1
|
Gocuk SA, Edwards TL, Jolly JK, McGuinness MB, MacLaren RE, Chen FK, Taylor LJ, McLaren TL, Lamey TM, Thompson JA, Ayton LN. Retinal Characteristics of Female Choroideremia Carriers: Multimodal Imaging, Microperimetry, and Genetics. Ophthalmol Retina 2024; 8:1200-1210. [PMID: 38936773 DOI: 10.1016/j.oret.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To describe visual function and retinal features of female carriers of choroideremia (CHM), using multimodal imaging and microperimetry. DESIGN Cross-sectional cohort study. PARTICIPANTS AND CONTROLS Choroideremia carriers seen in Australia (Melbourne or Perth) or the United Kingdom (Oxford or Cambridge) between 2012 and 2023. Healthy age-matched controls seen in Melbourne, Australia, between 2022 and 2023. METHODS Participants had visual acuity, fundus-tracked microperimetry, OCT, and fundus autofluorescence imaging performed. Choroideremia carriers were either genetically or clinically confirmed (i.e., obligate carriers). Choroideremia carriers were grouped according to their retinal phenotype and compared with healthy controls. Statistical analyses were performed on StataBE (v18.0). MAIN OUTCOME MEASURES Best-corrected visual acuity (BCVA), low-luminance visual acuity (LLVA), average retinal sensitivity, volume of macular hill of vision (HoV), inner retinal thickness, and photoreceptor complex (PRC) thickness. RESULTS Eighty-six eyes of 43 CHM carriers and 60 eyes of 30 healthy controls were examined using multimodal imaging and microperimetry. Median age was 54 and 48.5 years for CHM carriers and controls, respectively (P = 0.18). Most CHM carriers (86%) were genetically confirmed. Choroideremia carriers and controls had strong intereye correlation between eyes for BCVA and average retinal sensitivity (P < 0.001). Low-luminance visual acuity and macular HoV tests were sensitive tests to detect changes in CHM carriers with mild phenotypes (i.e., fine and coarse). Choroideremia carriers with geographic or male-pattern phenotypes had reduced BCVA, LLVA, retinal sensitivity, and retinal thinning, compared with healthy controls. Retinal thickening of the inner retina was observed in the central 1°, despite generalized thinning of the PRC in the central 7°, indicating retinal remodeling in CHM carriers, compared with controls. There were no genotype-phenotype correlations observed. CONCLUSIONS Female carriers of CHM with severe retinal phenotypes (i.e., geographic or male pattern) have significantly decreased visual function and retinal structural changes when compared with age-matched controls and those carriers with milder phenotypes. Low-luminance visual acuity and volumetric measures of the macular HoV were found to be the most sensitive functional tests to detect milder retinal disease (fine and coarse phenotypes) in CHM carriers. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Thomas L Edwards
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, United Kingdom; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Myra B McGuinness
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Fred K Chen
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Laura J Taylor
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Poli FE, MacLaren RE, Cehajic-Kapetanovic J. Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes (Basel) 2024; 15:1471. [PMID: 39596671 PMCID: PMC11593989 DOI: 10.3390/genes15111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Choroideremia is a monogenic inherited retinal dystrophy that manifests in males with night blindness, progressive loss of peripheral vision, and ultimately profound sight loss, commonly by middle age. It is caused by genetic defects of the CHM gene, which result in a deficiency in Rab-escort protein-1, a key element for intracellular trafficking of vesicles, including those carrying melanin. As choroideremia primarily affects the retinal pigment epithelium, fundus autofluorescence, which focuses on the fluorescent properties of pigments within the retina, is an established imaging modality used for the assessment and monitoring of affected patients. METHODS AND RESULTS In this manuscript, we demonstrate the use of both short-wavelength blue and near-infrared autofluorescence and how these imaging modalities reveal distinct disease patterns in choroideremia. In addition, we show how these structural measurements relate to retinal functional measures, namely microperimetry, and discuss the potential role of these retinal imaging modalities in clinical practice and research studies. Moreover, we discuss the mechanisms underlying retinal autofluorescence patterns by imaging with a particular focus on melanin pigment. CONCLUSIONS This could be of particular significance given the current progress in therapeutic options, including gene replacement therapy.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Taylor LJ, Josan AS, Adeyoju D, Jolly JK, MacLaren RE. Exploring Scotopic Microperimetry as an Outcome Measure in Choroideremia. Transl Vis Sci Technol 2024; 13:29. [PMID: 39348136 PMCID: PMC11441449 DOI: 10.1167/tvst.13.9.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/01/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Choroideremia is an X-linked outer retinal degeneration. Early symptoms include nyctalopia and progressive visual field loss, but visual acuity is preserved until late disease stages. Dark-adapted two-color fundus-controlled perimetry (also known as scotopic microperimetry) has been developed to enable spatial assessment of rod and cone photoreceptor function. This study explores the use of scotopic microperimetry in patients with choroideremia. Methods Twenty patients with choroideremia and 21 age-matched healthy controls completed visual acuity and scotopic microperimetry testing, which used the Scotopic Macular Integrity Assessment (S-MAIA) microperimeter. A subset of participants completed repeat scotopic testing to enable Bland-Altman repeatability analyses. Test reliability was assessed using fixation stability, fixation losses, and assessment of the rod-free zones. Pointwise sensitivity, mean sensitivity, and volume sensitivity indices were analyzed. Results False positive responses were the main source of poor test reliability, indicated by stimuli responses in the physiological blind spot and lack of rod-free mapping. Scotopic cyan and red sensitivities were significantly reduced in choroideremia participants (n = 17) compared to healthy controls (n = 16) (P < 0.01, Mann-Whitney U test). Scotopic cyan sensitivity was statistically lower than scotopic red sensitivity in both healthy controls and choroideremia (P < 0.01, Wilcoxon signed rank test). Interpretation of scotopic cyan-red differences should be used with caution due to high test-retest variability. Conclusions Scotopic microperimetry could be a useful outcome measure in patients with early choroideremia. Careful selection of test grid design and sensitivity indices is required. Translational Relevance Scotopic microperimetry may be a useful outcome measure in clinical trials for patients with early stage choroideremia.
Collapse
Affiliation(s)
- Laura J. Taylor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amandeep S. Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel Adeyoju
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K. Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
4
|
Baffour-Awuah KA, Taylor LJ, Josan AS, Jolly JK, MacLaren RE. Investigating the impact of asymmetric macular sensitivity on visual acuity chart reading in choroideremia. Ophthalmic Physiol Opt 2024; 44:1188-1201. [PMID: 38989810 DOI: 10.1111/opo.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Degeneration in choroideremia, unlike typical centripetal photoreceptor degenerations, is centred temporal to the fovea. Once the fovea is affected, the nasal visual field (temporal retina) is relatively spared, and the preferred retinal locus shifts temporally. Therefore, when reading left to right, only the right eye reads into a scotoma. We investigate how this unique property affects the ability to read an eye chart. METHODS Standard- and low-luminance visual acuity (VA) for right and left eyes were measured with the Early Treatment of Diabetic Retinopathy Study (ETDRS) chart. Letters in each line were labelled by column position. The numbers of letter errors for each position across the whole chart were summed to produce total column error scores for each participant. Macular sensitivity was assessed using microperimetry. Central sensitivity asymmetry was determined by the temporal-versus-nasal central macular difference and subsequently correlated to a weighted ETDRS column error score. Healthy volunteers and participants with X-linked retinitis pigmentosa GTPase regulator associated retinitis pigmentosa (RPGR-RP) were used as controls. RESULTS Thirty-nine choroideremia participants (median age 44.9 years [IQR 35.7-53.5]), 23 RPGR-RP participants (median age 30.8 years [IQR 26.5-40.5]) and 35 healthy controls (median age 23.8 years [IQR 20.3-29.0]) were examined. In choroideremia, standard VA in the right eye showed significantly greater ETDRS column errors on the temporal side compared with the nasal side (p = 0.002). This significantly correlated with greater asymmetry in temporal-versus-nasal central macular sensitivity (p = 0.04). No significant patterns in ETDRS column errors or central macular sensitivity were seen in the choroideremia left eyes, nor in RPGR-RP and control eyes. CONCLUSION Difficulty in tracking across lines during ETDRS VA testing may cause excess errors independent of true VA. VA assessment with single-letter optotype systems may be more suitable, particularly for patients with choroideremia, and potentially other retinal diseases with asymmetric central macular sensitivity or large central scotomas including geographic atrophy.
Collapse
Affiliation(s)
- Kwame A Baffour-Awuah
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Amandeep S Josan
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Gocuk SA, Ayton LN, Edwards TL, McGuinness MB, Maclaren RE, Taylor LJ, Jolly JK. Longitudinal assessment of female carriers of choroideremia using multimodal retinal imaging. Br J Ophthalmol 2024:bjo-2024-325578. [PMID: 39122355 DOI: 10.1136/bjo-2024-325578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND/AIMS Female choroideremia carriers present with a spectrum of disease severity. Unlike in men, the rate of disease progression has not been well characterised in carriers. This longitudinal study aimed to determine the rate of retinal degeneration in choroideremia carriers, using multimodal imaging and microperimetry. METHODS Choroideremia carriers previously seen at Oxford Eye Hospital (United Kingdom) between 2012 and 2017 returned for testing between 2015 and 2023, providing up to 11 years' follow-up data. Participants had optical coherence tomography, fundus-tracked microperimetry and fundus autofluorescence (FAF) imaging performed. RESULTS Thirty-four eyes of 17 choroideremia carriers were examined using multimodal imaging. Median age was 44 (range: 15-73) years at baseline and median follow-up duration was 7 (range: 1-11) years. At baseline, phenotype was classified as fine (n=5 eyes), coarse (n=13 eyes), geographic (n=12 eyes) or male pattern (n=4 eyes). Thirteen patients showed no change in phenotype classification, four showed slight changes associated with choroideremia-related retinal degeneration. Despite this, carriers with severe retinal phenotypes had a statistically significant decline in average retinal sensitivity (-0.7 dB and -0.8 dB per year, respectively, p<0.001), area of geographic loss defined by FAF (+2.5 mm2 and +3.7 mm2 per year, respectively, p<0.001) and thinning of the photoreceptor complex (up to -2.8 microns and -10.3 microns per year, p<0.001). CONCLUSION Choroideremia carriers, particularly those with severe retinal phenotypes, exhibit progressive retinal degeneration, as evident by multimodal imaging biomarkers and functional testing. Clinicians should not rely on retinal severity classification alone to assess disease progression.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Myra B McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert E Maclaren
- Oxford Eye Hospital, Oxford University Hospital NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospital NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Jasleen K Jolly
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Oxford Eye Hospital, Oxford University Hospital NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
6
|
MacLaren RE, Audo I, Fischer MD, Huckfeldt RM, Lam BL, Pennesi ME, Sisk R, Gow JA, Li J, Zhu K, Tsang SF. An Open-Label Phase II Study Assessing the Safety of Bilateral, Sequential Administration of Retinal Gene Therapy in Participants with Choroideremia: The GEMINI Study. Hum Gene Ther 2024; 35:564-575. [PMID: 38970425 DOI: 10.1089/hum.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Choroideremia, an incurable, progressive retinal degeneration primarily affecting young men, leads to sight loss. GEMINI was a multicenter, open-label, prospective, two-period, interventional Phase II study assessing the safety of bilateral sequential administration of timrepigene emparvovec, a gene therapy, in adult males with genetically confirmed choroideremia (NCT03507686, ClinicalTrials.gov). Timrepigene emparvovec is an adeno-associated virus serotype 2 vector encoding the cDNA of Rab escort protein 1, augmented by a downstream woodchuck hepatitis virus post-transcriptional regulatory element. Up to 0.1 mL of timrepigene emparvovec, containing 1 × 1011 vector genomes, was administered by subretinal injection following vitrectomy and retinal detachment. The second eye was treated after an intrasurgery window of <6, 6-12, or >12 months. Each eye was followed at up to nine visits over 12 months. Overall, 66 participants received timrepigene emparvovec, and 53 completed the study. Visual acuity (VA) was generally maintained in both eyes, independent of intrasurgery window duration, even after bilateral retinal detachment and subretinal injection. Bilateral treatment was well tolerated, with predominantly mild or moderate treatment-emergent adverse events (TEAEs) and a low rate of serious surgical complications (7.6%). Retinal inflammation TEAEs were reported in 45.5% of participants, with similar rates in both eyes; post hoc analyses found that these were not associated with clinically significant vision loss at month 12 versus baseline. Two participants (3.0%) reported serious noninfective retinitis. Prior timrepigene emparvovec exposure did not increase the risk of serious TEAEs or serious ocular TEAEs upon injection of the second eye; furthermore, no systemic immune reaction or inoculation effect was observed. Presence of antivector neutralizing antibodies at baseline was potentially associated with a higher percentage of TEAEs related to ocular inflammation or reduced VA after injection of the first eye. The GEMINI study results may inform decisions regarding bilateral sequential administration of other gene therapies for retinal diseases.
