1
|
Kolovos A, Hassall MM, Siggs OM, Souzeau E, Craig JE. Polygenic Risk Scores Driving Clinical Change in Glaucoma. Annu Rev Genomics Hum Genet 2024; 25:287-308. [PMID: 38599222 DOI: 10.1146/annurev-genom-121222-105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Glaucoma is a clinically heterogeneous disease and the world's leading cause of irreversible blindness. Therapeutic intervention can prevent blindness but relies on early diagnosis, and current clinical risk factors are limited in their ability to predict who will develop sight-threatening glaucoma. The high heritability of glaucoma makes it an ideal substrate for genetic risk prediction, with the bulk of risk being polygenic in nature. Here, we summarize the foundations of glaucoma genetic risk, the development of polygenic risk prediction instruments, and emerging opportunities for genetic risk stratification. Although challenges remain, genetic risk stratification will significantly improve glaucoma screening and management.
Collapse
Affiliation(s)
- Antonia Kolovos
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Mark M Hassall
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Owen M Siggs
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia;
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia; , , ,
| |
Collapse
|
2
|
Yadav M, Bhardwaj A, Yadav A, Dada R, Tanwar M. Molecular genetics of primary open-angle glaucoma. Indian J Ophthalmol 2023; 71:1739-1756. [PMID: 37203025 PMCID: PMC10391438 DOI: 10.4103/ijo.ijo_2570_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Glaucoma is a series of linked optic diseases resulting in progressive vision loss and total blindness due to the acquired loss of retinal ganglion cells. This harm to the optic nerve results in visual impairment and, ultimately, total blindness if left untreated. Primary open-angle glaucoma (POAG) is the most frequent variety within the large family of glaucoma. It is a multifaceted and heterogeneous condition with several environmental and genetic variables aiding in its etiology. By 2040, there will be 111.8 million glaucoma patients globally, with Asia and Africa accounting for the vast majority. The goal of this review is to elaborate on the role of genes (nuclear and mitochondrial) as well as their variants in the pathogenesis of POAG. PubMed and Google Scholar databases were searched online for papers until September 2022. Prevalence and inheritance patterns vary significantly across different ethnic and geographic populations. Numerous causative genetic loci may exist; however, only a few have been recognized and characterized. Further investigation into the genetic etiology of POAG is expected to uncover novel and intriguing causal genes, allowing for a more precise pathogenesis pattern of the disease.
Collapse
Affiliation(s)
- Manoj Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Aarti Bhardwaj
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Anshu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Rima Dada
- Department of Anatomy, AIIMS, New Delhi, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| |
Collapse
|
3
|
Murphy R, Irnaten M, Hopkins A, O'Callaghan J, Stamer WD, Clark AF, Wallace D, O'Brien CJ. Matrix Mechanotransduction via Yes-Associated Protein in Human Lamina Cribrosa Cells in Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35015027 PMCID: PMC8762700 DOI: 10.1167/iovs.63.1.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Extracellular matrix stiffening is characteristic of both aging and glaucoma, and acts as a promoter and perpetuator of pathological fibrotic remodeling. Here, we investigate the role of a mechanosensitive transcriptional coactivator, Yes-associated protein (YAP), a downstream effector of multiple signaling pathways, in lamina cribrosa (LC) cell activation to a profibrotic, glaucomatous state. Methods LC cells isolated from glaucomatous human donor eyes (GLC; n = 3) were compared to LC cells from age-matched nonglaucomatous controls (NLC; n = 3) to determine differential YAP expression, protein levels, and proliferation rates. NLC cells were then cultured on soft (4 kPa), and stiff (100 kPa), collagen-1 coated polyacrylamide hydrogel substrates. Quantitative real-time RT-PCR, immunoblotting, and immunofluorescence microscopy were used to measure the expression, activity, and subcellular location of YAP and its downstream targets, respectively. Proliferation rates were examined in NLC and GLC cells by methyl thiazolyl tetrazolium salt assays, across a range of incrementally increased substrate stiffness. Endpoints were examined in the