and the remaining DA had a significantly higher turnover, as indicated by DOPAC/DA ratios (Student's t-test, P < 0.05). Retina-specific THKO mice showed similar, yet more variable, responses to 6 weeks of FD compared with Ctrl mice. Conclusions Diminished retinal DA induced spontaneous myopia in mice raised under laboratory conditions without form deprivation. The relative myopic shift in rTHKO mice may be explained by steeper corneas, an unexpected finding. The chronic loss of DA did not significantly alter the FD myopia response in rTHKO mice.
Collapse
Affiliation(s)
- Michael A Bergen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States 2Biology, Emory University, Atlanta, Georgia, United States
| | - Han Na Park
- Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ranjay Chakraborty
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States 3Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Erica G Landis
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States 4Neuroscience, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Curran Sidhu
- Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Li He
- Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States 4Neuroscience, Emory University School of Medicine, Atlanta, Georgia, United States 5Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States 3Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States 4Neuroscience, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|