1
|
Petridou E, Godinho L. Cellular and Molecular Determinants of Retinal Cell Fate. Annu Rev Vis Sci 2022; 8:79-99. [DOI: 10.1146/annurev-vision-100820-103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate retina is regarded as a simple part of the central nervous system (CNS) and thus amenable to investigations of the determinants of cell fate. Its five neuronal cell classes and one glial cell class all derive from a common pool of progenitors. Here we review how each cell class is generated. Retinal progenitors progress through different competence states, in each of which they generate only a small repertoire of cell classes. The intrinsic state of the progenitor is determined by the complement of transcription factors it expresses. Thus, although progenitors are multipotent, there is a bias in the types of fates they generate during any particular time window. Overlying these competence states are stochastic mechanisms that influence fate decisions. These mechanisms are determined by a weighted set of probabilities based on the abundance of a cell class in the retina. Deterministic mechanisms also operate, especially late in development, when preprogrammed progenitors solely generate specific fates.
Collapse
Affiliation(s)
- Eleni Petridou
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
- Graduate School of Systemic Neurosciences (GSN), Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
| |
Collapse
|
2
|
Huang W, Xu Q, Su J, Tang L, Hao ZZ, Xu C, Liu R, Shen Y, Sang X, Xu N, Tie X, Miao Z, Liu X, Xu Y, Liu F, Liu Y, Liu S. Linking transcriptomes with morphological and functional phenotypes in mammalian retinal ganglion cells. Cell Rep 2022; 40:111322. [PMID: 36103830 DOI: 10.1016/j.celrep.2022.111322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway to the visual world. They can be classified into different types on the basis of their electrophysiological, transcriptomic, or morphological characteristics. Here, we characterize the transcriptomic, morphological, and functional features of 472 high-quality RGCs using Patch sequencing (Patch-seq), providing functional and morphological annotation of many transcriptomic-defined cell types of a previously established RGC atlas. We show a convergence of different modalities in defining the RGC identity and reveal the degree of correspondence for well-characterized cell types across multimodal data. Moreover, we complement some RGC types with detailed morphological and functional properties. We also identify differentially expressed genes among ON, OFF, and ON-OFF RGCs such as Vat1l, Slitrk6, and Lmo7, providing candidate marker genes for functional studies. Our research suggests that the molecularly distinct clusters may also differ in their roles of encoding visual information.
Collapse
Affiliation(s)
- Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qiang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoxiu Tie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhichao Miao
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100085, China.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
| |
Collapse
|
3
|
Estrogen exposure causes the progressive growth of SK-Hep1-derived tumor in ovariectomized mice. Toxicol Res 2021; 38:1-7. [PMID: 35070935 PMCID: PMC8748573 DOI: 10.1007/s43188-021-00100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/15/2021] [Indexed: 01/03/2023] Open
Abstract
Liver cancer, one of the leading death causes, has different incidence and mortality rates in men and women. The influencing factor is considered to estrogen. However, the role of estrogen in liver cancer remains controversial. In this study, we investigated the effects of estrogen on tumor progression. Total RNA sequencing was analyzed in SK-Hep1-derived tumor tissues, and 15 genes were expressed only in female mice. Among the differentially expressed genes, matrix metalloprotease 7 (MMP7), germ cell associated 1 (GSG1), and chromosome 6 open reading frame 15 (C6orf15) were associated with significantly different overall survival rates based on their expression level in liver cancer patients. Interestingly, exogenous estrogen aggravated SK-Hep1-derived tumor growth in ovariectomized (OVX) mice. When OVX mice were treated with exogenous estrogen, SK-Hep1-derived tumor tissues exhibited high MMP7 expression levels and low GSG1 and C6orf15 expression levels. These expression patterns were consistent with those of liver cancer patients with low overall survival rates. These results suggest that these genes are expected to be prognostic biomarkers of liver cancer. In conclusion, our results suggest that continuous estrogen exposure may promote tumor growth in OVX mice.