Collapse
Affiliation(s)
- Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Rachel M Huckfeldt
- MEE Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Sisk
- Cincinnati Eye Institute, Blue Ash, Ohio, USA
| | | | - Jiang Li
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Kan Zhu
- Biogen Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
7
|
Yu M, Hao W, Wang M, Ruan Z, Li Z, Xiang C, Wang L, Hu Y, Yang X. Characterizing Retinal Sensitivity and Structure in Congenital Stationary Night Blindness: A Combined Microperimetry and OCT Study. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 38916884 PMCID: PMC11204054 DOI: 10.1167/iovs.65.6.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose To investigate the characteristics of microperimetry and optical coherence tomography (OCT) in congenital stationary night blindness (CSNB), as well as their structure-function association. Methods This cross-sectional study included 32 eyes from 32 participants with CSNB, comprising 18 with complete CSNB and 14 with incomplete CSNB, along with 36 eyes from 36 CSNB-unaffected controls matched for age, sex, and spherical equivalent. Using MP-3 microperimetry, central retinal sensitivity was assessed within a 20° field, distributed across six concentric rings (0°, 2°, 4°, 6°, 8°, and 10°). OCT was used to analyze retinal and choroidal thickness. The study aimed to assess the overall and ring-wise retinal sensitivity, as well as choroidal and retinal thickness in CSNB and CSNB-unaffected controls, with a secondary focus on the relationship between retinal sensitivity and microstructural features on OCT. Results In comparison with CSNB-unaffected subjects, the overall and ring-wise retinal sensitivity as well as choroidal thickness were reduced in patients with CSNB (P < 0.001). Moreover, the central sensitivity in incomplete CSNB group was lower than in complete CSNB group (25.72 ± 3.93 dB vs. 21.92 ± 4.10 dB; P < 0.001). The retinal thickness in the CSNB group was thinner outside the fovea compared with the CSNB-unaffected group. Multiple mixed regression analyses revealed that point-to-point retinal sensitivity was significantly correlated with BCVA (P = 0.002) and the corresponding retinal thickness (P = 0.004). Conclusions Examination of retinal sensitivity and OCT revealed different spatial distribution profiles in CSNB and its subtypes. In CSNB eyes, retinal sensitivity on microperimetry was associated with retinal thickness on OCT.
Collapse
Affiliation(s)
- Mengting Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wenlong Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Mengyi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhenbang Ruan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zixuan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Chuqi Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Lili Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Xu P, Cooper RF, Jiang YY, Morgan JIW. Parafoveal cone function in choroideremia assessed with adaptive optics optoretinography. Sci Rep 2024; 14:8339. [PMID: 38594294 PMCID: PMC11004114 DOI: 10.1038/s41598-024-58059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Choroideremia (CHM) is an X-linked retinal degeneration leading to loss of the photoreceptors, retinal pigment epithelium (RPE), and choroid. Adaptive optics optoretinography is an emerging technique for noninvasive, objective assessment of photoreceptor function. Here, we investigate parafoveal cone function in CHM using adaptive optics optoretinography and compare with cone structure and clinical assessments of vision. Parafoveal cone mosaics of 10 CHM and four normal-sighted participants were imaged with an adaptive optics scanning light ophthalmoscope. While acquiring video sequences, a 2 s 550Δ10 nm, 450 nW/deg2 stimulus was presented. Videos were registered and the intensity of each cone in each frame was extracted, normalized, standardized, and aggregated to generate the population optoretinogram (ORG) over time. A gamma-pdf was fit to the ORG and the peak was extracted as ORG amplitude. CHM ORG amplitudes were compared to normal and were correlated with bound cone density, ellipsoid zone to RPE/Bruch's membrane (EZ-to-RPE/BrM) distance, and foveal sensitivity using Pearson correlation analysis. ORG amplitude was significantly reduced in CHM compared to normal (0.22 ± 0.15 vs. 1.34 ± 0.31). In addition, CHM ORG amplitude was positively correlated with cone density, EZ-to-RPE/BrM distance, and foveal sensitivity. Our results demonstrate promise for using ORG as a biomarker of photoreceptor function.
Collapse
Affiliation(s)
- Peiluo Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert F Cooper
- Department of Ophthalmology, Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica I W Morgan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Waldock WJ, Taylor LJ, Sperring S, Staurenghi F, Martinez-Fernandez de la Camara C, Whitfield J, Clouston P, Yusuf IH, MacLaren RE. A hypomorphic variant of choroideremia is associated with a novel intronic mutation that leads to exon skipping. Ophthalmic Genet 2024; 45:210-217. [PMID: 38273808 DOI: 10.1080/13816810.2023.2270554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Molecular confirmation of pathogenic sequence variants in the CHM gene is required prior to enrolment in retinal gene therapy clinical trials for choroideremia. Individuals with mild choroideremia have been reported. The molecular basis of genotype-phenotype associations is of clinical relevance since it may impact on selection for retinal gene therapy. METHODS AND MATERIALS Genetic testing and RNA analysis were undertaken in a patient with mild choroideremia to confirm the pathogenicity of a novel intronic variant in CHM and to explore the mechanism underlying the mild clinical phenotype. RESULTS A 42-year-old male presented with visual field loss. Fundoscopy and autofluorescence imaging demonstrated mild choroideremia for his age. Genetic analysis revealed a variant at a splice acceptor site in the CHM gene (c.1350-3C > G). RNA analysis demonstrated two out-of-frame transcripts, suggesting pathogenicity, without any detectable wildtype transcripts. One of the two out-of-frame transcripts is present in very low levels in healthy controls. DISCUSSION Mild choroideremia may result from +3 or -3 splice site variants in CHM. It is presumed that the resulting mRNA transcripts may be partly functional, thereby preventing the development of the null phenotype. Choroideremia patients with such variants may present challenges for gene therapy since there may be residual transcript activity which could result in long-lasting visual function which is atypical for this disease.
Collapse
Affiliation(s)
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Penny Clouston
- Oxford Regional Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Imran H Yusuf
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
MacLaren RE, Fischer MD, Gow JA, Lam BL, Sankila EMK, Girach A, Panda S, Yoon D, Zhao G, Pennesi ME. Subretinal timrepigene emparvovec in adult men with choroideremia: a randomized phase 3 trial. Nat Med 2023; 29:2464-2472. [PMID: 37814062 PMCID: PMC10579095 DOI: 10.1038/s41591-023-02520-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Choroideremia is a rare, X-linked retinal degeneration resulting in progressive vision loss. A randomized, masked, phase 3 clinical trial evaluated the safety and efficacy over 12 months of follow-up in adult males with choroideremia randomized to receive a high-dose (1.0 × 1011 vector genomes (vg); n = 69) or low-dose (1.0 × 1010 vg; n = 34) subretinal injection of the AAV2-vector-based gene therapy timrepigene emparvovec versus non-treated control (n = 66). Most treatment-emergent adverse events were mild or moderate. The trial did not meet its primary endpoint of best-corrected visual acuity (BCVA) improvement. In the primary endpoint analysis, three of 65 participants (5%) in the high-dose group, one of 34 (3%) participants in the low-dose group and zero of 62 (0%) participants in the control group had ≥15-letter Early Treatment Diabetic Retinopathy Study (ETDRS) improvement from baseline BCVA at 12 months (high dose, P = 0.245 versus control; low dose, P = 0.354 versus control). As the primary endpoint was not met, key secondary endpoints were not tested for significance. In a key secondary endpoint, nine of 65 (14%), six of 35 (18%) and one of 62 (2%) participants in the high-dose, low-dose and control groups, respectively, experienced ≥10-letter ETDRS improvement from baseline BCVA at 12 months. Potential opportunities to enhance future gene therapy studies for choroideremia include optimization of entry criteria (more preserved retinal area), surgical techniques and clinical endpoints. EudraCT registration: 2015-003958-41 .
