1
|
Choi S, Choi SH, Bastola T, Kim KY, Park S, Weinreb RN, Miller YI, Ju WK. AIBP Protects Müller Glial Cells Against Oxidative Stress-Induced Mitochondrial Dysfunction and Reduces Retinal Neuroinflammation. Antioxidants (Basel) 2024; 13:1252. [PMID: 39456505 PMCID: PMC11505583 DOI: 10.3390/antiox13101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma, an optic neuropathy with the loss of retinal ganglion cells (RGCs), is a leading cause of irreversible vision loss. Oxidative stress and mitochondrial dysfunction have a significant role in triggering glia-driven neuroinflammation and subsequent glaucomatous RGC degeneration in the context of glaucoma. It has previously been shown that apolipoprotein A-I binding protein (APOA1BP or AIBP) has an anti-inflammatory function. Moreover, Apoa1bp-/- mice are characterized by retinal neuroinflammation and RGC loss. In this study, we found that AIBP deficiency exacerbated the oxidative stress-induced disruption of mitochondrial dynamics and function in the retina, leading to a further decline in visual function. Mechanistically, AIBP deficiency-induced oxidative stress triggered a reduction in glycogen synthase kinase 3β and dynamin-related protein 1 phosphorylation, optic atrophy type 1 and mitofusin 1 and 2 expression, and oxidative phosphorylation, as well as the activation of mitogen-activated protein kinase (MAPK) in Müller glia dysfunction, leading to cell death and inflammatory responses. In vivo, the administration of recombinant AIBP (rAIBP) effectively protected the structural and functional integrity of retinal mitochondria under oxidative stress conditions and prevented vision loss. In vitro, incubation with rAIBP safeguarded the structural integrity and bioenergetic performance of mitochondria and concurrently suppressed MAPK activation, apoptotic cell death, and inflammatory response in Müller glia. These findings support the possibility that AIBP promotes RGC survival and restores visual function in glaucomatous mice by ameliorating glia-driven mitochondrial dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- Seunghwan Choi
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA; (S.-H.C.); (Y.I.M.)
| | - Tonking Bastola
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92039, USA;
| | - Sungsik Park
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Robert N. Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Yury I. Miller
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA; (S.-H.C.); (Y.I.M.)
| | - Won-Kyu Ju
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| |
Collapse
|
2
|
Karimi A, Stanik A, Kozitza C, Chen A. Integrating Deep Learning with Electronic Health Records for Early Glaucoma Detection: A Multi-Dimensional Machine Learning Approach. Bioengineering (Basel) 2024; 11:577. [PMID: 38927813 PMCID: PMC11200568 DOI: 10.3390/bioengineering11060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Recent advancements in deep learning have significantly impacted ophthalmology, especially in glaucoma, a leading cause of irreversible blindness worldwide. In this study, we developed a reliable predictive model for glaucoma detection using deep learning models based on clinical data, social and behavior risk factor, and demographic data from 1652 participants, split evenly between 826 control subjects and 826 glaucoma patients. METHODS We extracted structural data from control and glaucoma patients' electronic health records (EHR). Three distinct machine learning classifiers, the Random Forest and Gradient Boosting algorithms, as well as the Sequential model from the Keras library of TensorFlow, were employed to conduct predictive analyses across our dataset. Key performance metrics such as accuracy, F1 score, precision, recall, and the area under the receiver operating characteristics curve (AUC) were computed to both train and optimize these models. RESULTS The Random Forest model achieved an accuracy of 67.5%, with a ROC AUC of 0.67, outperforming the Gradient Boosting and Sequential models, which registered accuracies of 66.3% and 64.5%, respectively. Our results highlighted key predictive factors such as intraocular pressure, family history, and body mass index, substantiating their roles in glaucoma risk assessment. CONCLUSIONS This study demonstrates the potential of utilizing readily available clinical, lifestyle, and demographic data from EHRs for glaucoma detection through deep learning models. While our model, using EHR data alone, has a lower accuracy compared to those incorporating imaging data, it still offers a promising avenue for early glaucoma risk assessment in primary care settings. The observed disparities in model performance and feature significance show the importance of tailoring detection strategies to individual patient characteristics, potentially leading to more effective and personalized glaucoma screening and intervention.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA; (A.S.); (C.K.); (A.C.)
