1
|
Sun Q, Ni Y, Wang K, Zhang H, Liu J, Xu L, Zhao Y. Rhodium nanozyme mitigates RPE degeneration and preserves vision in age-related macular degeneration via antioxidant and anti-inflammatory mechanisms. Mater Today Bio 2024; 28:101230. [PMID: 39296359 PMCID: PMC11408860 DOI: 10.1016/j.mtbio.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among elderly people worldwide. However, there are currently no effective treatments for AMD. Oxidative stress-induced retinal pigment epithelium (RPE) degeneration and the inflammatory response are the main causes of AMD. In this study, a polyethylene glycol (PEG)-coated rhodium nanozyme (PEG-RhZ) with excellent reactive oxygen species (ROS) and reactive nitrogen species (RNS) elimination capability was synthesized for the treatment of AMD. PEG-RhZs protected RPE cell viability and barrier function upon exposure to oxidative stress stimuli. Additionally, microglial migration and iNOS, IL-1β and TNF-α expression were inhibited by PEG-RhZs. In the acute phase of the AMD model, PEG-RhZs significantly alleviated RPE oxidative damage and inhibited microglial activation. In the late stage of the AMD model, PEG-RhZs reduced photoreceptor loss and improved vision impairment. Furthermore, PEG-RhZs showed good biocompatibility and stability both in vitro and in vivo. Collectively, our findings suggest the therapeutic potential of PEG-RhZs for AMD treatment. STATEMENT OF SIGNIFICANCE: AMD is a kind of retinal degenerative disease that poses heavy health burden globally. PEG-RhZs exhibiting robust ROS and RNS scavenging capabilities have shown promise in safeguarding retinal pigment epithelium (RPE) from oxidative stress, suppressing microglia activation and the secretion of pro-inflammatory molecules, mitigating loss of retinal photoreceptor cells, and ameliorating visual impairment. The commendable antioxidant properties, biological safety, and biostability of PEG-RhZs offer valuable insights for the clinical management of AMD.
Collapse
Affiliation(s)
- Qian Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueqi Ni
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Wang
- Hubei Province Tobacco Quality Supervision and Test Station, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Liu K, Li Y, Zhong X, Hou Y, Fei S, Chen E, Tan M. Protection effect of lutein-loaded Pickering emulsion prepared via ultrasound-assisted Maillard reaction conjugates on dry age-related macular degeneration. Food Funct 2024; 15:6347-6358. [PMID: 38768294 DOI: 10.1039/d4fo00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss among the elderly, and the treatment options for dry AMD (dAMD) are severely limited. Lutein has a favorable effect on the treatment of dAMD. Algae oil, rich in docosahexaenoic acid (DHA), is considered an effective intervention for eye diseases. In this study, casein-mannose conjugates were prepared to form algal oil-in-water Pickering emulsions by ultrasound-assisted Maillard reaction. As the ultrasound time increased from 0 to 25 min, the droplet size decreased to 648.2 ± 21.18 nm, which substantially improved the stability of the Pickering emulsions. The retention of lutein in the Pickering emulsions under ultrasonic treatment for 20 min was significantly improved under different conditions. The simulated gastrointestinal digestion revealed that ultrasound-assisted Pickering emulsions are an effective method for improving the bioaccessibility of lutein (19.76%-53.34%). In vivo studies elucidated that the lutein-loaded Pickering emulsions could effectively alleviate retinal thinning induced by sodium iodate (NaIO3) in mice with dAMD. Mechanistically, lutein-loaded Pickering emulsions significantly reduced oxidative stress by decreasing the MDA level, increasing the SOD production, and reducing the retinal ROS production. These findings explored the protective effects of lutein-loaded Pickering emulsions on dAMD and offered promising prospects for the nutritional intervention of dAMD.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xu Zhong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yitong Hou
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Fei
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Entao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
3