Collapse
|
4
|
Fishman ES, Louie M, Miltner AM, Cheema SK, Wong J, Schlaeger NM, Moshiri A, Simó S, Tarantal AF, La Torre A. MicroRNA Signatures of the Developing Primate Fovea. Front Cell Dev Biol 2021; 9:654385. [PMID: 33898453 PMCID: PMC8060505 DOI: 10.3389/fcell.2021.654385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
Rod and cone photoreceptors differ in their shape, photopigment expression, synaptic connection patterns, light sensitivity, and distribution across the retina. Although rods greatly outnumber cones, human vision is mostly dependent on cone photoreceptors since cones are essential for our sharp visual acuity and color discrimination. In humans and other primates, the fovea centralis (fovea), a specialized region of the central retina, contains the highest density of cones. Despite the vast importance of the fovea for human vision, the molecular mechanisms guiding the development of this region are largely unknown. MicroRNAs (miRNAs) are small post-transcriptional regulators known to orchestrate developmental transitions and cell fate specification in the retina. Here, we have characterized the transcriptional landscape of the developing rhesus monkey retina. Our data indicates that non-human primate fovea development is significantly accelerated compared to the equivalent retinal region at the other side of the optic nerve head, as described previously. Notably, we also identify several miRNAs differentially expressed in the presumptive fovea, including miR-15b-5p, miR-342-5p, miR-30b-5p, miR-103-3p, miR-93-5p as well as the miRNA cluster miR-183/-96/-182. Interestingly, miR-342-5p is enriched in the nasal primate retina and in the peripheral developing mouse retina, while miR-15b is enriched in the temporal primate retina and increases over time in the mouse retina in a central-to-periphery gradient. Together our data constitutes the first characterization of the developing rhesus monkey retinal miRNome and provides novel datasets to attain a more comprehensive understanding of foveal development.
Collapse
Affiliation(s)
- Elizabeth S Fishman
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Mikaela Louie
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Adam M Miltner
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Nicholas M Schlaeger
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Ala Moshiri
- Department of Ophthalmology, University of California, Davis, Davis, CA, United States
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Alice F Tarantal
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Goodson NB, Kaufman MA, Park KU, Brzezinski JA. Simultaneous deletion of Prdm1 and Vsx2 enhancers in the retina alters photoreceptor and bipolar cell fate specification, yet differs from deleting both genes. Development 2020; 147:dev190272. [PMID: 32541005 PMCID: PMC10666920 DOI: 10.1242/dev.190272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
The transcription factor OTX2 is required for photoreceptor and bipolar cell formation in the retina. It directly activates the transcription factors Prdm1 and Vsx2 through cell type-specific enhancers. PRDM1 and VSX2 work in opposition, such that PRDM1 promotes photoreceptor fate and VSX2 bipolar cell fate. To determine how OTX2+ cell fates are regulated in mice, we deleted Prdm1 and Vsx2 or their cell type-specific enhancers simultaneously using a CRISPR/Cas9 in vivo retina electroporation strategy. Double gene or enhancer targeting effectively removed PRDM1 and VSX2 protein expression. However, double enhancer targeting favored bipolar fate outcomes, whereas double gene targeting favored photoreceptor fate. Both conditions generated excess amacrine cells. Combined, these fate changes suggest that photoreceptors are a default fate outcome in OTX2+ cells and that VSX2 must be present in a narrow temporal window to drive bipolar cell formation. Prdm1 and Vsx2 also appear to redundantly restrict the competence of OTX2+ cells, preventing amacrine cell formation. By taking a combinatorial deletion approach of both coding sequences and enhancers, our work provides new insights into the complex regulatory mechanisms that control cell fate choice.
Collapse
Affiliation(s)
- Noah B Goodson
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A Kaufman
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ko U Park
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph A Brzezinski
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Prdm1 overexpression causes a photoreceptor fate-shift in nascent, but not mature, bipolar cells. Dev Biol 2020; 464:111-123. [PMID: 32562755 DOI: 10.1016/j.ydbio.2020.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
The transcription factors Prdm1 (Blimp1) and Vsx2 (Chx10) work downstream of Otx2 to regulate photoreceptor and bipolar cell fates in the developing retina. Mice that lack Vsx2 fail to form bipolar cells while Prdm1 mutants form excess bipolars at the direct expense of photoreceptors. Excess bipolars in Prdm1 mutants appear to derive from rods, suggesting that photoreceptor fate remains mutable for some time after cells become specified. Here we tested whether bipolar cell fate is also plastic during development. To do this, we created a system to conditionally misexpress Prdm1 at different stages of bipolar cell development. We found that Prdm1 blocks bipolar cell formation if expressed before the fate choice decision occurred. When we misexpressed Prdm1 just after the decision to become a bipolar cell was made, some cells were reprogrammed into photoreceptors. In contrast, Prdm1 misexpression in mature bipolar cells did not affect cell fate. We also provide evidence that sustained misexpression of Prdm1 was selectively toxic to photoreceptors. Our data show that bipolar fate is malleable, but only for a short temporal window following fate specification. Prdm1 and Vsx2 act by stabilizing photoreceptor and bipolar fates in developing OTX2+ cells of the retina.