presence or absence of a YAP inhibitor, verteporfin (2 µM). Results GLC cells show significantly (P < 0.05) increased YAP gene expression and total-YAP protein compared to NLC cells, with significantly increased proliferation. YAP regulation is mechanosensitive, because NLC cells cultured on pathomimetic, stiff substrates (100 kPa) show significantly upregulated YAP gene and protein expression, increased YAP phosphorylation at tyrosine 357, reduced YAP phosphorylation at serine 127, increased nuclear pooling, and increased transcriptional target, connective tissue growth factor. Accordingly, myofibroblastic markers, α-smooth muscle actin (α-SMA) and collagen type I, alpha 1 (Col1A1) are increased. Proliferation rates are elevated on 50 kPa substrates and tissue culture plastic. Verteporfin treatment significantly inhibits YAP-mediated cellular activation and proliferation despite a stiffened microenvironment. Conclusions These data demonstrate how YAP plays a pivotal role in LC cells adopting a profibrotic and proliferative phenotype in response to the stiffened LC present in aging and glaucoma. YAP provides an attractive and novel therapeutic target, and its inhibition via verteporfin warrants further clinical investigation.
Collapse
Affiliation(s)
- Rory Murphy
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan Hopkins
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey O'Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | | - Abbot F Clark
- Department of Cell Biology & Immunology and the North Texas Eye Research Institute, U. North Texas Health Science Centre, Ft. Worth, Texas, United States
| | - Deborah Wallace
- Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm J O'Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Zebardast N, Sekimitsu S, Wang J, Elze T, Gharahkhani P, Cole BS, Lin MM, Segrè AV, Wiggs JL. Characteristics of p.Gln368Ter Myocilin Variant and Influence of Polygenic Risk on Glaucoma Penetrance in the UK Biobank. Ophthalmology 2021; 128:1300-1311. [PMID: 33713785 PMCID: PMC9134646 DOI: 10.1016/j.ophtha.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE MYOC (myocilin) mutations account for 3% to 5% of primary open-angle glaucoma (POAG) cases. We aimed to understand the true population-wide penetrance and characteristics of glaucoma among individuals with the most common MYOC variant (p.Gln368Ter) and the impact of a POAG polygenic risk score (PRS) in this population. DESIGN Cross-sectional population-based study. PARTICIPANTS Individuals with the p.Gln368Ter variant among 77 959 UK Biobank participants with fundus photographs (FPs). METHODS A genome-wide POAG PRS was computed, and 2 masked graders reviewed FPs for disc-defined glaucoma (DDG). MAIN OUTCOME MEASURES Penetrance of glaucoma. RESULTS Two hundred individuals carried the p.Gln368Ter heterozygous genotype, and 177 had gradable FPs. One hundred thirty-two showed no evidence of glaucoma, 45 (25.4%) had probable/definite glaucoma in at least 1 eye, and 19 (10.7%) had bilateral glaucoma. No differences were found in age, race/ethnicity, or gender among groups (P > 0.05). Of those with DDG, 31% self-reported or had International Classification of Diseases codes for glaucoma, whereas 69% were undiagnosed. Those with DDG had higher medication-adjusted cornea-corrected intraocular pressure (IOPcc) (P < 0.001) vs. those without glaucoma. This difference in IOPcc was larger in those with DDG with a prior glaucoma diagnosis versus those not diagnosed (P < 0.001). Most p.Gln368Ter carriers showed IOP in the normal range (≤21 mmHg), although this proportion was lower in those with DDG (P < 0.02) and those with prior glaucoma diagnosis (P < 0.03). Prevalence of DDG increased with each decile of POAG PRS. Individuals with DDG demonstrated significantly higher PRS compared with those without glaucoma (0.37 ± 0.97 vs. 0.01 ± 0.90; P = 0.03). Of those with DDG, individuals with a prior diagnosis of glaucoma had higher PRS compared with undiagnosed individuals (1.31 ± 0.64 vs. 0.00 ± 0.81; P < 0.001) and 27.5 times (95% confidence interval, 2.5-306.6) adjusted odds of being in the top decile of PRS for POAG. CONCLUSIONS One in 4 individuals with the MYOC p.Gln368Ter mutation demonstrated evidence of glaucoma, a substantially higher penetrance than previously estimated, with 69% of cases undetected. A large portion of p.Gln368Ter carriers, including those with DDG, have IOP in the normal range, despite similar age. Polygenic risk score increases disease penetrance and severity, supporting the usefulness of PRS in risk stratification among MYOC p.Gln368Ter carriers.