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Kim SY, Kambhampati SP, Bhutto IA, McLeod DS, Lutty GA, Kannan RM. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Exp Eye Res 2020; 203:108391. [PMID: 33307075 DOI: 10.1016/j.exer.2020.108391] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/16/2020] [Accepted: 12/05/2020] [Indexed: 01/19/2023]
Abstract
Oxidative stress, inflammation and neovascularization are the key pathological events that are implicated in human age-related macular degeneration (AMD). There are a limited number of animal models available for evaluating and developing new therapies. Most models represent late exudative or neovascular AMD (nAMD) but there is a relative paucity of models that mimic early events in AMD. The purpose of this study is to characterize the evolution of oxidative stress, inflammation, retinal degeneration and neovascularization in a rat model of AMD, created by subretinal injection of human lipid hydroperoxide (HpODE) that found in the sub-macular region in aged and AMD patients. Subretinal HpODE induced retinal pigment epithelium (RPE) and retinal degeneration resulting in loss of RPE cells, photoreceptors and retinal thinning. RPE degeneration and atrophy were detected by day 5, followed by neural tissue degeneration at day 12 with robust TUNEL positive cells. Western blot analysis confirmed an increase in pro-apoptotic Bak protein at day 12 in retinal tissues. Oxidative damage biomarkers (4-hydroxynonenal, malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine) increased in retinal tissue from days 5-12. Müller glial activation was observed in the HpODE injected area at day 5 followed by its remodeling and migration in the outer retina by day 20. RT-qPCR analysis further indicated upregulation of pro-inflammatory genes (TNF-α, IL-1β and IL-6) both in retinal and RPE/choroidal tissue as early as day 2 and persisted until day 12. Upregulation of oxidative stress markers such as NADPH oxidase (NOX and DOUX family) was detected early in retinal tissue by day 2 followed by its upregulation in choroidal tissue at day 5. Neovascularization was demonstrated from day 12 to day 20 post HpODE injection in choroidal tissue. The results from this study indicate that subretinal HpODE induces advanced AMD phenotypes comprising many aspects of both dry/early and late) and neovascular/late AMD as observed in humans. Within 3 weeks via oxidative damage, upregulation of reactive oxygen species and pro-inflammatory genes, pro-apoptotic Bak and pro-angiogenic VEGF upregulation occurs leading to CNV formation. This experimental model of subretinal HpODE is an appropriate model for the study of AMD and provides an important platform for translational and basic research in developing new therapies particularly for early/dry AMD where currently no viable therapies are available.
Collapse
Affiliation(s)
- Soo-Young Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siva P Kambhampati
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Imran A Bhutto
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Scott McLeod
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard A Lutty
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy. Biomolecules 2020; 10:biom10111579. [PMID: 33233661 PMCID: PMC7699716 DOI: 10.3390/biom10111579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. Extensive evidences have documented that oxidative stress mediates a critical role in the pathogenesis of DR. Acrolein, a product of polyamines oxidation and lipid peroxidation, has been demonstrated to be involved in the pathogenesis of various human diseases. Acrolein’s harmful effects are mediated through multiple mechanisms, including DNA damage, inflammation, ROS formation, protein adduction, membrane disruption, endoplasmic reticulum stress, and mitochondrial dysfunction. Recent investigations have reported the involvement of acrolein in the pathogenesis of DR. These studies have shown a detrimental effect of acrolein on the retinal neurovascular unit under diabetic conditions. The current review summarizes the existing literature on the sources of acrolein, the impact of acrolein in the generation of oxidative damage in the diabetic retina, and the mechanisms of acrolein action in the pathogenesis of DR. The possible therapeutic interventions such as the use of polyamine oxidase inhibitors, agents with antioxidant properties, and acrolein scavengers to reduce acrolein toxicity are also discussed.