Collapse
|
7
|
Kaufman ML, Park KU, Goodson NB, Chew S, Bersie S, Jones KL, Lamba DA, Brzezinski JA. Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Dev Biol 2019; 453:155-167. [PMID: 31163126 DOI: 10.1016/j.ydbio.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Uncovering the gene regulatory networks that control cone photoreceptor formation has been hindered because cones only make up a few percent of the retina and form asynchronously during development. To overcome these limitations, we used a γ-secretase inhibitor, DAPT, to disrupt Notch signaling and force proliferating retinal progenitor cells to rapidly adopt neuronal identity. We treated mouse retinal explants at the peak of cone genesis with DAPT and examined tissues at several time-points by histology and bulk RNA-sequencing. We found that this treatment caused supernumerary cone formation in an overwhelmingly synchronized fashion. This analysis revealed several categorical patterns of gene expression changes over time relative to DMSO treated control explants. These were placed in the temporal context of the activation of Otx2, a transcription factor that is expressed at the onset of photoreceptor development and that is required for both rod and cone formation. One group of interest had genes, such as Mybl1, Ascl1, Neurog2, and Olig2, that became upregulated by DAPT treatment before Otx2. Two other groups showed upregulated gene expression shortly after Otx2, either transiently or permanently. This included genes such as Mybl1, Meis2, and Podxl. Our data provide a developmental timeline of the gene expression events that underlie the initial steps of cone genesis and maturation. Applying this strategy to human retinal organoid cultures was also sufficient to induce a massive increase in cone genesis. Taken together, our results provide a temporal framework that can be used to elucidate the gene regulatory logic controlling cone photoreceptor development.
Collapse
Affiliation(s)
- Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Noah B Goodson
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shereen Chew
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Stephanie Bersie
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Liu Y, Zheng Q, He G, Zhang M, Yan X, Yang Z, Zhang P, Wang L, Liu J, Liang L, Han H. Transmembrane protein 215 promotes angiogenesis by maintaining endothelial cell survival. J Cell Physiol 2018; 234:9525-9534. [PMID: 30370660 PMCID: PMC6587792 DOI: 10.1002/jcp.27641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023]
Abstract
Sprouting angiogenesis is a major form of neovascularization of tissues suffering from hypoxia and other related stress. Endothelial cells (ECs) undergo proliferation, differentiation, programmed death, and migration during angiogenic sprouting, but the underlying molecular mechanisms regulating ECs in angiogenesis have been incompletely elucidated. Here we report that the transmembrane protein 215 (TMEM215) is involved in angiogenesis by regulating EC survival. The murine TMEM215 gene, which possesses two transcriptional starting sites as determined by 5′‐rapid amplification of complementary DNA (cDNA) ends (RACE), encodes a two‐pass TMEM. The TMEM215 transcripts were detected in ECs in addition to other tissues by quantitative reverse transcription‐polymerase chain reaction. Immunofluorescence showed that TMEM215 was expressed in the vasculature in retina, liver, and tumor, and colocalized with EC markers. We show that knockdown of TMEM215 in ECs induced strong cell death of ECs in vitro without affecting cell proliferation and migration, suggesting that TMEM215 was required for EC survival. Downregulation of TMEM215 expression compromised lumen formation and sprouting capacities of ECs in vitro. Moreover, intravitreous injection of TMEM215 small interfering RNA resulted in delayed and abnormal development of retinal vasculature with poor perfusion. These results identified TMEM215 as a novel molecule involved in angiogenesis by regulating the survival of ECs.