Collapse
Affiliation(s)
- Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| | | | - Jiali Wang
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Puya Gharahkhani
- Statistical Genetics Group, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Brian S Cole
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| | - Michael M Lin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Ayellet V Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Ocular Genomics Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Sharma R, Grover A. Myocilin-associated Glaucoma: A Historical Perspective and Recent Research Progress. Mol Vis 2021; 27:480-493. [PMID: 34497454 PMCID: PMC8403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/18/2021] [Indexed: 10/29/2022] Open
Abstract
Glaucoma a debilitating disease, is globally the second most common kind of permanent blindness. Primary open-angle glaucoma (POAG) is its most prevalent form and is often linked with alterations in the myocilin gene (MYOC). MYOC encodes the myocilin protein, which is expressed throughout the body, but primarily in trabecular meshwork (TM) tissue in the eyes. TM is principally involved in regulating intraocular pressure (IOP), and elevated IOP is the main risk factor associated with glaucoma. The myocilin protein's function remains unknown; however, mutations compromise its folding and processing inside TM cells, contributing to the glaucoma phenotype. While glaucoma is a complex disease with various molecules and factors as contributing causes, the role played by myocilin has been the most widely studied. The current review describes the present understanding of myocilin and its association with glaucoma and aims to shift the focus toward developing targeted therapies for treating glaucoma patients with variations in MYOC.
Collapse
|
6
|
Han X, Hewitt AW, MacGregor S. Predicting the Future of Genetic Risk Profiling of Glaucoma: A Narrative Review. JAMA Ophthalmol 2021; 139:224-231. [PMID: 33331888 DOI: 10.1001/jamaophthalmol.2020.5404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Glaucoma is the world's leading cause of irreversible blindness. Primary open-angle glaucoma (POAG) is typically asymptomatic early in the disease process, and unfortunately, many are diagnosed too late to prevent vision loss. Observations Genome-wide association studies, which evaluate the association between genetic variants and phenotype across the genome, have mapped many genes for POAG. As well as uncovering new biology, genetic information can be combined into a polygenic risk score (PRS), which aggregates an individual's disease risk over many genetic variants. In this nonsystematic review, performed from June 21, 2019, to October 1, 2020, we address a series of questions to explain the challenges and opportunities in translating genetic discoveries in POAG. We summarize what is known about POAG genetics and how its endophenotypes, such as intraocular pressure or cup-disc ratio, can help with prediction. We discuss the sample sizes available and how increases in the future may have an effect on the utility of prediction approaches. We explore particular scenarios, such as the use of PRS in risk stratification, and applications for individuals who are particularly high risk for POAG as a result of them carrying both a high penetrance mutation and an unfavorable PRS. Finally, we discuss the issue of equity in applying these tests and the prospects for prediction for people from various ancestry groups. The cost-effectiveness evaluation of glaucoma PRS in direct-to-consumer genetic testing and across different ancestry groups is warranted in future research. Conclusions and Relevance Advances in glaucoma genetics have opened the door for risk stratification based on genetic risk predictions. The PRS approach has shown good promise in predicting who will be at highest risk of POAG, which could improve outcomes if these predictions can be acted on to result in improved clinical outcomes.