Collapse
|
6
|
Song H, Zeng Y, Sardar Pasha SPB, Bush RA, Vijayasarathy C, Qian H, Wei L, Wiley HE, Wu Z, Sieving PA. Trans-Ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Transduction in Large Animal Eye After Intravitreal Vector Administration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32844051 PMCID: PMC7416894 DOI: 10.1167/tvst.9.7.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose Electric micro-current has been shown to enhance penetration and transduction of adeno-associated viral (AAV) vectors in mouse retina after intravitreal administration. We termed this: “electric-current vector mobility (ECVM).” The present study considered whether ECVM could augment retinal transduction efficiency of intravitreal AAV8-CMV-EGFP in normal rabbit and nonhuman primate (NHP) macaque. Potential mechanisms underlying enhanced retinal transduction by ECVM were also studied. Methods We applied an electric micro-current across the intact eye of normal rabbit and monkey in vivo for a brief period immediately after intravitreal injection of AAV8-CMV-EGFP. Retinal GFP expression was evaluated by fundus imaging in vivo. Retinal immunohistochemistry was performed to assess the distribution of retinal cells transduced by the AAV8-EGFP. Basic fibroblast growth factor (bFGF) was analyzed by quantitative RT-polymerase chain reaction (PCR). Müller glial reactivity and inner limiting membrane (ILM) were examined by the glial fibrillary acidic protein (GFAP) and vimentin staining in mouse retina, respectively. Results ECVM significantly increased the efficiency of AAV reaching and transducing the rabbit retina following intravitreal injection, with gene expression in inner nuclear layer, ganglion cells, and Müller cells. Similar trend of improvement was observed in the ECVM-treated monkey eye. The electric micro-current upregulated bFGF expression in Müller cells and vimentin showed ILM structural changes in mouse retina. Conclusions ECVM promotes the transduction efficiency of AAV8-CMV-GFP in normal rabbit and monkey retinas following intravitreal injection. Translational Relevance This work has potential translational relevance to human ocular gene therapy by increasing retinal expression of therapeutic vectors given by intravitreal administration.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camasamudram Vijayasarathy
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Ophthalmology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
7
|
Kraut RS, Knust E. Changes in endolysosomal organization define a pre-degenerative state in the crumbs mutant Drosophila retina. PLoS One 2019; 14:e0220220. [PMID: 31834921 PMCID: PMC6910688 DOI: 10.1371/journal.pone.0220220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mutations in the epithelial polarity gene crumbs (crb) lead to retinal degeneration in Drosophila and in humans. The overall morphology of the retina and its deterioration in Drosophila crb mutants has been well-characterized, but the cell biological origin of the degeneration is not well understood. Degenerative conditions in the retina and elsewhere in the nervous system often involve defects in degradative intracellular trafficking pathways. So far, however, effects of crb on the endolysosomal system, or on the spatial organization of these compartments in photoreceptor cells have not been described. We therefore asked whether photoreceptors in crb mutants exhibit alterations in endolysosomal compartments under pre-degenerative conditions, where the retina is still morphologically intact. Data presented here show that, already well before the onset of degeneration, Arl8, Rab7, and Atg8-carrying endolysosomal and autophagosomal compartments undergo changes in morphology and positioning with respect to each other in crb mutant retinas. We propose that these changes may be early signs of the degeneration-prone condition in crb retinas.
Collapse
Affiliation(s)
- Rachel S. Kraut
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
- * E-mail:
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
| |
Collapse
|
8
|
The uPAR System as a Potential Therapeutic Target in the Diseased Eye. Cells 2019; 8:cells8080925. [PMID: 31426601 PMCID: PMC6721659 DOI: 10.3390/cells8080925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of vascular networks is characteristic of eye diseases associated with retinal cell degeneration and visual loss. Visual impairment is also the consequence of photoreceptor degeneration in inherited eye diseases with a major inflammatory component, but without angiogenic profile. Among the pathways with high impact on vascular/degenerative diseases of the eye, a central role is played by a system formed by the ligand urokinase-type plasminogen activator (uPA) and its receptor uPAR. The uPAR system, although extensively investigated in tumors, still remains a key issue in vascular diseases of the eye and even less studied in inherited retinal pathologies such as retinitis pigmantosa (RP). Its spectrum of action has been extended far beyond a classical pro-angiogenic function and has emerged as a central actor in inflammation. Preclinical studies in more prevalent eye diseases characterized by neovascular formation, as in retinopathy of prematurity, wet macular degeneration and rubeosis iridis or vasopermeability excess as in diabetic retinopathy, suggest a critical role of increased uPAR signaling indicating the potentiality of its modulation to counteract neovessel formation and microvascular dysfunction. The additional observation that the uPAR system plays a major role in RP by limiting the inflammatory cascade triggered by rod degeneration rises further questions about its role in the diseased eye.