Collapse
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford University Hospitals NIHR Biomedical Research Centre, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - M Dominik Fischer
- University Eye Hospital Tübingen, Center for Ophthalmology, Tübingen, Germany
| | | | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Aniz Girach
- Formerly of Nightstar Therapeutics, London, UK
| | | | | | | | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Abdalla Elsayed MEA, Taylor LJ, Josan AS, Fischer MD, MacLaren RE. Choroideremia: The Endpoint Endgame. Int J Mol Sci 2023; 24:14354. [PMID: 37762657 PMCID: PMC10532430 DOI: 10.3390/ijms241814354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia is an X-linked retinal degeneration resulting from the progressive, centripetal loss of photoreceptors and choriocapillaris, secondary to the degeneration of the retinal pigment epithelium. Affected individuals present in late childhood or early teenage years with nyctalopia and progressive peripheral visual loss. Typically, by the fourth decade, the macula and fovea also degenerate, resulting in advanced sight loss. Currently, there are no approved treatments for this condition. Gene therapy offers the most promising therapeutic modality for halting or regressing functional loss. The aims of the current review are to highlight the lessons learnt from clinical trials in choroideremia, review endpoints, and propose a future strategy for clinical trials.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amandeep S. Josan
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
12
|
Poli FE, Yusuf IH, Jolly JK, Taylor LJ, Adeyoju D, Josan AS, Birtel J, Charbel Issa P, Cehajic-Kapetanovic J, Da Cruz L, MacLaren RE. Correlation Between Fundus Autofluorescence Pattern and Retinal Function on Microperimetry in Choroideremia. Transl Vis Sci Technol 2023; 12:24. [PMID: 37773503 PMCID: PMC10547012 DOI: 10.1167/tvst.12.9.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023] Open
Abstract
Purpose In patients with choroideremia, it is not known how smooth and mottled patterns on short-wavelength fundus autofluorescence (AF) imaging relate to retinal function. Methods A retrospective case-note review was undertaken on 190 patients with choroideremia at two specialist centers for retinal genetics. Twenty patients with both smooth and mottled zones on short-wavelength AF imaging and concurrent mesopic microperimetry assessments were included. Mean retinal sensitivities within the smooth and mottled zones were compared between choroideremia patients, and identical points on mesopic microperimetry collected from 12 age-matched controls. Longitudinal analyses were undertaken at 2 and 5 years in a subset of patients. Results In patients with choroideremia, mean retinal sensitivities at baseline were significantly greater in the smooth zone (26.1 ± 2.0 dB) versus the mottled zone (20.5 ± 4.2 dB) (P < 0.0001). Mean retinal sensitivities at baseline were similar in the smooth zone between choroideremia patients and controls (P = 0.054) but significantly impaired in the mottled zone in choroideremia compared to controls (P < 0.0001). The rate of decline in total sensitivity over 5 years was not significant in either the smooth or mottled zone in a small subset of choroideremia patients (n = 7; P = 0.344). Conclusions In choroideremia, retinal sensitivity as determined by microperimetry correlates with patterns on AF imaging: retinal function in the smooth zone, where the retinal pigment epithelium is anatomically preserved, is similar to controls, but retinal sensitivity in the mottled zone is impaired. Translational Relevance Patterns on AF imaging may represent a novel, objective outcome measure for clinical trials in choroideremia as a surrogate for retinal function.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Imran H. Yusuf
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, UK
| | - Laura J. Taylor
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel Adeyoju
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amandeep S. Josan
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Johannes Birtel
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Ophthalmology, University Hospital of Bonn, Bonn, Germany
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lyndon Da Cruz
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
13
|
Gocuk SA, Jolly JK, Edwards TL, Ayton LN. Female carriers of X-linked inherited retinal diseases - Genetics, diagnosis, and potential therapies. Prog Retin Eye Res 2023; 96:101190. [PMID: 37406879 DOI: 10.1016/j.preteyeres.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of heterogeneous conditions that cause progressive vision loss, typically due to monogenic mutations. Female carriers of X-linked IRDs have a single copy of the disease-causing gene, and therefore, may exhibit variable clinical signs that vary from near normal retina to severe disease and vision loss. The relationships between individual genetic mutations and disease severity in X-linked carriers requires further study. This review summarises the current literature surrounding the spectrum of disease seen in female carriers of choroideremia and X-linked retinitis pigmentosa. Various classification systems are contrasted to accurately grade retinal disease. Furthermore, genetic mechanisms at the early embryonic stage are explored to potentially explain the variability of disease seen in female carriers. Future research in this area will provide insight into the association between genotype and retinal phenotypes of female carriers, which will guide in the management of these patients. This review acknowledges the importance of identifying which patients may be at high risk of developing severe symptoms, and therefore should be considered for emerging treatments, such as retinal gene therapy.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Yusuf IH, MacLaren RE. Choroideremia: Toward Regulatory Approval of Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041279. [PMID: 37277205 PMCID: PMC10691480 DOI: 10.1101/cshperspect.a041279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Choroideremia is an X-linked inherited retinal degeneration characterized by primary centripetal degeneration of the retinal pigment epithelium (RPE), with secondary degeneration of the choroid and retina. Affected individuals experience reduced night vision in early adulthood with blindness in late middle age. The underlying CHM gene encodes REP1, a protein involved in the prenylation of Rab GTPases essential for intracellular vesicle trafficking. Adeno-associated viral gene therapy has demonstrated some benefit in clinical trials for choroideremia. However, challenges remain in gaining regulatory approval. Choroideremia is slowly progressive, which presents difficulties in demonstrating benefit over short pivotal clinical trials that usually run for 1-2 years. Improvements in visual acuity are particularly challenging due to the initial negative effects of surgical detachment of the fovea. Despite these challenges, great progress toward a treatment has been made since choroideremia was first described in 1872.
Collapse
Affiliation(s)
- Imran H Yusuf
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
15
|
Taylor LJ, Josan AS, Jolly JK, MacLaren RE. Microperimetry as an Outcome Measure in RPGR-associated Retinitis Pigmentosa Clinical Trials. Transl Vis Sci Technol 2023; 12:4. [PMID: 37294702 PMCID: PMC10259674 DOI: 10.1167/tvst.12.6.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/27/2023] [Indexed: 06/11/2023] Open
Abstract
Purpose To explore which microperimetry sensitivity index (pointwise sensitivity, mean sensitivity, and volume sensitivity) is suitable as a microperimetry outcome measure in patients with X-linked RPGR-associated retinitis pigmentosa (RP). Methods Microperimetry data from patients with RPGR-associated RP were collected and analyzed retrospectively. Fourteen participants completed triplicate microperimetry testing, across 2 consecutive days for the repeatability analyses. Longitudinal data was obtained from 13 participants who completed microperimetry testing at two separate visits. Results The test-retest coefficients of repeatability (CoR) for pointwise sensitivity were ±9.5 dB and ±9.3 dB, in the right and left eyes, respectively. The mean sensitivity CoR for the right and left eyes was ±0.7 dB and ±1.3 dB. Volume sensitivity CoR was ±144.5 dB*deg2 and ±324.2 dB*deg2 for the right and left eyes, respectively. The mean sensitivities were positively skewed toward zero in those with a high number of nonseeing points (arbitrarily assigned to -1.0 dB) and just seen points (0.0 dB). Volume sensitivities were unaffected by the averaging effects of skewed data. Conclusions Clinical trials should report population-specific test-retest variability to determine a clinically significant change. Pointwise sensitivity indices should be used with caution as outcome measures in clinical trials owing to high levels of test-retest variability. Global indices seem to be less prone to variability. Volume sensitivity indices seem to be superior for use in RPGR-associated RP clinical trials compared with mean sensitivity because they are unaffected by the averaging effects of highly skewed data. Translational Relevance Careful selection of sensitivity indices (VA) is required when using microperimetry as a clinical trial outcome measure.
Collapse
Affiliation(s)
- Laura J. Taylor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amandeep S. Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K. Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
16
|
Taylor LJ, Josan AS, Stratton I, Jolly JK, MacLaren RE. A cross-sectional study to assess the clinical utility of modern visual function assessments in patients with inherited retinal disease: a mixed methods observational study protocol. BMC Ophthalmol 2023; 23:234. [PMID: 37226218 DOI: 10.1186/s12886-023-02974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Treatment options for patients with inherited retinal disease are limited, although research into novel therapies is underway. To ensure the success of future clinical trials, appropriate visual function outcome measures that can assess changes resulting from therapeutic interventions are urgently required. Rod-cone degenerations are the most common type of inherited retinal disease. Visual acuity is a standard measure but is typically preserved until late disease stages, frequently making it an unsuitable visual function marker. Alternative measures are required. This study investigates the clinical utility of a range of carefully selected visual function tests and patient reported outcome measures. The aim is to identify suitable outcome measures for future clinical trials that could be considered for regulatory approval. METHODS This cross-sectional study involves two participant groups, patients with inherited retinal disease (n = 40) and healthy controls (n = 40). The study has been designed to be flexible and run alongside NHS clinics. The study is split into two parts. Part one includes examining standard visual acuity, low luminance visual acuity, the Moorfields acuity chart visual acuity, mesopic microperimetry and three separate patient reported outcome measures. Part two involves 20 min of dark adaptation followed by two-colour scotopic microperimetry. Repeat testing will be undertaken where possible to enable repeatability analyses. A subset of patients with inherited retinal disease will be invited to participate in a semi-structured interview to gain awareness of participants' thoughts and feelings around the study and different study tests. DISCUSSION The study highlights a need for reliable and sensitive validated visual function measures that can be used in future clinical trials. This work will build on work from other studies and be used to inform an outcome measure framework for rod-cone degenerations. The study is in keeping with the United Kingdom Department of Health and Social Care research initiatives and strategies for increasing research opportunities for NHS patients as part of their NHS care. TRIAL REGISTRATION ISRCTN registry, ISRCTN24016133, Visual Function in Retinal Degeneration, registered on 18th August 2022.
Collapse
Affiliation(s)
- Laura J Taylor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Amandeep S Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Irene Stratton
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Corvi F, Corradetti G, Wong A, Eng JG, Sadda S. PERIPHERAL OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN A CHOROIDEREMIA CARRIER. Retin Cases Brief Rep 2022; 16:766-769. [PMID: 33394956 DOI: 10.1097/icb.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PURPOSE To describe the peripheral optical coherence tomography findings in a female choroideremia carrier. METHODS A 56-year-old woman was referred for visual disturbance complaining of some occasional photopsias and increasing difficulty with her vision at night in both eyes. Best-corrected visual acuity was 20/20 in the right eye and 20/150 in the left eye. Fundus examination revealed mildly tilted disks and peripapillary atrophy with subtle retinal pigment epithelial changes in the periphery. RESULTS Macular optical coherence tomography in the right eye appeared unremarkable, but the in the left eye, there was diffuse ellipsoid zone band disruption. Green-light fundus autofluorescence revealed mottled areas of decreased autofluorescence in the mid and far periphery creating an irregular mosaic pattern. Peripheral optical coherence tomography scans revealed more diffuse ellipsoid zone alterations than were apparent on the fundus autofluorescence imaging. Genetic testing revealed a heterozygous pathogenic variant in the CHM gene (c.715C>T, p.Arg239). An additional heterozygous mutation was noted in the CNGB1 gene (c.290+2T>C, splice donor). CONCLUSION Choroideremia carriers may manifest widespread photoreceptor alterations, which may be more extensive than apparent on fundus autofluorescence imaging.
