1
|
Wu X, Ma Y, Zhang Z, Hou T, He Y. New targets of nascent lymphatic vessels in ocular diseases. Front Physiol 2024; 15:1374627. [PMID: 38529484 PMCID: PMC10961382 DOI: 10.3389/fphys.2024.1374627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Recent advancements in the field of endothelial markers of lymphatic vessels and lymphangiogenic factors have shed light on the association between several ocular diseases and ocular nascent lymphatic vessels. The immune privilege of corneal tissue typically limits the formation of lymphatic vessels in a healthy eye. However, vessels in the eyes can potentially undergo lymphangiogenesis and be conditionally activated. It is evident that nascent lymphatic vessels in the eyes contribute to various ocular pathologies. Conversely, lymphatic vessels are present in the corneal limbus, ciliary body, lacrimal glands, optic nerve sheaths, and extraocular muscles, while a lymphatic vasculature-like system exists in the choroid, that can potentially cause several ocular pathologies. Moreover, numerous studies indicate that many ocular diseases can influence or activate nascent lymphatic vessels, ultimately affecting patient prognosis. By understanding the mechanisms underlying the onset, development, and regression of ocular nascent lymphatic vessels, as well as exploring related research on ocular diseases, this article aims to offer novel perspectives for the treatment of such conditions.
Collapse
Affiliation(s)
- Xuhui Wu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkun Ma
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaochen Zhang
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Hou
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
3
|
Ren Y, Dong X, Liu Y, Kang H, Guan L, Huang Y, Zhu X, Tian J, Chen B, Jiang B, He Y. Rapamycin antagonizes angiogenesis and lymphangiogenesis through myeloid-derived suppressor cells in corneal transplantation. Am J Transplant 2023; 23:1359-1374. [PMID: 37225089 DOI: 10.1016/j.ajt.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Rapamycin is an immunosuppressive drug that is widely used in the postsurgery management of transplantation. To date, the mechanism by which rapamycin reduces posttransplant neovascularization has not been fully understood. Given the original avascularity and immune privilege of the cornea, corneal transplantation is considered as an ideal model to investigate neovascularization and its effects on allograft rejection. Previously, we found that myeloid-derived suppressor cells (MDSC) prolong corneal allograft survival through suppression of angiogenesis and lymphangiogenesis. Here, we show that depletion of MDSC abolished rapamycin-mediated suppression of neovascularization and elongation of corneal allograft survival. RNA-sequencing analysis revealed that rapamycin dramatically enhanced the expression of arginase 1 (Arg1). Furthermore, an Arg1 inhibitor also completely abolished the rapamycin-mediated beneficial effects after corneal transplantation. Taken together, these findings indicate that MDSC and elevated Arg1 activity are essential for the immunosuppressive and antiangiogenic functions of rapamycin.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaonan Dong
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Lingling Guan
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yumin Huang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Xinqi Zhu
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
4
|
Musa M, Zeppieri M, Enaholo ES, Chukwuyem E, Salati C. An Overview of Corneal Transplantation in the Past Decade. Clin Pract 2023; 13:264-279. [PMID: 36826166 PMCID: PMC9955122 DOI: 10.3390/clinpract13010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The cornea is a transparent avascular structure located in the front of the eye that refracts light entering the eyes and also serves as a barrier between the outside world and the internal contents of the eye. Like every other body part, the cornea may suffer insult from trauma, infection, and inflammation. In the case of trauma, a prior infection that left a scar, or conditions such as keratoconus that warrant the removal of all or part of the cornea (keratoplasty), it is important to use healthy donor corneal tissues and cells that can replace the damaged cornea. The types of cornea transplant techniques employed currently include: penetrating keratoplasty, endothelial keratoplasty (EK), and artificial cornea transplant. Postoperative failure acutely or after years can result after a cornea transplant and may require a repeat transplant. This minireview briefly examines the various types of corneal transplant methodologies, indications, contraindications, presurgical protocols, sources of cornea transplant material, wound healing after surgery complications, co-morbidities, and the effect of COVID-19 in corneal transplant surgery.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence:
| | - Ehimare S. Enaholo
- Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
- Africa Eye Laser Centre, Benin 300001, Nigeria
| | - Ekele Chukwuyem
- Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
- Africa Eye Laser Centre, Benin 300001, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI, Azar DT. Lymphangiogenesis Guidance Mechanisms and Therapeutic Implications in Pathological States of the Cornea. Cells 2023; 12:319. [PMID: 36672254 PMCID: PMC9856498 DOI: 10.3390/cells12020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.