Collapse
|
9
|
Cammalleri M, Dal Monte M, Locri F, Pecci V, De Rosa M, Pavone V, Bagnoli P. The urokinase-type plasminogen activator system as drug target in retinitis pigmentosa: New pre-clinical evidence in the rd10 mouse model. J Cell Mol Med 2019; 23:5176-5192. [PMID: 31251468 PMCID: PMC6653070 DOI: 10.1111/jcmm.14391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP) is characterized by progressive loss of vision due to photoreceptor degeneration leading to secondary inflammation. The urokinase-type plasminogen activator (uPA) system contributes to retinal inflammation, but its role in RP is unknown. In the rd10 mouse model of RP, we addressed this question with the use of the peptide UPARANT designed to interact with the uPA system. UPARANT was systemically administered from post-natal day (PD) 10 to PD30 when its efficacy in RP rescue was investigated using electroretinographic recordings, Western blot and immunocytochemistry. Temporal profile of protein expression in the uPA system was also investigated. UPARANT reduced both Müller cell gliosis and up-regulated levels of inflammatory markers and exerted major anti-apoptotic effects without influencing the autophagy cascade. Rescue from retinal cell degeneration was accompanied by improved retinal function. No scotopic phototransduction was rescued in the UPARANT-treated animals as determined by the kinetic analysis of rod-mediated a-waves and confirmed by rod photoreceptor markers. In contrast, the cone photopic b-wave was recovered and its rescue was confirmed in the whole mounts using cone arrestin antibody. Investigation of the uPA system regulation over RP progression revealed extremely low levels of uPA and its receptor uPAR both of which were recovered by HIF-1α stabilization indicating that HIF-1 regulates the expression of the uPA/uPAR gene in the retina. Ameliorative effects of UPARANT were likely to occur through an inhibitory action on up-regulated activity of the αvβ3 integrin/Rac1 pathway that was suggested as a novel target for the development of therapeutic approaches against RP.
Collapse
Affiliation(s)
| | | | - Filippo Locri
- Department of Biology, University of Pisa, Pisa, Italy
| | - Valeria Pecci
- Department of Biology, University of Pisa, Pisa, Italy
| | - Mario De Rosa
- Department of Experimental Medicine, Second University of Napoli, Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Li T, Yang S, She X, Yan Q, Zhang P, Zhu H, Wang F, Luo X, Sun X. Modulation of α-adrenoceptor signalling protects photoreceptors after retinal detachment by inhibiting oxidative stress and inflammation. Br J Pharmacol 2019; 176:801-813. [PMID: 30588605 DOI: 10.1111/bph.14565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently available treatments do not halt progression of photoreceptor death and subsequent visual impairment related to retinal detachment (RD) which is observed in various retinal disorders. This study investigated the neuroprotective effects of two adrenoceptor ligands, the α1 -adrenoceptor antagonist doxazosin and the α2 -adrenoceptor agonist guanabenz, against photoreceptor cell death in RD. EXPERIMENTAL APPROACH We used a model of experimental RD in Brown-Norway rats induced by subretinal injection of sodium hyaluronate. Oxidative stress biomarkers and cytokine production were quantified with elisa. Protein expression levels and immunofluorescent labelling were determined in rats with RD and controls for mechanistic elucidation. The effects of systemic (i.p.) administration of doxazosin or guanabenz on photoreceptor apoptosis, retinal histology and electroretinography were evaluated in rats with RD and compared to the effects in vehicle controls. KEY RESULTS Photoreceptors were the major source of RD-induced ROS overproduction in the rat retina through the regulation of NADPH oxidase. Systemic administration of doxazosin or guanabenz decreased the RD-induced production of ROS and proinflammatory cytokines, including IL-1β and the chemokine CCL2, and suppressed retinal gliosis, resulting in attenuation of photoreceptor death and preservation of retinal structures and functions in RD. CONCLUSIONS AND IMPLICATIONS Our findings point to α-adrenoceptors as novel therapeutic targets to provide photoreceptor protection and suggest that both doxazosin and guanabenz, two FDA-approved drugs, could be further explored to treat retinal diseases.