Collapse
Affiliation(s)
- Federico Corvi
- Doheny Eye Institute, University of California at Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
- Department of Biomedical and Clinical Science "Luigi Sacco," Eye Clinic, Sacco Hospital, University of Milan, Milan, Italy
| | - Giulia Corradetti
- Doheny Eye Institute, University of California at Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Alice Wong
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Jeffrey G Eng
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - SriniVas Sadda
- Doheny Eye Institute, University of California at Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| |
Collapse
|
18
|
Parmann R, Greenstein VC, Tsang SH, Sparrow JR. Choroideremia Carriers: Dark-Adapted Perimetry and Retinal Structures. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35816046 PMCID: PMC9284471 DOI: 10.1167/iovs.63.8.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In choroideremia (CHM) carriers, scotopic sensitivity was assessed by dark adapted chromatic perimetry (DACP) and outer retinal structure was evaluated by multimodal imaging. Methods Nine carriers (18 eyes) and 13 healthy controls (13 eyes) underwent DACP testing with cyan and red stimuli. Analysis addressed peripapillary (4 test locations closest to the optic disc), macular (52 locations), and peripheral (60 locations outside the macula) regions. Responses were considered to be rod-mediated when cyan relative to red sensitivity was >5 dB. Fundus imaging included spectral domain optical coherence tomography (SD-OCT), short-wavelength (SW-AF), near-infrared (NIR-AF), ultrawide-field (200 degrees) pseudocolor fundus imaging, and quantitative (qAF) fundus autofluorescence. Results Detection of the cyan stimulus was rod mediated in essentially all test locations (99.7%). In the macular and peripheral areas, DACP sensitivity values were not significantly different from healthy eyes. In the peripapillary area, sensitivities were significantly decreased (P < 0.05). SD-OCT imaging ranged from hyper-reflective lesions and discontinuities of the outer retinal bands to hypertransmission of signal. SW-AF and NIR-AF images presented with peripapillary atrophy in seven patients (14 eyes). Mosaicism was detectable in SW-AF images in seven patients and in NIR-AF images in five patients. Frank hypo-autofluorescence was visible in eight patients with distinct chorioretinopathy in seven patients. The qAF values were below the 95% confidence interval (CI) of healthy age-matched individuals in 12 eyes. Conclusions Rod mediated scotopic sensitivity was comparable to that in control eyes in macular and peripheral areas but was decreased in the peripapillary area where changes in retinal structure were also most severe.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, New York, NY, United States
| | | | - Stephen H Tsang
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
19
|
Andrews CD, Sheldon AA, Bridge H, Downes SM, MacLaren RE, Jolly JK. Rapid Quantification of the Binocular Visual Field for Clinical Trials: Performance of a Modified Esterman Supra-Threshold Test Implemented with the Open Perimetry Interface. Clin Ophthalmol 2022; 16:1513-1523. [PMID: 35620233 PMCID: PMC9127144 DOI: 10.2147/opth.s352004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose We aimed to assess the performance of the modified-Esterman test (mET) as a rapid suprathreshold binocular quantification tool for the assessment of peripheral visual fields. The mET consists of an even spread of test points across the visual field. Materials and Methods The mET was implemented on the Octopus 0900 perimeter using the Open Perimetry Interface (OPI) and consisted of 160 points. Patients with choroideremia, a rod-cone dystrophy, Stargardt disease, a cone-rod dystrophy, and healthy volunteers underwent both the mET and the standard Esterman tests twice. Disease severity (mild/moderate/severe) was graded on both tests independently. Voronoi tessellation was utilised to compare the tests. Results The Voronoi visualisation was able to demonstrate that the mET was able to provide more information about the disease state at all stages of diseases. This was confirmed by the agreement statistic, which showed that the mET detected 27% more points of visual field loss compared to the Esterman test, being most useful in patients with rod-cone dystrophies. Conclusion The mET provides a speedy quantitative measure of the peripheral visual field loss, which can be used in clinical trials to monitor longitudinal assessment of peripheral visual function. The mET provides a more even coverage across the visual field compared to the Esterman test points, making it more suitable for this purpose. This is a key part of safety monitoring in retinal clinical trials. The mET can easily be implemented on commercially available perimeters that allow Open Perimetry.
Collapse
Affiliation(s)
- Colm D Andrews
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Aislin A Sheldon
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jasleen K Jolly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
20
|
A Systematic Review of Artificial Intelligence Applications Used for Inherited Retinal Disease Management. Medicina (B Aires) 2022; 58:medicina58040504. [PMID: 35454342 PMCID: PMC9028098 DOI: 10.3390/medicina58040504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Nowadays, Artificial Intelligence (AI) and its subfields, Machine Learning (ML) and Deep Learning (DL), are used for a variety of medical applications. It can help clinicians track the patient’s illness cycle, assist with diagnosis, and offer appropriate therapy alternatives. Each approach employed may address one or more AI problems, such as segmentation, prediction, recognition, classification, and regression. However, the amount of AI-featured research on Inherited Retinal Diseases (IRDs) is currently limited. Thus, this study aims to examine artificial intelligence approaches used in managing Inherited Retinal Disorders, from diagnosis to treatment. A total of 20,906 articles were identified using the Natural Language Processing (NLP) method from the IEEE Xplore, Springer, Elsevier, MDPI, and PubMed databases, and papers submitted from 2010 to 30 October 2021 are included in this systematic review. The resultant study demonstrates the AI approaches utilized on images from different IRD patient categories and the most utilized AI architectures and models with their imaging modalities, identifying the main benefits and challenges of using such methods.
Collapse
|
21
|
Liu Z, Ayton LN, O'Hare F, Arslan J, Hu ML, Noar AP, Wang JH, Hickey DG, McGuinness MB, Vincent AL, Chen FK, Edwards TL. Intereye Symmetry in Bietti Crystalline Dystrophy. Am J Ophthalmol 2022; 235:313-325. [PMID: 34283985 DOI: 10.1016/j.ajo.2021.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To evaluate anatomic and functional intereye symmetry among individuals with Bietti crystalline dystrophy (BCD) using clinical and multimodal imaging methods, with a focus on the number, area, and distribution of the characteristic retinal crystalline deposits. DESIGN Observational case series with prospective and retrospective data. METHODS Setting: Multicenter. STUDY POPULATION Thirteen Australian and New Zealand participants (26 eyes) with confirmed biallelic CYP4V2 mutations and a characteristic BCD fundus appearance. Procedures and main outcome measures: Crystals visible on color fundus photography were manually counted. Crystals were superimposed on aligned multimodal fundus images. Spearman's correlation coefficients (ρ), intraclass correlation coefficients (ICCs), and Bland-Altman plots were used to quantify symmetry between eyes. MAIN OUTCOME MEASURES Fundus crystal area and count, and absent-autofluorescence (absent-AF) area. RESULTS Median participant age was 48 years (interquartile range: 40-60 years). Intereye symmetry was high for fundus crystal area (ρ = 1.00, 95% confidence interval [CI]: 1.00-1.00; ICC = 0.97, 95% CI: 0.88-0.99), fundus crystal count (ρ = 0.98, 95% CI: 0.92-1.00; ICC = 0.97, 95% CI: 0.89-0.99), and absent-AF area (ρ = 0.88, 95% CI: 0.53-0.98; ICC = 0.98, 95% CI: 0.90-0.99). Average foveal volume, foveal crystal count and area, average and central foveal thickness, best corrected visual acuity, and average macular and central foveal sensitivity were not highly correlated between eyes. CONCLUSIONS This study demonstrated strong intereye symmetry measured by fundus crystal area, fundus crystal number, and absent-AF area. This may influence the choice of outcome measures for future therapeutic trials for BCD and provides valuable clinical information for ophthalmologists involved in the care and counseling of patients with BCD.
Collapse
|
22
|
Nguyen XTA, Talib M, van Schooneveld MJ, Wijnholds J, van Genderen MM, Schalij-Delfos NE, Klaver CCW, Talsma HE, Fiocco M, Florijn RJ, Ten Brink JB, Cremers FPM, Meester-Smoor MA, van den Born LI, Hoyng CB, Thiadens AAHJ, Bergen AA, Boon CJF. CRB1-Associated Retinal Dystrophies: A Prospective Natural History Study in Anticipation of Future Clinical Trials. Am J Ophthalmol 2022; 234:37-48. [PMID: 34320374 DOI: 10.1016/j.ajo.2021.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate the natural disease course of retinal dystrophies associated with crumbs cell polarity complex component 1 (CRB1) and identify clinical end points for future clinical trials. DESIGN Single-center, prospective case series. METHODS An investigator-initiated nationwide collaborative study that included 22 patients with CRB1-associated retinal dystrophies. Patients underwent ophthalmic assessment at baseline and 2 years after baseline. Clinical examination included best-corrected visual acuity (BCVA) using Early Treatment Diabetic Retinopathy Study charts, Goldmann kinetic perimetry (V4e isopter seeing retinal areas), microperimetry, full-field electroretinography, full-field stimulus threshold (FST), fundus photography, spectral-domain optical coherence tomography, and fundus autofluorescence imaging. RESULTS Based on genetic, clinical, and electrophysiological data, patients were diagnosed with retinitis pigmentosa (19 [86%]), cone-rod dystrophy (2 [9%]), or isolated macular dystrophy (1 [5%]). Analysis of the entire cohort at 2 years showed no significant changes in BCVA (P = .069) or V4e isopter seeing retinal areas (P = .616), although signs of clinical progression were present in individual patients. Macular sensitivity measured on microperimetry revealed a significant reduction at the 2-year follow-up (P < .001). FST responses were measurable in patients with nonrecordable electroretinograms. On average, FST responses remained stable during follow-up. CONCLUSION In CRB1-associated retinal dystrophies, visual acuity and visual field measures remain relatively stable over the course of 2 years. Microperimetry showed a significant decrease in retinal sensitivity during follow-up and may be a more sensitive progression marker. Retinal sensitivity on microperimetry may serve as a functional clinical end point in future human treatment trials for CRB1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands
| | - Mays Talib
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology (M.J.v.S., C.J.F.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Jan Wijnholds
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW) (J.W., A.A.B.), Amsterdam, the Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Centre for Complex Visual Disorders (M.M.v.G., H.E.T.), Zeist, the Netherlands; Department of Ophthalmology (M.M.v.G.), University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nicoline E Schalij-Delfos
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology (C.C.W.K., M.A.M.-S., A.A.H.J.T.); Department of Epidemiology (C.C.W.K.), Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology (C.C.W.K., C.B.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Institute for Molecular and Clinical Ophthalmology (C.C.W.K.), Basel, Switzerland
| | - Herman E Talsma
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands; Bartiméus Diagnostic Centre for Complex Visual Disorders (M.M.v.G., H.E.T.), Zeist, the Netherlands
| | - Marta Fiocco
- Mathematical Institute (M.F.), and Department of Biomedical Data Sciences (M.F.), Leiden University Medical Center, Leiden, the Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics (R.J.F., J.B.t.B., A.A.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics (R.J.F., J.B.t.B., A.A.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour (F.P.M.C.), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Carel B Hoyng
- Department of Ophthalmology (C.C.W.K., C.B.H.), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Arthur A Bergen
- The Netherlands Institute for Neuroscience (NIN-KNAW) (J.W., A.A.B.), Amsterdam, the Netherlands; Department of Clinical Genetics (R.J.F., J.B.t.B., A.A.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Camiel J F Boon
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology (M.J.v.S., C.J.F.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Bilateral visual acuity decline in males with choroideremia: a pooled, cross-sectional meta-analysis. BMC Ophthalmol 2022; 22:29. [PMID: 35034620 PMCID: PMC8762852 DOI: 10.1186/s12886-022-02250-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Choroideremia is a rare inherited retinal disease that leads to blindness. Visual acuity (VA) is a key outcome measure in choroideremia treatment studies, but VA decline rates change with age. An accurate understanding of the natural deterioration of VA in choroideremia is important to assess the treatment effect of new therapies in which VA is the primary outcome measure. We conducted a meta-analysis of data on individuals with choroideremia to determine the rate of VA deterioration between the better- and worse-seeing eye (BSE and WSE, respectively). METHODS Data were collected from the prospective Natural History of the Progression of Choroideremia (NIGHT) study (613 eyes, baseline data only), studies included in a recent meta-analysis, and studies identified in a targeted literature search performed on March 25, 2020, including individual best-corrected VA (BCVA) and age data in male individuals with choroideremia. Best-corrected VA decline rates (measured by logMAR units) by age and trends in BCVA decline rates in the BSE and WSE were evaluated. RESULTS: Data from 1037 males (1602 eyes; mean age, 41.8 years) were included. Before and after an age cutoff of 33.8 years, BCVA decline rates for the WSE were 0.0086 and 0.0219 logMAR per year, respectively. Before and after an age cutoff of 39.1 years, BCVA decline rates for the BSE were 0.00001 and 0.0203 logMAR per year, respectively. Differences in absolute BCVA and decline rates increased between the 2 eyes until age ~ 40; thereafter, differences in absolute BCVA and decline rates were similar between eyes. CONCLUSIONS Using the largest choroideremia data set to date, this analysis demonstrates accelerated BCVA decline beginning between 30 and 40 years of age. Disparate interocular progression rates were observed before the transition age, with similar interocular progression rates after the transition age.