Collapse
Affiliation(s)
- Mehul Patnam
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil R. Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Chennakesavalu M, Somala SRR, Dommaraju SR, Peesapati MP, Guo K, Rosenblatt MI, Chang JH, Azar DT. Corneal lymphangiogenesis as a potential target in dry eye disease - a systematic review. Surv Ophthalmol 2021; 66:960-976. [PMID: 33811911 PMCID: PMC9991079 DOI: 10.1016/j.survophthal.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
Abstract
Dry eye disease (DED) is a common ocular surface condition causing symptoms of significant discomfort, visual disturbance, and pain. With recent advancements, DED has become recognized as a chronic self-perpetuating inflammatory condition triggered by various internal and environmental factors. DED has been shown to arise from the activation of both the innate and adaptive immune systems, leading to corneal epithelium and lacrimal gland dysfunction. While the cornea is normally avascular and thus imbued with angiogenic and lymphangiogenic privilege, various DED models have revealed activated corneal antigen-presenting cells in regional lymph nodes, suggesting the formation of new corneal lymphatic vessels in DED. The recent availability of reliable lymphatic cell surface markers such as LYVE-1 has made it possible to study lymphangiogenesis. Accordingly, numerous studies have been published within the last decade discussing the role of lymphangiogenesis in DED pathology. We systematically review the literature to identify and evaluate studies presenting data on corneal lymphangiogenesis in DED. There is considerable evidence supporting corneal lymphangiogenesis as a central mediator of DED pathogenesis. These findings suggest that anti-lymphangiogenic therapeutic strategies may be a viable option for the treatment of DED, a conclusion supported by the limited number of reported clinical trials examining anti-lymphangiogenic modalities in DED.
Collapse
Affiliation(s)
- Mohansrinivas Chennakesavalu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sri Raghurama R Somala
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sunil R Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Meghna Priyanka Peesapati
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
7
|
Lee HK, Lee SM, Lee DI. Corneal Lymphangiogenesis: Current Pathophysiological Understandings and Its Functional Role in Ocular Surface Disease. Int J Mol Sci 2021; 22:ijms222111628. [PMID: 34769057 PMCID: PMC8583961 DOI: 10.3390/ijms222111628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
The cornea is a transparent and avascular tissue that plays a central role in light refraction and provides a physical barrier to the external environment. Corneal avascularity is a unique histological feature that distinguishes it from the other parts of the body. Functionally, corneal immune privilege critically relies on corneal avascularity. Corneal lymphangiogenesis is now recognized as a general pathological feature in many pathologies, including dry eye disease (DED), corneal allograft rejection, ocular allergy, bacterial and viral keratitis, and transient corneal edema. Currently, sizable data from clinical and basic research have accumulated on the pathogenesis and functional role of ocular lymphangiogenesis. However, because of the invisibility of lymphatic vessels, ocular lymphangiogenesis has not been studied as much as hemangiogenesis. We reviewed the basic mechanisms of lymphangiogenesis and summarized recent advances in the pathogenesis of ocular lymphangiogenesis, focusing on corneal allograft rejection and DED. In addition, we discuss future directions for lymphangiogenesis research.