Collapse
Affiliation(s)
- Tong Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiqi Yang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangjun She
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Yan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
11
|
Oxidative Stress, Diabetic Retinopathy, and Superoxide Dismutase 3. RETINAL DEGENERATIVE DISEASES 2019; 1185:335-339. [DOI: 10.1007/978-3-030-27378-1_55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Song H, Bush RA, Zeng Y, Qian H, Wu Z, Sieving PA. Trans-ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Gene Transduction after Intravitreal Vector Administration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:77-85. [PMID: 30719486 PMCID: PMC6350231 DOI: 10.1016/j.omtm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/31/2023]
Abstract
Adeno-associated virus (AAV) vector-mediated gene delivery is a promising approach for therapy, but implementation in the eye currently is hampered by the need for delivering the vector underneath the retina, using surgical application into the subretinal space. This limits the extent of the retina that is treated and may cause surgical injury. Vector delivery into the vitreous cavity would be preferable because it is surgically less invasive and would reach more of the retina. Unfortunately, most conventional, non-modified AAV vector serotypes penetrate the retina poorly from the vitreous; this limits efficient transduction and expression by target cells (retinal pigment epithelium and photoreceptors). We developed a method of applying a small and safe electric current across the intact eye in vivo for a brief period following intravitreal vector administration. This significantly improved AAV-mediated transduction of retinal cells in wild-type mice following intravitreal delivery, with gene expression in retinal pigment epithelium and photoreceptor cells. The low-level current had no adverse effects on retinal structure and function. This method should be generally applicable for other AAV serotypes and may have broad application in both basic research and clinical studies.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Haohua Qian
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Zhijian Wu
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA.,National Eye Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Adipose-Derived Mesenchymal Stem Cells Migrate and Rescue RPE in the Setting of Oxidative Stress. Stem Cells Int 2018; 2018:9682856. [PMID: 30651740 PMCID: PMC6311721 DOI: 10.1155/2018/9682856] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress leads to the degeneration of retinal pigment epithelial (RPE) and photoreceptor cells. We evaluated the potential of adipose-derived mesenchymal stem cells (ASCs) as a therapeutic tool by studying the migration capacity of ASCs in vitro and their protective effect against RPE cell death under oxidative stress in vitro and in vivo. ASCs exhibited enhanced migration when exposed to conditioned medium of oxidative stressed RPE cells obtained by hydrogen peroxide. Migration-related axis SDF-1/CXCR4 was studied, and upregulation of SDF-1 in stressed RPE and of CXCR4 in ASCs was detected. Moreover, ASCs' conditioned medium prevented H2O2-induced cell death of RPE cells. Early passage ASCs had high expression level of HGF, low VEGF levels, and unmodulated IL-1β levels, compared to late passage ASCs. Thus, early passage ASCs show the potential to migrate towards damaged RPE cells and protect them in a paracrine manner from cell death induced by oxidative stress. In vivo, mice received systemic injection of NaIO3, and 72 h later, ASCs were transplanted in the subretinal space. Seven days after ASC transplantation, the eyes were enucleated fixed and frozen for immunohistochemical analysis. Under such conditions, ASC-treated mice showed preservation of nuclear layers in the outer nuclear layer and stronger staining of RPE and photoreceptor layer, compared to PBS-treated mice. Taken together, our results indicate that ASCs are able to home in on damaged RPE cells and protect against damage to the RPE and PR layers caused by oxidative stress. These data imply the potential that ASCs have in regenerating RPE under oxidative stress, providing the basis for a therapeutic approach to retinal degeneration diseases related to oxidative stress that could help save the eyesight of millions of people worldwide.
Collapse
|
14
|
Liu Y, Li R, Xie J, Hu J, Huang X, Ren F, Li L. Protective Effect of Hydrogen on Sodium Iodate-Induced Age-Related Macular Degeneration in Mice. Front Aging Neurosci 2018; 10:389. [PMID: 30564112 PMCID: PMC6288204 DOI: 10.3389/fnagi.2018.00389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the main causes of AMD. Hydrogen has anti-oxidative stress and apoptotic effects on retinal injury. However, the effect of hydrogen on AMD is not clear. In this study, fundus radiography, OCT, and FFA demonstrated that HRW reduced the deposition of drusen-like structures in RPE layer, prevented retina from thinning and leakage of ocular fundus vasculature induced by NaIO3. ERG analysis confirmed that HRW effectively reversed the decrease of a-wave and b-wave amplitude in NaIO3-mice. Mechanistically, HRW greatly reduced the oxidative stress reaction through decreased MDA levels, increased SOD production, and decreased ROS content. The OGG1 expression was downregulated which is a marker of oxidative stress. Involvement of oxidative stress was confirmed using oxidative stress inhibitor ALCAR. Moreover, oxidative stress reaction was associated with expression of Sirt1 level and HRW significantly inhibited the downregulation of Sirt1 expression. This result was further confirmed with AICAR which restore Sirt1 expression and activity. In addition, NaIO3-induced retinal damage was related to apoptosis via caspase 8 and caspase 9, but not the caspase 3 pathways, which led to upregulation of Bax and p53, downregulation of Bcl-2, and increase in Jc-1-positive cells in mice. However, HRW effectively reversed these effects that apoptosis induced. These results suggest that HRW protects retinal functions against oxidative stress injury through inhibiting downregulation of Sirt1 and reducing retinal apoptosis. Therefore, we speculated that hydrogen administration is a promising treatment for AMD therapy.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Ruichan Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jing Xie
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jiehua Hu
- Information Center, Logistics College, Naval University of Engineering, Tianjin, China
| | - Xudong Huang
- Chemistry and Life College, Chengdu Normal University, Chengdu, China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, China
| | - Lihua Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| |
Collapse
|
15
|
Li J, Hui L, Kang Q, Li R. Down-regulation of microRNA-27b promotes retinal pigment epithelial cell proliferation and migration by targeting Nox2. Pathol Res Pract 2018; 214:925-933. [DOI: 10.1016/j.prp.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
|
16
|
Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond) 2017; 131:2865-2883. [DOI: 10.1042/cs20171246] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.