Collapse
|
24
|
Taylor LJ, Josan AS, Pfau M, Simunovic MP, Jolly JK. Scotopic microperimetry: evolution, applications and future directions. Clin Exp Optom 2022; 105:793-800. [PMID: 35025727 DOI: 10.1080/08164622.2021.2023477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
For many inherited and acquired retinal diseases, reduced night vision is a primary symptom. Despite this, the clinical testing options for spatially resolved scotopic vision have until recently been limited. Scotopic microperimetry is a relatively new visual function test that combines two-colour perimetry with fundus-controlled perimetry performed in scotopic luminance conditions. The technique enables spatially resolved mapping of central retinal sensitivity alongside the ability to distinguish between rod and cone photoreceptor sensitivities. Two companies produce commercially available scotopic microperimeters - Nidek (Nidek Technologies Srl, Padova, Italy) and CenterVue (CenterVue S.p.A., Padova, Italy). Scotopic microperimetry is a promising technology capable of detecting changes in retinal sensitivity before changes in other measures of visual function. Scotopic microperimetry is a promising functional biomarker that has the potential as a useful clinical trial outcome measure. This review summarises the evolution and applications of scotopic microperimetry, and discusses testing options, including testing grid selection, dark-adaptation time and threshold sensitivity analyses.
Collapse
Affiliation(s)
- Laura J Taylor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Amandeep S Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maximilian Pfau
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew P Simunovic
- Save Sight Institute, Discipline of Ophthalmology, University of Sydney, Sydney, Australia
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Vision and Eye Research Institute, Anglia Ruskin University Medical School, Cambridge, UK
| |
Collapse
|
25
|
Young BK, Shen LL, Del Priore LV. An In Silica Model for RPE Loss Patterns in Choroideremia. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34779822 PMCID: PMC8606796 DOI: 10.1167/iovs.62.14.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To use empirical data to develop a model of cell loss in choroideremia that predicts the known exponential rate of RPE loss and central, scalloped preservation pattern seen in this disease. Methods A computational model of RPE loss was created in Python 3.7, which constructed an array of RPE cells clusters, binarized as either live or atrophic. Two rules were applied to this model: the background effect gave each cell a chance of dying defined by a background function, and the neighbor effect increased the chance of RPE cell death if a neighbor were dead. The known anatomic distribution of rods, RPE, choriocapillaris density, amacrine, ganglion, and cone cells were derived from the literature and applied to this model. Atrophy growth rates were measured over arbitrary time units and fit to the known exponential decay model. The main outcome measures: included topography of atrophy over time and fit of simulated residual RPE area to exponential decay. Results A background effect alone can simulate exponential decay, but does not simulate the central island preservation seen in choroideremia. An additive neighbor effect alone does not simulate exponential decay. When the neighbor effect multiplies the background effect using the rod density function, our model follows an exponential decay, similar to previous observations. Also, our model predicts a residual island of RPE that resembles the topographic distribution of residual RPE seen in choroideremia. Conclusions The pattern of RPE loss in choroideremia can be predicted by applying simple rules. The RPE preservation pattern typically seen in choroideremia may be related to the underlying pattern of rod density. Further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Benjamin K Young
- W.K. Kellogg Eye Center, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Liangbo L Shen
- Department of Ophthalmology, University of California San Francisco, San Francisco, San Francisco, CA, United States
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
26
|
Chung DC, Birch DG, MacLaren RE. Endpoints for Measuring Efficacy in Clinical Trials for Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:63-78. [PMID: 34584045 DOI: 10.1097/iio.0000000000000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Nuzbrokh Y, Ragi SD, Tsang SH. Gene therapy for inherited retinal diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1278. [PMID: 34532415 PMCID: PMC8421966 DOI: 10.21037/atm-20-4726] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023]
Abstract
Inherited retinal diseases (IRDs) are a genetically variable collection of devastating disorders that lead to significant visual impairment. Advances in genetic characterization over the past two decades have allowed identification of over 260 causative mutations associated with inherited retinal disorders. Thought to be incurable, gene supplementation therapy offers great promise in treating various forms of these blinding conditions. In gene replacement therapy, a disease-causing gene is replaced with a functional copy of the gene. These therapies are designed to slow disease progression and hopefully restore visual function. Gene therapies are typically delivered to target retinal cells by subretinal (SR) or intravitreal (IVT) injection. The historic Food and Drug Administration (FDA) approval of voretigene neparvovec for RPE65-associated Leber's congenital amaurosis (LCA) spurred tremendous optimism surrounding retinal gene therapy for various other monogenic IRDs. Novel disease-causing mutations continue to be discovered annually, and targeted genetic therapy is now under development in clinical and preclinical models for many IRDs. Numerous clinical trials for other IRDs are ongoing or have recently completed. Disorders being targeted for genetic therapy include retinitis pigmentosa (RP), choroideremia (CHM), achromatopsia (ACHM), Leber's hereditary optic neuropathy, usher syndrome (USH), X-linked retinoschisis, and Stargardt disease. Here, we provide an update of completed, ongoing, and planned clinical trials using gene supplementation strategies for retinal degenerative disorders.
Collapse
Affiliation(s)
- Yan Nuzbrokh
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA.,Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, NY, USA
| | - Sara D Ragi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA.,Jonas Children's Vision Care, New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Fry LE, Patrício MI, Jolly JK, Xue K, MacLaren RE. Expression of Rab Prenylation Pathway Genes and Relation to Disease Progression in Choroideremia. Transl Vis Sci Technol 2021; 10:12. [PMID: 34254989 PMCID: PMC8287038 DOI: 10.1167/tvst.10.8.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Choroideremia results from the deficiency of Rab Escort Protein 1 (REP1), encoded by CHM, involved in the prenylation of Rab GTPases. Here, we investigate whether the transcription and expression of other genes involved in the prenylation of Rab proteins correlates with disease progression in a cohort of patients with choroideremia. Methods Rates of retinal pigment epithelial area loss in 41 patients with choroideremia were measured using fundus autofluorescence imaging for up to 4 years. From lysates of cultured skin fibroblasts donated by patients (n = 15) and controls (n = 14), CHM, CHML, RABGGTB and RAB27A mRNA expression, and REP1 and REP2 protein expression were compared. Results The central autofluorescent island area loss in patients with choroideremia occurred with a mean half-life of 5.89 years (95% confidence interval [CI] = 5.09-6.70), with some patients demonstrating relatively fast or slow rates of progression (range = 3.3-14.1 years). Expression of CHM mRNA and REP1 protein were significantly decreased in all patients. No difference in expression of CHML, RABGGTB, RAB27A, or REP2 was seen between patients and controls. No correlation was seen between expression of the genes analyzed and rates of retinal degeneration. Non-sense induced transcriptional compensation of CHML, a CHM-like retrogene, was not observed in patients with CHM variants predicted to undergo non-sense mediated decay. Conclusions Patients with choroideremia, who are deficient for REP1, show normal levels of expression of other genes involved in Rab prenylation, which do not appear to play any modifying role in the rate of disease progression. Translational Relevance There remains little evidence for selection of patients for choroideremia gene therapy based on genotype.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
29
|
Sampson DM, Roshandel D, Chew AL, Wang Y, Stevenson PG, Cooper MN, Ong E, Wong L, La J, Alonso-Caneiro D, Chelva E, Khan JC, Sampson DD, Chen FK. Retinal Differential Light Sensitivity Variation Across the Macula in Healthy Subjects: Importance of Cone Separation and Loci Eccentricity. Transl Vis Sci Technol 2021; 10:16. [PMID: 34111262 PMCID: PMC8114004 DOI: 10.1167/tvst.10.6.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Microperimetry measures differential light sensitivity (DLS) at specific retinal locations. The aim of this study is to examine the variation in DLS across the macula and the contribution to this variation of cone distribution metrics and retinal eccentricity. Methods Forty healthy eyes of 40 subjects were examined by microperimetry (MAIA) and adaptive optics imaging (rtx1). Retinal DLS was measured using the grid patterns: foveal (2°–3°), macular (3°–7°), and meridional (2°–8° on horizontal and vertical meridians). Cone density (CD), distribution regularity, and intercone distance (ICD) were calculated at the respective test loci coordinates. Linear mixed-effects regression was used to examine the association between cone distribution metrics and loci eccentricity, and retinal DLS. Results An eccentricity-dependent reduction in DLS was observed on all MAIA grids, which was greatest at the foveal-parafoveal junction (2°–3°) (−0.58 dB per degree, 95% confidence interval [CI]; −0.91 to −0.24 dB, P < 0.01). Retinal DLS across the meridional grid changed significantly with each 1000 cells/deg2 change in CD (0.85 dB, 95% CI; 0.10 to 1.61 dB, P = 0.03), but not with each arcmin change in ICD (1.36 dB, 95% CI; −2.93 to 0.20 dB, P = 0.09). Conclusions We demonstrate significant variation in DLS across the macula. Topographical change in cone separation is an important determinant of the variation in DLS at the foveal-parafoveal junction. We caution the extrapolation of changes in DLS measurements to cone distribution because the relationship between these variables is complex. Translational Relevance Cone density is an independent determinant of DLS in the foveal-parafoveal junction in healthy eyes.
Collapse
Affiliation(s)
- Danuta M Sampson
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Avenell L Chew
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yufei Wang
- Computer Science Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul G Stevenson
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew N Cooper
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Elaine Ong
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Lawrence Wong
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jonathan La
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - David Alonso-Caneiro
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Queensland, Australia
| | - Enid Chelva
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jane C Khan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David D Sampson
- Surrey Biophotonics, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
30
|
Abstract
PURPOSE To assess hyperreflective foci (HF) number and distribution in choroideremia (CHM) using spectral domain optical coherence tomography. METHODS Observational, cross-sectional case series. Consecutive patients and matched controls (20 eyes each) underwent best-corrected visual acuity measurement, fundoscopy, blue-light autofluorescence (BL-FAF) and spectral domain optical coherence tomography. Hyperreflective foci were assessed on a horizontal spectral domain optical coherence tomography scan, in the 500-µm area centered on the umbo, and in the 500-μm-wide areas internal (preserved border) and external (pathologic border) to the chorioretinal atrophy of CHM patients, and in the parafovea of controls. Hyperreflective foci were subclassified as retinal or choroidal. The spared central islet was measured on BL-FAF. Primary outcome was HF quantification in CHM. Secondary outcomes included their relationships with atrophy extent. RESULTS Choroideremia eyes disclosed a significantly higher HF number across the pathologic border and in the fovea when compared with controls; in particular, these HF were primarily located in the choroid (59-87%). Moreover, choroidal HF in the pathologic border inversely correlated with the area of the preserved central islet. CONCLUSION Hyperreflective foci might turn out to be a potential biomarker of CHM activity or severity. In this regard, we hypothesize that HF may be related to macrophages activation or progressive retinal pigment epithelium degeneration.
Collapse
|
31
|
Pfau M, Jolly JK, Wu Z, Denniss J, Lad EM, Guymer RH, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials. Prog Retin Eye Res 2021; 82:100907. [PMID: 33022378 DOI: 10.1016/j.preteyeres.2020.100907] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Fundus-controlled perimetry (FCP, also called 'microperimetry') allows for spatially-resolved mapping of visual sensitivity and measurement of fixation stability, both in clinical practice as well as research. The accurate spatial characterization of visual function enabled by FCP can provide insightful information about disease severity and progression not reflected by best-corrected visual acuity in a large range of disorders. This is especially important for monitoring of retinal diseases that initially spare the central retina in earlier disease stages. Improved intra- and inter-session retest-variability through fundus-tracking and precise point-wise follow-up examinations even in patients with unstable fixation represent key advantages of these technique. The design of disease-specific test patterns and protocols reduces the burden of extensive and time-consuming FCP testing, permitting a more meaningful and focused application. Recent developments also allow for photoreceptor-specific testing through implementation of dark-adapted chromatic and photopic testing. A detailed understanding of the variety of available devices and test settings is a key prerequisite for the design and optimization of FCP protocols in future natural history studies and clinical trials. Accordingly, this review describes the theoretical and technical background of FCP, its prior application in clinical and research settings, data that qualify the application of FCP as an outcome measure in clinical trials as well as ongoing and future developments.