Collapse
Affiliation(s)
- Hyung-Keun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3444
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Catholic Kwandong University College of Medicine, Incheon 21388, Korea;
| | - Dong-Ihll Lee
- Medical School, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
8
|
Hou Y, Bock F, Hos D, Cursiefen C. Lymphatic Trafficking in the Eye: Modulation of Lymphatic Trafficking to Promote Corneal Transplant Survival. Cells 2021; 10:1661. [PMID: 34359831 PMCID: PMC8306557 DOI: 10.3390/cells10071661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
(Lymph)angiogenesis into the cornea prior to and after corneal transplantation is a critical risk factor for allograft rejection. Lymphatic vessels even more than blood vessels seem important in mediating immune responses, as they facilitate allograft sensitization in the draining lymph nodes. Thus, the concept of modulating lymphatic trafficking to promote corneal graft survival seems promising. A variety of approaches has been developed to inhibit progressive lymphangiogenesis in experimental settings. Recently, additionally to pharmacological approaches, clinically available techniques such as UVA-based corneal collagen crosslinking and fine needle diathermy were reported to be effective in regressing lymphatic vessels and to experimentally promote graft survival. Clinical pilot studies also suggest the efficacy of blocking antigen presenting cell trafficking to regional lymph nodes by regressing corneal lymphatic vessels to enhance allograft survival in high-risk eyes. In this article, we will give an overview of current strategies to modulate lymphatic trafficking with a special focus on recently reported strategies, which may be easy to translate into clinical practice. This novel concept of temporary, pretransplant regression of lymphatic vessels at the site of transplantation to promote subsequent corneal transplant survival ("lymphangioregressive preconditioning") may also be applicable to other transplantation sites later.
Collapse
Grants
- German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de); German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de);
- EU COST BM1302 EU COST BM1302 (DH, CC; www.biocornea.eu);
- EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu); EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu);
- EU COST Aniridia (CC; www.aniridia-net.eu); EU COST Aniridia (CC; www.aniridia-net.eu);
- Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/); Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/);
- Shanghai Sailing Program Shanghai Sailing Program
Collapse
Affiliation(s)
- Yanhong Hou
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Disease, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
9
|
Lymphatics in Eye Fluid Homeostasis: Minor Contributors or Significant Actors? BIOLOGY 2021; 10:biology10070582. [PMID: 34201989 PMCID: PMC8301034 DOI: 10.3390/biology10070582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels exert major effects on the maintenance of interstitial fluid homeostasis, immune cell trafficking, lipid absorption, tumor progression and metastasis. Recently, novel functional roles for the lymphatic vasculature have emerged, which can be associated with pathological situations. Among them, lymphatics have been proposed to participate in eye aqueous humor drainage, with potential consequences on intraocular pressure, a main risk factor for progression of glaucoma disease. In this review, after the description of eye fluid dynamics, we provide an update on the data concerning the distribution of ocular lymphatics. Particular attention is given to the results of investigations allowing the three dimensional visualization of the ocular surface vasculature, and to the molecular mechanisms that have been characterized to regulate ocular lymphatic vessel development. The studies concerning the potential role of lymphatics in aqueous humor outflow are reported and discussed. We also considered the novel studies mentioning the existence of an ocular glymphatic system which may have, in connection with lymphatics, important repercussions in retinal clearance and in diseases affecting the eye posterior segment. Some remaining unsolved questions and new directions to explore are proposed to improve the knowledge about both lymphatic and glymphatic system interactions with eye fluid homeostasis.
Collapse
|
10
|
Aqueous humor induces lymphatic regression on the ocular surface. Ocul Surf 2020; 18:505-510. [PMID: 32173554 DOI: 10.1016/j.jtos.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study is to investigate the potential effect of aqueous humor on already formed lymphatic vessels of the ocular surface including the conjunctiva and the cornea. METHODS Aqueous humor harvested from fresh bovine or murine eyeballs were used in the study. It was injected into the subconjunctival space of Prox-1-GFP (green fluorescent protein) transgenic mice. Pre-existing conjunctival lymphatics were observed in vivo using our advanced live imaging system. Additionally, ex vivo tissue cultures were performed in aqueous humor with normal conjunctival tissues or inflamed corneas with newly formed lymphatic vessels. Time lapse images were taken by an advanced live cell imaging system with an incubator. Moreover, human primary microdermal lymphatic endothelial cell culture system was employed to evaluate the effect of aqueous humor on lymphatic tube regression in vitro. RESULTS Aqueous humor induced lymphatic regression in both normal conjunctiva and inflamed corneas. It also led to the regression of formed lymphatic tubes by the lymphatic endothelial cells in vitro. CONCLUSIONS This study provides the first direct and real time live imaging evidence showing that aqueous humor induces lymphatic regression. Further investigation promises for divulging new mechanisms and therapeutic strategies to treat lymphatic diseases that occur both inside and outside the eye.