Collapse
|
17
|
Lajko M, Cardona HJ, Taylor JM, Farrow KN, Fawzi AA. Photoreceptor oxidative stress in hyperoxia-induced proliferative retinopathy accelerates rd8 degeneration. PLoS One 2017; 12:e0180384. [PMID: 28671996 PMCID: PMC5495396 DOI: 10.1371/journal.pone.0180384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
To investigate the impact of photoreceptor oxidative stress on photoreceptor degeneration in mice carrying the rd8 mutation (C57BL/6N). We compared the hyperoxia-induced proliferative retinopathy (HIPR) model in two mouse strains (C57BL/6J and C57BL/6N). Pups were exposed to 75% oxygen, starting at birth and continuing for 14 days (P14). Mice were euthanized at P14, or allowed to recover in room air for one day (P15), seven days (P21), or 14 days (P28). We quantified retinal thickness and the length of residual photoreceptors not affected by rosette formation. In addition we explored differences in retinal immunostaining for NADPH oxidase 4 (NOX4), Rac1, vascular endothelium, and activated Mϋller cells. We analyzed photoreceptor oxidative stress using DCF staining in cross sections and quantified NOX4 protein levels using western blotting. C57BL/6N mice in HIPR showed increased oxidative stress, NOX4, and Rac1 in the photoreceptors at P14 and P15 compared to C57BL/6J. In addition, we observed significant progression of photoreceptor degeneration, with significantly accelerated rosette formation in C57BL/6N under HIPR, compared to their room air counterparts. Furthermore, C57BL/6N under HIPR had significantly thinner central retinas than C57BL/6J in HIPR. We did not find a difference in vascular disruption or Mϋller cell activation comparing the two strains in hyperoxia. In HIPR, the C57BL/6N strain carrying the rd8 mutation showed significantly accelerated photoreceptor degeneration, mediated via exacerbated photoreceptor oxidative stress, which we believe relates to Rac1-NOX dysregulation in the setting of Crb1 loss-of-function.
Collapse
Affiliation(s)
- Michelle Lajko
- Department of Ophthalmology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Herminio J. Cardona
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Joann M. Taylor
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Kathryn N. Farrow
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Guadagni V, Cerri C, Piano I, Novelli E, Gargini C, Fiorentini C, Caleo M, Strettoi E. The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa. Sci Rep 2016; 6:35919. [PMID: 27775019 PMCID: PMC5075935 DOI: 10.1038/srep35919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited pathologies characterized by progressive photoreceptor degeneration. In rodent models of RP, expression of defective genes and retinal degeneration usually manifest during the first weeks of postnatal life, making it difficult to distinguish consequences of primary genetic defects from abnormalities in retinal development. Moreover, mouse eyes are small and not always adequate to test pharmacological and surgical treatments. An inducible paradigm of retinal degeneration potentially extensible to large animals is therefore desirable. Starting from the serendipitous observation that intraocular injections of a Rho GTPase activator, the bacterial toxin Cytotoxic Necrotizing Factor 1 (CNF1), lead to retinal degeneration, we implemented an inducible model recapitulating most of the key features of Retinitis Pigmentosa. The model also unmasks an intrinsic vulnerability of photoreceptors to the mechanism of CNF1 action, indicating still unexplored molecular pathways potentially leading to the death of these cells in inherited forms of retinal degeneration.
Collapse
Affiliation(s)
- Viviana Guadagni
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Chiara Cerri
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy.,Accademia dei Lincei, Rome, 00165, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, 56126, Italy
| | - Elena Novelli
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa, Pisa, 56126, Italy
| | | | - Matteo Caleo
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| |
Collapse
|