Collapse
Affiliation(s)
- Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Jasleen Kaur Jolly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, USA.
| |
Collapse
|
32
|
Han RC, Fry LE, Kantor A, McClements ME, Xue K, MacLaren RE. Is subretinal AAV gene replacement still the only viable treatment option for choroideremia? Expert Opin Orphan Drugs 2021; 9:13-24. [PMID: 34040899 PMCID: PMC7610829 DOI: 10.1080/21678707.2021.1882300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Choroideremia is an X-linked inherited retinal degeneration resulting from mutations in the CHM gene, encoding Rab escort protein-1 (REP1), a protein regulating intracellular vesicular transport. Loss-of-function mutations in CHM lead to progressive loss of retinal pigment epithelium (RPE) with photoreceptor and choriocapillaris degeneration, leading to progressive visual field constriction and loss of visual acuity. Three hundred and fifty-four unique mutations have been reported in CHM. While gene augmentation remains an ideal therapeutic option for choroideremia, other potential future clinical strategies may exist. AREAS COVERED The authors examine the pathophysiology and genetic basis of choroideremia. They summarize the status of ongoing gene therapy trials and discuss CHM mutations amenable to other therapeutic approaches including CRISPR/Cas-based DNA and RNA editing, nonsense suppression of premature termination codons, and antisense oligonucleotides for splice modification. The authors undertook a literature search in PubMed and NIH Clinical Trials in October 2020. EXPERT OPINION The authors conclude that AAV-mediated gene augmentation remains the most effective approach for choroideremia. Given the heterogeneity of CHM mutations and potential risks and benefits, genome-editing approaches currently do not offer significant advantages. Nonsense suppression strategies and antisense oligonucleotides are exciting novel therapeutic options; however, their clinical viability remains to be determined.
Collapse
Affiliation(s)
- Ruofan Connie Han
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Lewis E. Fry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Kanmin Xue
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
33
|
Hagag AM, Mitsios A, Narayan A, Abbouda A, Webster AR, Dubis AM, Moosajee M. Prospective deep phenotyping of choroideremia patients using multimodal structure-function approaches. Eye (Lond) 2021; 35:838-852. [PMID: 32467628 PMCID: PMC8027673 DOI: 10.1038/s41433-020-0974-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the retinal changes in choroideremia (CHM) patients to determine correlations between age, structure and function. SUBJECTS/METHODS Twenty-six eyes from 13 male CHM patients were included in this prospective longitudinal study. Participants were divided into <50-year (n = 8) and ≥50-year (n = 5) old groups. Patients were seen at baseline, 6-month, and 1-year visits. Optical coherence tomography (OCT), OCT angiography, and fundus autofluorescence were performed to measure central foveal (CFT) and subfoveal choroidal thickness (SCT), as well as areas of preserved choriocapillaris (CC), ellipsoid zone (EZ), and autofluorescence (PAF). Patients also underwent functional investigations including visual acuity (VA), contrast sensitivity (CS), colour testing, microperimetry, dark adaptometry, and handheld electroretinogram (ERG). Vision-related quality-of-life was assessed by using the NEI-VFQ-25 questionnaire. RESULTS Over the 1-year follow-up period, progressive loss was detected in SCT, EZ, CC, PAF, and CFT. Those ≥50-years exhibited more structural and functional defects with SCT, EZ, CC, and PAF showing strong correlation with patient age (rho ≤ -0.47, p ≤ 0.02). CS and VA did not change over the year, but CS was significantly correlated with age (rho = -0.63, p = 0.001). Delayed to unmeasurable dark adaptation, decreased colour discrimination and no detectable ERG activity were observed in all patients. Minimal functional deterioration was observed over one year with a general trend of slower progression in the ≥50-years group. CONCLUSIONS Quantitative structural parameters including SCT, CC, EZ, and PAF are most useful for disease monitoring in CHM. Extended follow-up studies are required to determine longitudinal functional changes.
Collapse
Affiliation(s)
- Ahmed M Hagag
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, London, UK
| | - Andreas Mitsios
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, London, UK
| | | | - Alessandro Abbouda
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, London, UK
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, London, UK
| | - Adam M Dubis
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, London, UK
| | - Mariya Moosajee
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- UCL Institute of Ophthalmology, London, UK.
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
34
|
O'Hare F, Edwards TL, Hu ML, Hickey DG, Zhang AC, Wang JH, Liu Z, Ayton LN. An optometrist's guide to the top candidate inherited retinal diseases for gene therapy. Clin Exp Optom 2021; 104:431-443. [PMID: 33689629 DOI: 10.1080/08164622.2021.1878851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
This review presents the phenotypic and genotypic profiles of a select group of inherited retinal diseases (IRDs) that are currently the focus of retinal gene therapy trials globally. Research progress in IRD treatment trials may soon lead to their availability in Australia and New Zealand, as either approved treatment or a clinical trial. The salient clinical characteristics of retinitis pigmentosa-the largest IRD category-are highlighted, with specific reference to RPE65-associated Leber congenital amaurosis, followed by other specific IRDs, namely choroideremia and ABCA4-associated Stargardt disease. These IRDs are selected based on their candidacy for gene therapy. Guidance on the clinical diagnostic tests that support each of these diagnoses will be presented. More broadly, the most useful structure and function measures to monitor IRD progression is discussed, along with the key assessments that offer differential diagnostic insight. This review is intended to be a clinical guide for optometrists, to assist in assessment and management of individuals who may be eligible for current and future gene therapies. A companion article in this issue will provide an overview of the basic principles of gene therapy and its development as a new treatment for inherited retinal diseases.
Collapse
Affiliation(s)
- Fleur O'Hare
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Alexis C Zhang
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Zhengyang Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
35
|
Wood LJ, Jolly JK, Josan AS, Buckley TMW, MacLaren RE. Low Luminance Visual Acuity and Low Luminance Deficit in Choroideremia and RPGR-Associated Retinitis Pigmentosa. Transl Vis Sci Technol 2021; 10:28. [PMID: 34003913 PMCID: PMC7900861 DOI: 10.1167/tvst.10.2.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Choroideremia and RPGR-associated retinitis pigmentosa (RP) are two distinct inherited rod-cone degenerations, where good visual acuity (VA) is maintained until late disease stages, limiting its usefulness as a disease marker. Low luminance VA and low luminance deficit (standard VA minus low luminance VA) may be more sensitive visual function measures. Methods Standard VA was obtained using Early Treatment Diabetic Retinopathy Study letter charts (Precision Vision, Bloomington, IL, USA). Low luminance VA was assessed using a 2.0-log unit neutral density filter, with the same chart setup, without formal dark adaptation. Mean central retinal sensitivity was assessed using MAIA microperimetry (Centervue SpA, Padova, Italy). Optical coherence tomography imaging was attained with Heidelberg Eye Explorer software (Heidelberg Engineering, Heidelberg, Germany). Results Twenty-four male participants with confirmed pathogenic RPGR mutations, 44 male participants with confirmed pathogenic CHM mutations, and 62 age-matched controls underwent clinical assessment prior to clinical trial recruitment. Low luminance VA was significantly reduced in both disease groups compared to controls. The low luminance deficit correlated with microperimetry retinal sensitivity and ellipsoid zone width. Eleven participants with moderate VA had poor low luminance VA (subsequently a large low luminance deficit), no detectable microperimetry sensitivity, and severely constricted ellipsoid zone widths. Conclusions Low luminance VA and subsequently low luminance deficit are useful markers of central macular visual function in both choroideremia and RPGR-associated RP, when standard VA is preserved. Translational Relevance Low luminance visual acuity and low luminance deficit are useful vision measures in two distinct rod-cone degenerations and may be useful in other retinal degenerations.
Collapse
Affiliation(s)
- Laura J. Wood
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amandeep S. Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas M. W. Buckley
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
36
|
Abbouda A, Avogaro F, Moosajee M, Vingolo EM. Update on Gene Therapy Clinical Trials for Choroideremia and Potential Experimental Therapies. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:64. [PMID: 33445564 PMCID: PMC7826687 DOI: 10.3390/medicina57010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/26/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Background and objectives: Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations involving the CHM gene. Gene therapy has entered late-phase clinical trials, although there have been variable results. This review gives a summary on the outcomes of phase I/II CHM gene therapy trials and describes other potential experimental therapies. Materials and Methods: A Medline (National Library of Medicine, Bethesda, MD, USA) search was performed to identify all articles describing gene therapy treatments available for CHM. Results: Five phase I/II clinical trials that reported subretinal injection of adeno-associated virus Rab escort protein 1 (AAV2.REP1) vector in CHM patients were included. The Oxford study (NCT01461213) included 14 patients; a median gain of 5.5 ± 6.8 SD (-6 min, 18 max) early treatment diabetic retinopathy study (ETDRS) letters was reported. The Tubingen study (NCT02671539) included six patients; only one patient had an improvement of 17 ETDRS letters. The Alberta study (NCT02077361) enrolled six patients, and it reported a minimal vision change, except for one patient who gained 15 ETDRS letters. Six patients were enrolled in the Miami trial (NCT02553135), which reported a median gain of 2 ± 4 SD (-1 min, 10 max) ETDRS letters. The Philadelphia study (NCT02341807) included 10 patients; best corrected visual acuity (BCVA) returned to baseline in all by one-year follow-up, but one patient had -17 ETDRS letters from baseline. Overall, 40 patients were enrolled in trials, and 34 had 2 years of follow-up, with a median gain of 1.5 ± 7.2 SD (-14 min, 18 max) in ETDRS letters. Conclusions: The primary endpoint, BCVA following gene therapy in CHM, showed a marginal improvement with variability between trials. Optimizing surgical technique and pre-, peri-, and post-operative management with immunosuppressants to minimize any adverse ocular inflammatory events could lead to reduced incidence of complications. The ideal therapeutic window needs to be addressed to ensure that the necessary cell types are adequately transduced, minimizing viral toxicity, to prolong long-term transgenic potential. Long-term efficacy will be addressed by ongoing studies.
Collapse
Affiliation(s)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Enzo Maria Vingolo
- Fiorini Hospital Terracina AUSL, 04019 Terracina, Latina, Italy;
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| |
Collapse
|
37
|
Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia. J Clin Med 2021; 10:jcm10020232. [PMID: 33440637 PMCID: PMC7826764 DOI: 10.3390/jcm10020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 01/03/2023] Open
Abstract
Background: Characterisation of preserved autofluorescence (PAF) area in choroideremia (CHM) and its validity for monitoring disease progression in clinical trials is of importance. Methods: Eighty patients with molecularly confirmed CHM were recruited. PAF area was measured manually by 2 graders and half-life was calculated based on exponential decay model. Results: Mean age at baseline and follow-up examination was 38.1 (range, 10–69) and 40.7 (range, 11–70) years. Mean follow-up interval was 29 months (range, 6–104). The median LogMAR visual acuity was 0.10 (OD) and 0.18 (OS). Interobserver repeatability for PAF area was −0.99 to 1.03 mm2 (−6.46 to 6.49% of area). There was a statistically significant relationship between age and rate of PAF area loss (r2 = 0.28, p = 0.012). The half-life for PAF area was 13.7 years (range, 1.7–216.0 years). The correlation between half-life and age was stronger than between half-life and log transformed baseline PAF area, although neither was statistically significant. Conclusions: The intra- and inter-observer PAF area measurement variability provides a baseline change, which must be overcome in a clinical trial if this metric were to be used. Treatments must slow progression to alter the exponential decay in a timely manner accounting for naturally slow progression patterns.