Collapse
Affiliation(s)
- Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.,Centre for Eye Research Australia, University of Melbourne, Australia
| | | |
Collapse
|
7
|
Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, Han X, Ong JS, Hewitt AW, Segrè AV, Rouhana JM, Hamel AR, Igo RP, Choquet H, Qassim A, Josyula NS, Cooke Bailey JN, Bonnemaijer PWM, Iglesias A, Siggs OM, Young TL, Vitart V, Thiadens AAHJ, Karjalainen J, Uebe S, Melles RB, Nair KS, Luben R, Simcoe M, Amersinghe N, Cree AJ, Hohn R, Poplawski A, Chen LJ, Rong SS, Aung T, Vithana EN, Tamiya G, Shiga Y, Yamamoto M, Nakazawa T, Currant H, Birney E, Wang X, Auton A, Lupton MK, Martin NG, Ashaye A, Olawoye O, Williams SE, Akafo S, Ramsay M, Hashimoto K, Kamatani Y, Akiyama M, Momozawa Y, Foster PJ, Khaw PT, Morgan JE, Strouthidis NG, Kraft P, Kang JH, Pang CP, Pasutto F, Mitchell P, Lotery AJ, Palotie A, van Duijn C, Haines JL, Hammond C, Pasquale LR, Klaver CCW, Hauser M, Khor CC, Mackey DA, Kubo M, Cheng CY, Craig JE, MacGregor S, Wiggs JL. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun 2021; 12:1258. [PMID: 33627673 PMCID: PMC7904932 DOI: 10.1038/s41467-020-20851-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates.
Collapse
Affiliation(s)
- Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Pirro Hysi
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sarah Pendergrass
- Geisinger Research, Biomedical and Translational Informatics Institute, Danville, PA, USA
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jue Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, Australia
| | - Ayellet V Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - John M Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrew R Hamel
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Helene Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Ayub Qassim
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Navya S Josyula
- Geisinger Research, Biomedical and Translational Informatics Institute, Rockville, MD, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pieter W M Bonnemaijer
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Adriana Iglesias
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alberta A H J Thiadens
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | | | - K Saidas Nair
- Department of Ophthalmology, School of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Robert Luben
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mark Simcoe
- Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Ophthalmology, Kings College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, UK
| | | | - Angela J Cree
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rene Hohn
- Department of Ophthalmology, Inselspital, University Hospital Bern, University of Bern, Bern, Germany
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Mainz, Germany
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Song Rong
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eranga Nishanthie Vithana
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Republic of Singapore
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Hannah Currant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xin Wang
- 23 and Me Inc., San Francisco, CA, USA
| | | | | | | | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Olusola Olawoye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Paul J Foster
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - James E Morgan
- Cardiff Centre for Vision Sciences, College of Biomedical and Life Sciences, Maindy Road, Cardiff University, Cardiff, UK
| | - Nicholas G Strouthidis
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Francesca Pasutto
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Lotery
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chris Hammond
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Caroline C W Klaver
- Depatment of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Michael Hauser
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University, Durham, NC, USA
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Nedlands, WA, Australia