Collapse
|
11
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
12
|
Tanaka M, Iwakiri Y. Lymphatics in the liver. Curr Opin Immunol 2018; 53:137-142. [PMID: 29772409 DOI: 10.1016/j.coi.2018.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
The liver is the largest lymph producing organ. A significant increase in the number of hepatic lymphatic vessels, or lymphangiogenesis, has been reported in various liver diseases, including, but not limited to, cirrhosis, viral hepatitis and hepatocellular carcinoma. Despite its apparent relevance in healthy and diseased livers as these and other observations indicate, the hepatic lymphatic system has been poorly studied. With knowledge of the lymphatic system in other organs and tissues incorporated, this review article addresses the current knowledge of the hepatic lymphatic system and the potential role of lymphatic endothelial cells in the health and the disease of the liver and concludes with a brief description on future directions of the study of the hepatic lymphatic system.
Collapse
Affiliation(s)
- Masatake Tanaka
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Yamakawa M, Doh SJ, Santosa SM, Montana M, Qin EC, Kong H, Han KY, Yu C, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 2018. [PMID: 29528507 DOI: 10.1002/med.21496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
14
|
Zhang L, Li G, Shi M, Liu HH, Ge S, Ou Y, Flanagan JG, Chen L. Establishment and Characterization of an Acute Model of Ocular Hypertension by Laser-Induced Occlusion of Episcleral Veins. Invest Ophthalmol Vis Sci 2017; 58:3879-3886. [PMID: 28763561 PMCID: PMC6108309 DOI: 10.1167/iovs.16-20807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose This study was designed to develop and characterize a laser-induced model of acute intraocular hypertension that permits the study of the anterior segment of the eye. Methods CD1 mice aged 5 and 8 weeks were examined for elevation of IOP induced by laser photocoagulation. We compared between occlusion of episcleral veins alone and when combined with 270° limbal vessel occlusion. Anterior chamber angle, corneal thickness, and retinal nerve fiber layer (RNFL) thickness were evaluated by anterior- and posterior-segment optical coherence tomography (OCT). Additionally, at day 7 post-procedure, the anterior segment was evaluated for inflammatory cellular presentation by histologic analysis and OCT, and limbal vessels and whole-mount retina were immunostained for CD31 and Brn3a, respectively. Brn3a-positive retinal ganglion cells (RGCs) were quantified with ImageJ software. Results After single or combined laser treatment in mice aged 5 or 8 weeks, IOP was significantly elevated for 5 to 6 days before returning to the baseline by day 7 post-procedure. Anterior segment assessment indicated less synechiae in the anterior chamber angle and better preserved limbal vessels with single versus combined laser treatment. Corneal thickness was significantly increased after single or combined treatment. No inflammatory cells were detected in the anterior chamber. The thickness of the RNFL and the density of RGCs were both significantly reduced after single or combined treatment. Conclusions Laser photocoagulation of episcleral veins alone in CD1 mice aged 5 to 8 weeks may be used to induce ocular hypertension resulting in RNFL thinning and ganglion cell loss. This model permits the study of the anterior as well as the posterior segment of the eye.
Collapse
Affiliation(s)
- Liwei Zhang
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States 3Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangyu Li
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Meng Shi
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States 3Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hsin-Hua Liu
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Shaokui Ge
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - John G Flanagan
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Lu Chen
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|