Collapse
Affiliation(s)
- Yuan Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Qijun Zheng
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Guangbin He
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Mei Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Peiran Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Lili Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Shaanxi Key Laboratory of Modern Separation Science, Institute of Modern Separation Science, Northwest University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Goodson NB, Nahreini J, Randazzo G, Uruena A, Johnson JE, Brzezinski JA. Prdm13 is required for Ebf3+ amacrine cell formation in the retina. Dev Biol 2017; 434:149-163. [PMID: 29258872 DOI: 10.1016/j.ydbio.2017.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Amacrine interneurons play a critical role in the processing of visual signals within the retina. They are highly diverse, representing 30 or more distinct subtypes. Little is known about how amacrine subtypes acquire their unique gene expression and morphological features. We characterized the gene expression pattern of the zinc-finger transcription factor Prdm13 in the mouse. Consistent with a developmental role, Prdm13 was expressed by Ptf1a+ amacrine and horizontal precursors. Over time, Prdm13 expression diverged from the transiently expressed Ptf1a and marked just a subset of amacrine cells in the adult retina. While heterogeneous, we show that most of these Prdm13+ amacrine cells express the transcription factor Ebf3 and the calcium binding protein calretinin. Loss of Prdm13 did not affect the number of amacrine cells formed during development. However, we observed a modest loss of amacrine cells and increased apoptosis that correlated with the onset timing of Ebf3 expression. Adult Prdm13 loss-of-function mice had 25% fewer amacrine cells, altered calretinin expression, and a lack of Ebf3+ amacrines. Forcing Prdm13 expression in retinal progenitor cells did not significantly increase amacrine cell formation, Ebf3 or calretinin expression, and appeared detrimental to the survival of photoreceptors. Our data show that Prdm13 is not required for amacrine fate as a class, but is essential for the formation of Ebf3+ amacrine cell subtypes. Rather than driving subtype identity, Prdm13 may act by restricting competing fate programs to maintain identity and survival.
Collapse
Affiliation(s)
- Noah B Goodson
- University of Colorado Denver, Department of Ophthalmology, United States; University of Colorado Denver, Neuroscience Graduate Program, United States
| | - Jhenya Nahreini
- University of Colorado Denver, Department of Ophthalmology, United States
| | - Grace Randazzo
- University of Colorado Denver, Department of Ophthalmology, United States
| | - Ana Uruena
- University of Texas Southwestern Medical Center, Department of Neuroscience, United States
| | - Jane E Johnson
- University of Texas Southwestern Medical Center, Department of Neuroscience, United States
| | | |
Collapse
|
10
|
Götting M, Nikinmaa MJ. Transcriptomic Analysis of Young and Old Erythrocytes of Fish. Front Physiol 2017; 8:1046. [PMID: 29311976 PMCID: PMC5732906 DOI: 10.3389/fphys.2017.01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/29/2017] [Indexed: 11/26/2022] Open
Abstract
Understanding gene expression changes over the lifespan of cells is of fundamental interest and gives important insights into processes related to maturation and aging. This study was undertaken to understand the global transcriptome changes associated with aging in fish erythrocytes. Fish erythrocytes retain their nuclei throughout their lifetime and they are transcriptionally and translationally active. However, they lose important functions during their lifespan in the circulation. We separated rainbow trout (Oncorhynchus mykiss) erythrocytes into young and old fractions using fixed angle-centrifugation and analyzed transcriptome changes using RNA sequencing (RNA-seq) technology and quantitative real-time PCR. We found 930 differentially expressed between young and old erythrocyte fractions; 889 of these showed higher transcript levels in young, while only 34 protein-coding genes had higher transcript levels in old erythrocytes. In particular genes involved in ion binding, signal transduction, membrane transport, and those encoding various enzyme classes are affected in old erythrocytes. The transcripts with higher levels in old erythrocytes were associated with seven different GO terms within biological processes and nine within molecular functions and cellular components, respectively. Our study furthermore found several highly abundant transcripts as well as a number of differentially expressed genes (DEGs) for which the protein products are currently not known revealing the gaps of knowledge in most non-mammalian vertebrates. Our data provide the first insight into changes involved in aging on the transcriptional level and thus opens new perspectives for the study of maturation processes in fish erythrocytes.