Collapse
|
38
|
Wood LJ, Jolly JK, Buckley TM, Josan AS, MacLaren RE. Low luminance visual acuity as a clinical measure and clinical trial outcome measure: a scoping review. Ophthalmic Physiol Opt 2021; 41:213-223. [PMID: 33403668 DOI: 10.1111/opo.12775] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE The measurement of standard visual acuity (VA) is the most well-known part of any ophthalmic examination to indicate visual function. Despite this, it is insensitive in detecting early disease changes. Therefore, other visual function tests have been developed including low luminance VA (LLVA) and low luminance deficit (LLD). This scoping literature review aims to summarise the current published applications of LLVA and LLD assessments to evaluate their utility as clinical markers and research outcome measures in a variety of ophthalmic conditions. RECENT FINDINGS Sixty-five peer-reviewed publications were included. LLVA was pioneered for use in geographic atrophy, a subtype of age-related macular degeneration, which remains the mainstay of its clinical application. However, other studies have reported additional useful applications in inherited retinal diseases including rare maculopathies and rod-cone dystrophies. Although there are some variations in testing methodology, use of the standard Early Treatment Diabetic Retinopathy Study (ETDRS) chart with a 2.0 log unit neutral density filter is the most popular approach. The optimal testing luminance is still to be defined. SUMMARY Overall, LLVA is an earlier clinical marker of change in central retinal function than standard VA. It has been shown to be a risk factor for disease progression and a better indicator of a patient's level of everyday visual function. It is inexpensive and simple to implement using readily available standard ophthalmic equipment.
Collapse
Affiliation(s)
- Laura J Wood
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas Mw Buckley
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amandeep S Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
39
|
Wood LJ, Jolly JK, Andrews CD, Wilson IR, Hickey D, Cehajic-Kapetanovic J, Maclaren RE. Low-contrast visual acuity versus low-luminance visual acuity in choroideremia. Clin Exp Optom 2021; 104:90-94. [PMID: 32372497 DOI: 10.1111/cxo.13087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CLINICAL RELEVANCE Choroideremia is a progressive X-linked inherited rod-cone dystrophy. Patients present with nyctalopia and progressive visual field loss, but visual acuity remains well preserved early on. This study showed that low-luminance visual acuity may be a useful clinical outcome measure during earlier disease stages. BACKGROUND Choroideremia is a progressive X-linked inherited rod-cone dystrophy. Patients present with nyctalopia and progressive visual field loss. However, visual acuity remains well preserved until late in the disease process, limiting its usefulness as a clinical trial endpoint across the disease spectrum. Visual acuity measurements under low-luminance and low-contrast conditions may be affected sooner and have been suggested as early markers in other ocular diseases. This study assesses whether low-luminance visual acuity and low-contrast visual acuity provide useful endpoints in choroideremia clinical trials. METHOD Standard high-contrast and low-luminance visual acuity was obtained on 29 choroideremia subjects and 16 healthy controls, using a logMAR chart, set at four metres. Low-luminance visual acuity was tested using a 2.0-log unit neutral density filter, with the same chart set-up, without formal dark adaptation. This was followed by low-contrast visual acuity measured using 1.25 per cent and 2.5 per cent low-contrast logMAR charts placed also at four metres. Data from the right eyes only were analysed using non-parametric statistics. High-contrast visual acuity minus low-luminance and low-contrast visual acuity provided the low-luminance and low-contrast difference scores. RESULTS A higher number of choroideremia subjects were able to complete the low-luminance test than the low-contrast visual acuity tests. Choroideremia subjects had significantly higher low luminance, 2.5 per cent low-contrast and 1.25 per cent low-contrast difference scores compared with controls (p < 0.01, Mann-Whitney U-test); 1.25 per cent low-contrast visual acuity revealed the poorest performance. A strong positive correlation was found between low-luminance and high-contrast visual acuities (ρ = 0.818, p < 0.001) and 2.5 per cent low-contrast and high-contrast visual acuities (ρ = 0.671, p < 0.001). CONCLUSION The low-luminance visual acuity test may be a useful additional clinical trial outcome measure for early-to-moderate disease, when high-contrast visual acuity is preserved.
Collapse
Affiliation(s)
- Laura J Wood
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | - Colm D Andrews
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | - Iain R Wilson
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, UK
| | - Doron Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | - Robert E Maclaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| |
Collapse
|
40
|
Abstract
PURPOSE Choroideremia is an incurable, X-linked, recessive retinal dystrophy caused by loss of function mutations in the CHM gene. It is estimated to affect approximately 1 in 50,000 male patients. It is characterized by progressive degeneration of the retinal pigment epithelium, choroid, and photoreceptors, resulting in visual impairment and blindness. There is an unmet need in choroideremia, because currently, there are no approved treatments available for patients with the disease. METHODS We review the patient journey, societal impact, and emerging treatments for patients with choroideremia. RESULTS Its relative rarity and similarities with other retinal diseases in early years mean that diagnosis of choroideremia can often be delayed. Furthermore, its impact on affected individuals, and wider society, is also likely underestimated. AAV2-mediated gene therapy is an investigational treatment that aims to replace the faulty CHM gene. Early-phase studies reported potentially important visual acuity gains and maintenance of vision in some patients, and a large Phase 3 program is now underway. CONCLUSION Choroideremia is a disease with a significant unmet need. Interventions that can treat progression of the disease and improve visual and functional outcomes have the potential to reduce health care costs and enhance patient quality of life.
Collapse
|
41
|
Fry LE, Patrício MI, Williams J, Aylward JW, Hewitt H, Clouston P, Xue K, Barnard AR, MacLaren RE. Association of Messenger RNA Level With Phenotype in Patients With Choroideremia: Potential Implications for Gene Therapy Dose. JAMA Ophthalmol 2020; 138:128-135. [PMID: 31855248 DOI: 10.1001/jamaophthalmol.2019.5071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Importance Gene therapy is a promising treatment for choroideremia, an X-linked retinal degeneration. The required minimum level of gene expression to ameliorate degeneration rate is unknown. This can be interrogated by exploring the association between messenger RNA (mRNA) levels and phenotype in mildly affected patients with choroideremia. Objective To analyze CHM mRNA splicing outcomes in 2 unrelated patients with the same c.940+3delA CHM splice site variant identified as mildly affected from a previous study of patients with choroideremia. Design, Setting, and Participants In this retrospective observational case series, 2 patients with c.940+3delA CHM variants treated at a single tertiary referral center were studied. In addition, a third patient with a c.940+2T>A variant that disrupts the canonical dinucleotide sequence at the same donor site served as a positive control. Data were collected from October 2013 to July 2018. Main Outcomes and Measures Central area of residual fundus autofluorescence was used as a biomarker for disease progression. CHM transcript splicing was assessed by both end point and quantitative polymerase chain reaction. Rab escort protein 1 (REP1) expression was assessed by immunoblot. Results The 2 mildly affected patients with c.940+3delA variants had large areas of residual autofluorescence for their age and longer degeneration half-lives compared with the previous cohort of patients with choroideremia. The control patient with a c.940+2T>A variant had a residual autofluorescence area within the range expected for his age. Both patients with the c.940+3delA variant expressed residual levels of full-length CHM mRNA transcripts relative to the predominant truncated transcript (mean [SEM] residual level: patient 1, 2.3% [0.3]; patient 2, 4.7% [0.2]), equivalent to approximately less than 1% of the level of full-length CHM expressed in nonaffected individuals. Full-length CHM expression was undetectable in the control patient. REP1 expression was less than the threshold for detection both in patients 1 and 2 and the control patient compared with wild-type controls. Conclusions and Relevance These results demonstrate the first genotype-phenotype association in choroideremia. A +3 deletion in intron 7 is sufficient to cause choroideremia in a milder form. If replicated with gene therapy, these findings would suggest that relatively low expression (less than 1%) of the wild-type levels of mRNA would be sufficient to slow disease progression.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan Williams
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - James W Aylward
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Harriet Hewitt
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Jolly JK, Menghini M, Johal PA, Buckley TMW, Bridge H, Maclaren RE. Inner retinal thickening affects microperimetry thresholds in the presence of photoreceptor thinning in patients with RPGR retinitis pigmentosa. Br J Ophthalmol 2020; 106:256-261. [PMID: 33127827 DOI: 10.1136/bjophthalmol-2020-317692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Loss of photoreceptors cause degeneration in areas of the retina beyond the photoreceptors. The pattern of changes has implications for disease monitoring and measurement of functional changes. The aim of the study was to study the changes in inner retinal structure associated with photoreceptor disease, and the impact of these on microperimetry threshold. METHODS This retrospective cohort study was conducted on optical coherence tomography (OCT) images and microperimetry tests collected between 2013 and 2019. 22 eyes with RPGR retinitis pigmentosa completed both OCT imaging and microperimetry assessment. 18 control eyes underwent OCT imaging. Photoreceptor layer and inner retinal thickness calculated for different eccentric areas were obtained. The relationship between the photoreceptor layer and inner retinal thickness, and microperimetry threshold was explored. RESULTS Central 1° photoreceptor layer and inner retinal thickness were 96±34 and 139±75 μm in RPGR patients, and 139±15 and 62±14 μm in controls. Photoreceptor layer thickness differed between patient and control groups across increasing visual field areas (p<0.01, Kruskal-Wallis 1-way ANOVA), whereas the inner retinal thickness significantly differed between groups for the central 1° and 3° only. Microperimetry thresholds were explained by a combination of photoreceptor thickness (coefficient 0.15, 95% CI 0.13 to 0.18) and inner retinal thickness (coefficient 0.05, 95% CI 0.03 to 0.06). CONCLUSION OCT shows evidence of remodelling in the inner retinal layers secondary to photoreceptor disease. This appears to have an impact on microperimetry threshold measurements.