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Certre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Alward WLM, van der Heide C, Khanna CL, Roos BR, Sivaprasad S, Kam J, Ritch R, Lotery A, Igo RP, Cooke Bailey JN, Stone EM, Scheetz TE, Kwon YH, Pasquale LR, Wiggs JL, Fingert JH. Myocilin Mutations in Patients With Normal-Tension Glaucoma. JAMA Ophthalmol 2020; 137:559-563. [PMID: 30816940 DOI: 10.1001/jamaophthalmol.2019.0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Mutations in the myocilin (MYOC) gene are the most common molecularly defined cause of primary open-angle glaucoma that typically occurs in patients with high intraocular pressures (IOP). One MYOC mutation, p.Gln368Ter, has been associated with as many as 1.6% of primary open-angle glaucoma cases that had a mean maximum recorded IOP of 30 mm Hg. However, to our knowledge, the role of the p.Gln368Ter mutation in patients with normal-tension glaucoma (NTG) with an IOP of 21 mm Hg or lower has not been investigated. Objective To evaluate the role of the p.Gln368Ter MYOC mutation in patients with NTG. Design, Setting, and Participants In this case-control study of the prevalence of the p.Gln368Ter mutation in patients with NTG, cohort 1 was composed of 772 patients with NTG and 2152 controls from the United States (Iowa, Minnesota, and New York) and England and cohort 2 was composed of 561 patients with NTG and 2606 controls from the Massachusetts Eye and Ear Infirmary and the NEIGHBORHOOD consortium. Genotyping was conducted using real-time polymerase chain reaction that was confirmed with Sanger sequencing, the imputation of genome-wide association study data, or an analysis of whole-exome sequence data. Data analysis occurred between April 2007 and April 2018. Main Outcomes and Measures Comparison of the frequency of the p.Gln368Ter MYOC mutation between NTG cases and controls with the Fisher exact test. Results Of 6091 total participants, 3346 (54.9%) were women and 5799 (95.2%) were white. We detected the p.Gln368Ter mutation in 7 of 772 patients with NTG (0.91%) and 7 of 2152 controls (0.33%) in cohort 1 (P = .03). In cohort 2, we detected the p.Gln368Ter mutation in 4 of 561 patients with NTG (0.71%) and 10 of 2606 controls (0.38%; P = .15). When the cohorts were analyzed as a group, the p.Gln368Ter mutation was associated with NTG (odds ratio, 2.3; 95% CI, 0.98-5.3; P = .04). Conclusions and Relevance In cohorts 1 and 2, the p.Gln368Ter mutation in MYOC was found in patients with IOPs that were 21 mm Hg or lower (NTG), although at a frequency that is lower than previously detected in patients with higher IOP. These data suggest that the p.Gln368Ter mutation may be associated with glaucoma in patients with normal IOPs as well as in patients with IOPs that are greater than 21 mm Hg.
Collapse
Affiliation(s)
- Wallace L M Alward
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City.,Institute for Vision Research, University of Iowa, Iowa City
| | - Carly van der Heide
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City.,Institute for Vision Research, University of Iowa, Iowa City
| | - Cheryl L Khanna
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Ben R Roos
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City.,Institute for Vision Research, University of Iowa, Iowa City
| | - Sobha Sivaprasad
- Moorfields Eye Hospital, London, England.,Kings College Hospital, London, England
| | - Jason Kam
- Kaiser Permanente, Seattle, Washington
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - Andrew Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City.,Institute for Vision Research, University of Iowa, Iowa City
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City.,Institute for Vision Research, University of Iowa, Iowa City
| | - Young H Kwon
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City.,Institute for Vision Research, University of Iowa, Iowa City
| | | | - Janey L Wiggs
- Massachusetts Eye and Ear Infirmary, Harvard University, Boston
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City.,Institute for Vision Research, University of Iowa, Iowa City
| | | |
Collapse
|
9
|
Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat Genet 2020; 52:160-166. [PMID: 31959993 DOI: 10.1038/s41588-019-0556-y] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/21/2019] [Indexed: 11/08/2022]
Abstract
Glaucoma, a disease characterized by progressive optic nerve degeneration, can be prevented through timely diagnosis and treatment. We characterize optic nerve photographs of 67,040 UK Biobank participants and use a multitrait genetic model to identify risk loci for glaucoma. A glaucoma polygenic risk score (PRS) enables effective risk stratification in unselected glaucoma cases and modifies penetrance of the MYOC variant encoding p.Gln368Ter, the most common glaucoma-associated myocilin variant. In the unselected glaucoma population, individuals in the top PRS decile reach an absolute risk for glaucoma 10 years earlier than the bottom decile and are at 15-fold increased risk of developing advanced glaucoma (top 10% versus remaining 90%, odds ratio = 4.20). The PRS predicts glaucoma progression in prospectively monitored, early manifest glaucoma cases (P = 0.004) and surgical intervention in advanced disease (P = 3.6 × 10-6). This glaucoma PRS will facilitate the development of a personalized approach for earlier treatment of high-risk individuals, with less intensive monitoring and treatment being possible for lower-risk groups.