Collapse
Affiliation(s)
- Miriam Götting
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Mikko J Nikinmaa
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Groman-Lupa S, Adewumi J, Park KU, Brzezinski JA. The Transcription Factor Prdm16 Marks a Single Retinal Ganglion Cell Subtype in the Mouse Retina. Invest Ophthalmol Vis Sci 2017; 58:5421-5433. [PMID: 29053761 PMCID: PMC5656415 DOI: 10.1167/iovs.17-22442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 12/04/2022] Open
Abstract
Purpose Retinal ganglion cells (RGC) can be categorized into roughly 30 distinct subtypes. How these subtypes develop is poorly understood, in part because few unique subtype markers have been characterized. We tested whether the Prdm16 transcription factor is expressed by RGCs as a class or within particular ganglion cell subtypes. Methods Embryonic and mature retinal sections and flatmount preparations were examined by immunohistochemistry for Prdm16 and several other cell type-specific markers. To visualize the morphology of Prdm16+ cells, we utilized Thy1-YFP-H transgenic mice, where a small random population of RGCs expresses yellow fluorescent protein (YFP) throughout the cytoplasm. Results Prdm16 was expressed in the retina starting late in embryogenesis. Prdm16+ cells coexpressed the RGC marker Brn3a. These cells were arranged in an evenly spaced pattern and accounted for 2% of all ganglion cells. Prdm16+ cells coexpressed parvalbumin, but not calretinin, melanopsin, Smi32, or CART. This combination of marker expression and morphology data from Thy1-YFP-H mice suggested that the Prdm16+ cells represented a single ganglion cell subtype. Prdm16 also marked vascular endothelial cells and mural cells of retinal arterioles. Conclusions A single subtype of ganglion cell appears to be uniquely marked by Prdm16 expression. While the precise identity of these ganglion cells is unclear, they most resemble the G9 subtype described by Völgyi and colleagues in 2009. Future studies are needed to determine the function of these ganglion cells and whether Prdm16 regulates their development.
Collapse
Affiliation(s)
- Sergio Groman-Lupa
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Joseph Adewumi
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Joseph A. Brzezinski
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| |
Collapse
|
12
|
Monavarfeshani A, Knill CN, Sabbagh U, Su J, Fox MA. Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse Brain. Front Integr Neurosci 2017; 11:20. [PMID: 28912695 PMCID: PMC5583603 DOI: 10.3389/fnint.2017.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Unconventional collagens are nonfribrillar proteins that not only contribute to the structure of extracellular matrices but exhibit unique bio-activities. Although roles for unconventional collagens have been well-established in the development and function of non-neural tissues, only recently have studies identified roles for these proteins in brain development, and more specifically, in the formation and refinement of synaptic connections between neurons. Still, our understanding of the full cohort of unconventional collagens that are generated in the mammalian brain remains unclear. Here, we sought to address this gap by assessing the expression of transmembrane collagens (i.e., collagens XIII, XVII, XXIII and XXV) in mouse brain. Using quantitative PCR and in situ hybridization (ISH), we demonstrate both region- and cell-specific expression of these unique collagens in the developing brain. For the two most highly expressed transmembrane collagens (i.e., collagen XXIII and XXV), we demonstrate that they are expressed by select subsets of neurons in different parts of the brain. For example, collagen XXIII is selectively expressed by excitatory neurons in the mitral/tufted cell layer of the accessory olfactory bulb (AOB) and by cells in the inner nuclear layer (INL) of the retina. On the other hand, collagen XXV, which is more broadly expressed, is generated by subsets of excitatory neurons in the dorsal thalamus and midbrain and by inhibitory neurons in the retina, ventral thalamus and telencephalon. Not only is col25a1 expression present in retina, it appears specifically enriched in retino-recipient nuclei within the brain (including the suprachiasmatic nucleus (SCN), lateral geniculate complex, olivary pretectal nucleus (OPN) and superior colliculus). Taken together, the distinct region- and cell-specific expression patterns of transmembrane collagens suggest that this family of unconventional collagens may play unique, yet-to-be identified roles in brain development and function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Courtney N Knill
- Virginia Tech Carilion School of Medicine, Virginia TechRoanoke, VA, United States
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia TechBlacksburg, VA, United States
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States.,Department of Pediatrics, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
13
|
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLoS One 2017; 12:e0176905. [PMID: 28829770 PMCID: PMC5568747 DOI: 10.1371/journal.pone.0176905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.
Collapse
|