Collapse
Affiliation(s)
- Jasleen Kaur Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK .,Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Moreno Menghini
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Piers A Johal
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Thomas M W Buckley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E Maclaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
43
|
Arrigo A, Romano F, Parodi MB, Charbel Issa P, Birtel J, Bandello F, Maclaren RE. Reduced vessel density in deep capillary plexus correlates with retinal layer thickness in choroideremia. Br J Ophthalmol 2020; 105:687-693. [PMID: 32580956 PMCID: PMC8077222 DOI: 10.1136/bjophthalmol-2020-316528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Background To assess retinal layer thickness in choroideremia (CHM) and to reveal its correlation with optical coherence tomography (OCT) angiography (OCTA) findings. Methods The study was designed as an observational, cross-sectional clinical series of patients with CHM, which included 14 CHM eyes and 14 age-matched controls. Multimodal imaging included OCT and OCTA. The vessel density (VD) of superficial capillary (SCP), deep capillary (DCP) and choriocapillaris (CC) plexuses was analysed by OCTA. The apparently preserved retinal islet and atrophic regions were investigated separately. Main outcome measures were as follows: best-corrected visual acuity (BCVA), total retinal layers, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), ellipsoid zone–retinal pigment epithelium (EZ-RPE) layer, choroidal thickness and VDs of SCP, DCP and of CC. Results Mean BCVA was 0.0±0.0 LogMAR in both groups. GCL, ONL, EZ-RPE and choroid were significantly thinned in CHM, particularly in the atrophic region. OPL was unaffected in the apparently preserved islet, whereas INL and IPL were similarly thinned in the atrophic and apparently preserved retina. DCP appeared severely affected in both regions, while CC was only altered in the atrophic retina. Significant correlations were found between OCT and OCTA parameters. Conclusions Our study showed severe alterations in both outer and inner retinal layers of patients with CHM. The extended retinal involvement might be the consequence of neuronal and vascular trophic factor reduction produced by the primarily altered RPE and/or secondary Müller glial cell reaction.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele, University Vita-Salute, via Olgettina, 60, 20132, Milan, Italy
| | - Francesco Romano
- Department of Ophthalmology, Scientific Institute San Raffaele, University Vita-Salute, via Olgettina, 60, 20132, Milan, Italy.,Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco University Hospital, Milano, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, Scientific Institute San Raffaele, University Vita-Salute, via Olgettina, 60, 20132, Milan, Italy
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele, University Vita-Salute, via Olgettina, 60, 20132, Milan, Italy
| | - Robert E Maclaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Gao FJ, Tian GH, Hu FY, Wang DD, Li JK, Chang Q, Chen F, Xu GZ, Liu W, Wu JH. Next-generation sequencing-based clinical diagnosis of choroideremia and comprehensive mutational and clinical analyses. BMC Ophthalmol 2020; 20:212. [PMID: 32487042 PMCID: PMC7268499 DOI: 10.1186/s12886-020-01478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background To report the clinical and genetic findings from seven Chinese patients with choroideremia. Methods Five hundred seventy-eight patients with a clinically suspected diagnosis of retinitis pigmentosa (RP) underwent comprehensive ophthalmic examinations. Next-generation sequencing (NGS) was performed on samples from all patients. Detailed clinical characteristics of the patients with choroideremia identified in this study were assessed using multimodal imaging. Results Seven patients with choroideremia were identified, and six novel variants in CHM (c.1960 T > C p.Ter654Gln, c.1257del p.Ile420*fs1, c.1103_1121delATGGCAACACTCCATTTTT p.Tyr368Cysfs35, c.1414-2A > T, and c.1213C > T p.Gln405Ter, c.117-1G > A) were revealed. All variants were deleterious mutations: two were frameshifts, two were nonsense mutations, two were splicing mutations, and one was a readthrough mutation. The clinical phenotypes of these patients were markedly heterogeneous, and they shared many common clinical features with RP, including night blindness, constriction of the visual field and gradually reduced visual acuity. However, patients with choroideremia showed pigment hypertrophy and clumping, and chorioretinal atrophy, and a majority of patients with choroideremia presented with retinal tubulations in the outer layer of the retina. Conclusions We provide a detailed description of the genotypes and phenotypes of seven patients with choroideremia who were accurately diagnosed using NGS. These findings provide a better understanding of the genetics and phenotypes of choroideremia.
Collapse
Affiliation(s)
- Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Guo-Hong Tian
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Dan-Dan Wang
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, Guangdong, China.,BGI-Changyuan, Xinxiang, Henan, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qing Chang
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, Guangdong, China.,BGI-Changyuan, Xinxiang, Henan, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ge-Zhi Xu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Wei Liu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China. .,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China. .,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Shen LL, Ahluwalia A, Sun M, Young BK, Grossetta Nardini HK, Del Priore LV. Long-term natural history of visual acuity in eyes with choroideremia: a systematic review and meta-analysis of data from 1004 individual eyes. Br J Ophthalmol 2020; 105:271-278. [PMID: 32471821 DOI: 10.1136/bjophthalmol-2020-316028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Best-corrected visual acuity (BCVA) is the most common primary endpoint in treatment trials for choroideremia (CHM) but the long-term natural history of BCVA is unclear. METHODS We searched in seven databases to identify studies that reported BCVA of untreated eyes with CHM. We sought individual-level data and performed segmented regression between BCVA and age. For eyes followed longitudinally, we introduced a horizontal translation factor to each dataset to account for different ages at onset of a rapid BCVA decline. RESULTS We included 1004 eyes from 23 studies. BCVA of the right and left eyes was moderately correlated (r=0.60). BCVA as a function of age followed a 2-phase decline (slow followed by rapid decline), with an estimated transition age of 39.1 years (95% CI 33.5 to 44.7). After the introduction of horizontal translation factors to longitudinal datasets, BCVA followed a 2-phase decline until it reached 0 letters (r2=0.90). The BCVA decline rate was 0.33 letters/year (95% CI -0.38 to 1.05) before 39 years, and 1.23 letters/year (95% CI 0.55 to 1.92) after 39 years (p=0.004). CONCLUSION BCVA in eyes with CHM follows a 2-phase linear decline with a transition age of approximately 39 years. Future trials enrolling young patients may not be able to use BCVA as a primary or sole endpoint, but rather, may need to employ additional disease biomarkers that change before age 39. BCVA may still have utility as a primary endpoint for patients older than 39 years who have measurable BCVA decline rates.
Collapse
Affiliation(s)
- Liangbo L Shen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aneesha Ahluwalia
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mengyuan Sun
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Benjamin K Young
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Holly K Grossetta Nardini
- Harvey Cushing/John Hay Whitney Medical Library, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Jones KD, Radziwon A, Birch DG, MacDonald IM. A novel SVA retrotransposon insertion in the CHM gene results in loss of REP-1 causing choroideremia. Ophthalmic Genet 2020; 41:341-344. [PMID: 32441177 DOI: 10.1080/13816810.2020.1768557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Choroideremia is an X-linked retinal disease characterized by progressive atrophy of the choroid and retinal pigment epithelium caused by mutations in the CHM gene. SVA (SINE-R/VNTR/Alu) elements are a type of non-autonomous retrotransposon that occasionally self-replicate, reinsert randomly into a gene, and cause disease. Intragenic SVA insertions have been reported as the mechanism underlying a number of diseases including a syndromic form of retinal dystrophy, but have never been found in CHM. MATERIALS AND METHODS Here we identified and characterized a novel hemizygous SVA insertion, c.97_98inSVA (p.Arg33insSVA), in exon 2 of CHM in a male choroideremia patient. The SVA insertion's impact was evaluated by establishing a patient-derived lymphoblastoid cell line as a source of RNA for mRNA analysis of the CHM transcript, and protein for immunoblot analysis of Rab Escort Protein 1 (REP-1). RESULTS Immunoblot analysis revealed the absence of REP-1 protein, while a smaller than expected PCR product was amplified from cDNA. Sequencing of this PCR product showed skipping of exon 2, denoted r.50_116del. Ophthalmic examination including psychophysical tests, visual electrophysiology, and fundus imaging showed the patient's phenotype was consistent with severe early manifestations of choroideremia. CONCLUSIONS This case is the first report of a SVA insertion in the CHM gene causing choroideremia.
Collapse
Affiliation(s)
| | - Alina Radziwon
- Department of Ophthalmology and Visual Sciences, University of Alberta , Edmonton, Alberta, Canada
| | - David G Birch
- Retina Foundation of the S.W ., Dallas, TX, USA.,Ophthalmology, UTSW Medical Center , Dallas, TX, USA
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
48
|
Stevanovic M, Cehajic Kapetanovic J, Jolly JK, MacLaren RE. A distinct retinal pigment epithelial cell autofluorescence pattern in choroideremia predicts early involvement of overlying photoreceptors. Acta Ophthalmol 2020; 98:e322-e327. [PMID: 31736270 DOI: 10.1111/aos.14281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Choroideremia is an X-linked retinal disease characterized by early retinal pigment epithelium (RPE) loss and subsequent retinal degeneration. The RPE adopts either a smooth or mottled appearance on fundus autofluorescence (FAF). It is not known how RPE changes predict the health of the overlying ellipsoid zone (EZ). METHODS A retrospective review of FAF and optical coherence tomography (OCT) images from 20 patients with choroideremia was performed. The percentage of intact EZ in each smooth and mottled FAF region was determined using one horizontal trans-foveal OCT section. RESULTS Fourteen out of 20 patients had distinct smooth and mottled areas in both eyes and were included in the sub-analysis. On average, 62.5 ± 10.1% of the EZ in each smooth region of the right eyes was intact compared to 10.0 ± 4.3% in the mottled areas. The same trend was observed in left eyes: 76.5 ± 7.2% of the EZ was intact in the smooth regions versus 9.8 ± 3.9% in the mottled areas (two-way anova, p < 0.0001). Thus, the mottled FAF regions were associated with EZ disruption more so than the smooth areas. CONCLUSION Retinal pigment epithelium (RPE) changes correlate with the health of the overlying EZ in choroideremia. The smooth FAF region likely represents early stages of the disease, with most of the area containing preserved EZ, whereas the mottled zone indicates more advanced stages and has mostly disrupted EZ. Because of the clear relationship between FAF findings and EZ integrity, FAF imaging can be used to monitor disease progression and identify areas of preserved EZ that could be rescued by gene therapy.
Collapse
Affiliation(s)
- Marta Stevanovic
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic Kapetanovic
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
49
|
Buckley TMW, Jolly JK, Menghini M, Wood LJ, Nanda A, MacLaren RE. Test‐retest repeatability of microperimetry in patients with retinitis pigmentosa caused by mutations in
RPGR. Clin Exp Ophthalmol 2020; 48:714-715. [DOI: 10.1111/ceo.13753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas M. W. Buckley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Moreno Menghini
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Laura J. Wood
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| |
Collapse
|
50
|
da Palma MM, Motta FL, Gomes CP, Salles MV, Pesquero JB, Sallum JMF. Synonymous Variant in the CHM Gene Causes Aberrant Splicing in Choroideremia. Invest Ophthalmol Vis Sci 2020; 61:38. [PMID: 32097478 PMCID: PMC7329626 DOI: 10.1167/iovs.61.2.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Choroideremia is an inherited retinal degeneration caused by 280 different pathogenic variants in the CHM gene. Only one silent/synonymous variant (c.1359C>T; p.(Ser453=)) has been reported and was classified as inconclusive based on in silico analysis. This study elucidates the pathogenicity of this variant also found in a Brazilian patient. Methods Ophthalmological examinations such as color fundus photography, spectral-domain optical coherence tomography, fundus autofluorescence, and macular integrity assessment microperimetry were performed. The subjects' total RNA was extracted from peripheral blood cells. cDNA was synthesized and the amplification between exon 10 and 14 of the CHM mRNA was performed. The amplification products were sequenced by Sanger sequencing and the results were aligned to the reference sequence. Results The synonymous variant c.1359C>T p.(Ser453=) in the CHM gene is associated with an error in mRNA processing, leading preferentially to production of an aberrant transcript without exon 11 (p.(Gln451Phefs*3)). This anomalous mRNA production is related to typical choroideremia phenotype. Conclusions These molecular findings reinforce the need for more detailed investigation of silent variants in patients with well-defined phenotype of retinal dystrophies. Molecular and clinical findings provided evidence that c.1359C>T (p.(Gln451Phefs*3)) in CHM should be considered a disease-causing variant.
Collapse
|