Collapse
|
10
|
Han X, Souzeau E, Ong JS, An J, Siggs OM, Burdon KP, Best S, Goldberg I, Healey PR, Graham SL, Ruddle JB, Mills RA, Landers J, Galanopoulos A, White AJR, Casson R, Mackey DA, Hewitt AW, Gharahkhani P, Craig JE, MacGregor S. Myocilin Gene Gln368Ter Variant Penetrance and Association With Glaucoma in Population-Based and Registry-Based Studies. JAMA Ophthalmol 2019; 137:28-35. [PMID: 30267046 DOI: 10.1001/jamaophthalmol.2018.4477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The p.Gln368Ter (rs74315329) risk allele in the myocilin gene (MYOC) was initially reported to have high penetrance in glaucoma registry-based studies, but much lower estimates were recently obtained from population-based studies. We investigated this disparity using data from Australia and the United Kingdom. Objectives To examine the penetrance and effect size of the MYOC p.Gln368Ter variant with glaucoma and ocular hypertension (OHT). Design, Setting, and Participants This cross-sectional study within the UK Biobank (UKBB) included participants of white British ancestry. Glaucoma cases were defined by International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) diagnoses and self-reported questionnaires. Carriers of the MYOC p.Gln368Ter variant were identified using genotype imputation from arrays. In contrast, 2 Australian registry-based studies, the Australian and New Zealand Registry of Advanced Glaucoma and the Glaucoma Inheritance Study in Tasmania, ascertained glaucoma cases referred by eye care clinicians, with historic control participants recruited from other Australian studies. Samples were either directly sequenced or had genotypes determined by imputation (for the Australian registry and historic control participants). Recruitment to the UKBB occurred between 2006 and 2010, and data analysis occurred from September 2017 to July 2018. Main Outcomes and Measures The penetrance and odds ratio (OR) were estimated for the MYOC p.Gln368Ter variants in participants with glaucoma and OHT. Results A total of 411 337 UKBB participants of white British ancestry (mean [SD] age, 56.6 [8.0] years) were included, plus 3071 Australian registry and 6750 historic control participants. In the UKBB, the minor allele frequency of the MYOC p.Gln368Ter variant was 1 in 786 individuals (0.13%). The odds ratio of p.Gln368Ter in patients with primary open-angle glaucoma (POAG) was 6.76 (95% CI, 4.05-11.29); glaucoma (POAG, self-reported glaucoma, and unspecified glaucoma), 4.40 (95% CI, 3.38-5.71); OHT, 3.56 (95% CI, 2.53-4.92); and OHT and glaucoma combined, 4.18 (95% CI, 3.05-5.67). The penetrance of the MYOC p.Gln368Ter variant was 7.6% in patients with glaucoma, 24.3% in patients with OHT, and 30.8% in patients with OHT and glaucoma combined. In the Australian registry studies, the odds of MYOC p.Gln368Ter variant were 12.16 (95% CI, 6.34-24.97) in patients with advanced glaucoma and 3.97 (95% CI, 1.55-9.75) in those with nonadvanced glaucoma; the penetrance of glaucoma was 56.1%, and penetrance in those considered to have glaucoma or be glaucoma suspects was 69.5%. Conclusions and Relevance The MYOC p.Gln368Ter variant confers a very high-risk effect size for advanced glaucoma; the risk is lower in nonadvanced glaucoma and OHT. In the general population sample, approximately 50% of MYOC p.Gln368Ter carriers 65 years and older had glaucoma or OHT, with higher prevalence in the Australian registry studies.
Collapse
Affiliation(s)
- Xikun Han
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Jiyuan An
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Stephen Best
- Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Ivan Goldberg
- Discipline of Ophthalmology, Sydney Eye Hospital, University of Sydney, Sydney, Australia
| | - Paul R Healey
- Discipline of Ophthalmology, Sydney Eye Hospital, University of Sydney, Sydney, Australia.,Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Stuart L Graham
- Discipline of Ophthalmology, Sydney Eye Hospital, University of Sydney, Sydney, Australia.,Ophthalmology and Vision Science, Faculty of Medicine and Human Sciences, Macquarie University, Australia
| | - Jonathan B Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, Melbourne, Australia.,Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - John Landers
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Anna Galanopoulos
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Andrew J R White
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Centre for Ophthalmology and Visual Sciences, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
11
|
Chen M, Yu X, Xu J, Ma J, Chen X, Chen B, Gu Y, Wang K. Association of Gene Polymorphisms With Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. ACTA ACUST UNITED AC 2019; 60:1105-1121. [PMID: 30901387 DOI: 10.1167/iovs.18-25922] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Min Chen
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Xiaoning Yu
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Jia Xu
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Jian Ma
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Xinyi Chen
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Binbin Chen
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Yuxiang Gu
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Kaijun Wang
- Eye Center, the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| |
Collapse
|
12
|
DeBoever C, Tanigawa Y, Lindholm ME, McInnes G, Lavertu A, Ingelsson E, Chang C, Ashley EA, Bustamante CD, Daly MJ, Rivas MA. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun 2018; 9:1612. [PMID: 29691392 PMCID: PMC5915386 DOI: 10.1038/s41467-018-03910-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 02/08/2023] Open
Abstract
Protein-truncating variants can have profound effects on gene function and are critical for clinical genome interpretation and generating therapeutic hypotheses, but their relevance to medical phenotypes has not been systematically assessed. Here, we characterize the effect of 18,228 protein-truncating variants across 135 phenotypes from the UK Biobank and find 27 associations between medical phenotypes and protein-truncating variants in genes outside the major histocompatibility complex. We perform phenome-wide analyses and directly measure the effect in homozygous carriers, commonly referred to as “human knockouts,” across medical phenotypes for genes implicated as being protective against disease or associated with at least one phenotype in our study. We find several genes with strong pleiotropic or non-additive effects. Our results illustrate the importance of protein-truncating variants in a variety of diseases. Protein-truncating variants (PTVs) are predicted to significantly affect a gene’s function and, thus, human traits. Here, DeBoever et al. systematically analyze PTVs in more than 300,000 individuals across 135 phenotypes and identify 27 associations between PTVs and medical conditions.
Collapse
Affiliation(s)
- Christopher DeBoever
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | | | - Greg McInnes
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Adam Lavertu
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chris Chang
- Grail, Inc., 1525 O'Brien Drive, Menlo Park, CA, 94025, USA
| | - Euan A Ashley
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carlos D Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Mark J Daly
- Analytical and Translational Genetics Unit, Boston, MA, 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Liu Y, Allingham RR. Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res 2017; 160:62-84. [PMID: 28499933 DOI: 10.1016/j.exer.2017.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG), the most common type, is a complex inherited disorder that is characterized by progressive retinal ganglion cell death, optic nerve head excavation, and visual field loss. The discovery of a large, and growing, number of genetic and chromosomal loci has been shown to contribute to POAG risk, which carry implications for disease pathogenesis. Differential gene expression analyses in glaucoma-affected tissues as well as animal models of POAG are enhancing our mechanistic understanding in this common, blinding disorder. In this review we summarize recent developments in POAG genetics and molecular genetics research.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States; Duke - National University of Singapore (Duke-NUS), Singapore.
| |
Collapse
|
14
|
Evaluation of the Myocilin Mutation Gln368Stop Demonstrates Reduced Penetrance for Glaucoma in European Populations. Ophthalmology 2017; 124:547-553. [DOI: 10.1016/j.ophtha.2016.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
|
15
|
Li G, Cui G, Dismuke WM, Navarro I, Perkumas K, Woodward DF, Stamer WD. Differential response and withdrawal profile of glucocorticoid-treated human trabecular meshwork cells. Exp Eye Res 2016; 155:38-46. [PMID: 27939447 DOI: 10.1016/j.exer.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/21/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022]
Abstract
The goal of the study was to examine secreted protein response and withdrawal profiles from cultured human trabecular meshwork (HTM) cells following short- and long-term glucocorticoid treatment. Primary cultures of five human HTM cell strains isolated from 5 different individual donor eyes were tested. Confluent HTM cells were differentiated in culture media containing 1% FBS for at least one week, and then treated with Dexamethasone (Dex, 100 nM) 3 times/week for 1 or 4 weeks. Cell culture supernatants were collected 3 times per week for 8 weeks. Secretion profiles of myocilin (MYOC), matrix metalloproteinase-2 (MMP2) and fibronectin (FN) were determined by Western blot analysis and MMP2 activity by zymography. Dex treatment reduced MMP2 expression and activity, returning to normal levels shortly after Dex withdrawal in 5 HTM cell strains. All five cell strains significantly upregulated MYOC in response to Dex treatment by an average of 17-fold, but recovery to basal levels after Dex withdrawal took vastly different periods of time depending on cell strain and treatment duration. Dex treatment significantly increased FN secretion in all strains but one, which decreased FN secretion in the presence of Dex. Interestingly, secretion of FN and MYOC negatively correlated during a 4 week recovery period following 4 weeks of Dex treatment. Taken together, the time course and magnitude of response and recovery for three different secreted, extracellular matrix-associated proteins varied greatly between HTM cell strains, which may underlie susceptibility to glucocorticoid-induced ocular hypertension.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Gang Cui
- University of North Carolina at Chapel Hill, Collaborative Studies Coordinating Center, United States
| | - W Michael Dismuke
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Iris Navarro
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Kristin Perkumas
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | | | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, United States.
| |
Collapse
|
16
|
Souzeau E, Burdon KP, Mackey DA, Hewitt AW, Savarirayan R, Otlowski M, Craig JE. Ethical Considerations for the Return of Incidental Findings in Ophthalmic Genomic Research. Transl Vis Sci Technol 2016; 5:3. [PMID: 26929883 PMCID: PMC4757467 DOI: 10.1167/tvst.5.1.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
Abstract
Whole genome and whole exome sequencing technologies are being increasingly used in research. However, they have the potential to identify incidental findings (IF), findings not related to the indication of the test, raising questions regarding researchers' responsibilities toward the return of this information to participants. In this study we discuss the ethical considerations related to the return of IF to research participants, emphasizing that the type of the study matters and describing the current practice standards. There are currently no legal obligations for researchers to return IF to participants, but some viewpoints consider that researchers might have an ethical one to return IF of clinical validity and clinical utility and that are actionable. The reality is that most IF are complex to interpret, especially since they were not the indication of the test. The clinical utility often depends on the participants' preferences, which can be challenging to conciliate and relies on participants' understanding. In summary, in the context of a lack of clear guidance, researchers need to have a clear plan for the disclosure or nondisclosure of IF from genomic research, balancing their research goals and resources with the participants' rights and their duty not to harm.
Collapse
Affiliation(s)
- Emmanuelle Souzeau
- Department of Ophthalmology Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Kathryn P. Burdon
- Department of Ophthalmology Flinders University, Flinders Medical Centre, Adelaide, Australia
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
| | - David A. Mackey
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Alex W. Hewitt
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Service, Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Australia
| | | | - Jamie E. Craig
- Department of Ophthalmology Flinders University, Flinders Medical Centre, Adelaide, Australia
| |
Collapse
|