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ansel Stanik
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA; (A.S.); (C.K.); (A.C.)
| | - Cooper Kozitza
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA; (A.S.); (C.K.); (A.C.)
| | - Aiyin Chen
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA; (A.S.); (C.K.); (A.C.)
| |
Collapse
|
3
|
Ulhaq ZS, Bittencourt GB, Soraya GV, Istifiani LA, Pamungkas SA, Ogino Y, Nurputra DK, Tse WKF. Association between glaucoma susceptibility with combined defects in mitochondrial oxidative phosphorylation and fatty acid beta oxidation. Mol Aspects Med 2024; 96:101238. [PMID: 38215610 DOI: 10.1016/j.mam.2023.101238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia; Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Barquet-Pizá V, Siegfried CJ. Understanding racial disparities of glaucoma. Curr Opin Ophthalmol 2024; 35:97-103. [PMID: 37922412 DOI: 10.1097/icu.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
PURPOSE OF REVIEW Increased prevalence, earlier onset, and more rapid progression to vision loss from glaucoma has demonstrated racial disparity in numerous studies over decades. Precise etiologies of these important differences among patients of African and Hispanic ancestral background have not been elucidated. This review focuses on currently available epidemiologic/population, genetic, socioeconomic and physiologic studies of racial disparities in this blinding disease. RECENT FINDINGS In depth reviews of several landmark studies of glaucoma prevalence in various racial groups have highlighted potential challenges of lack of recruitment of diverse populations in genetic studies and clinical trials, challenges of racial stratification of subjects, and the impact of socioeconomic variables. SUMMARY Through a more comprehensive analysis of racial disparities of glaucoma, both clinicians and researchers may provide more effective population screening and management with a holistic approach for individualized patient care to provide improved outcomes. Future studies of interventions in sociodemographic factors and genetic/physiologic variables that influence the prevalence, access, and consequential vision loss from glaucoma will be crucial to minimize/eliminate racial disparities and improve outcomes for all.
Collapse
Affiliation(s)
- Viviana Barquet-Pizá
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
5
|
Ju WK, Ha Y, Choi S, Kim KY, Bastola T, Kim J, Weinreb RN, Zhang W, Miller YI, Choi SH. Restoring AIBP expression in the retina provides neuroprotection in glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562633. [PMID: 37905114 PMCID: PMC10614877 DOI: 10.1101/2023.10.16.562633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Glaucoma is a neurodegenerative disease manifested in retinal ganglion cell (RGC) death and irreversible blindness. While lowering intraocular pressure (IOP) is the only proven therapeutic strategy in glaucoma, it is insufficient for preventing disease progression, thus justifying the recent focus on targeting retinal neuroinflammation and preserving RGCs. We have identified apolipoprotein A-I binding protein (AIBP) as the protein regulating several mechanisms of retinal neurodegeneration. AIBP controls excessive cholesterol accumulation via upregulating the cholesterol transporter ATP-binding cassette transporter 1 (ABCA1) and reduces inflammatory signaling via toll-like receptor 4 (TLR4) and mitochondrial dysfunction. ABCA1, TLR4 and oxidative phosphorylation components are genetically linked to primary open-angle glaucoma. Here we demonstrated that AIBP and ABCA1 expression was decreased, while TLR4, interleukin 1 beta (IL-1 beta), and the cholesterol content increased in the retina of patients with glaucoma and in mouse models of glaucoma. Restoring AIBP expression by a single intravitreal injection of adeno-associated virus (AAV)-AIBP protected RGCs in glaucomatous DBA/2J mice, in mice with microbead-induced chronic IOP elevation, and optic nerve crush. In addition, AIBP expression attenuated TLR4 and IL-1 beta expression, localization of TLR4 to lipid rafts, reduced cholesterol accumulation, and ameliorated visual dysfunction. These studies collectively indicate that restoring AIBP expression in the glaucomatous retina reduces neuroinflammation and protects RGCs and Muller glia, suggesting the therapeutic potential of AAV-AIBP in human glaucoma.
Collapse
|
6
|
Kuang G, Salowe R, O'Brien J. Paving the way while playing catch up: mitochondrial genetics in African ancestry primary open-angle glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1267119. [PMID: 38983031 PMCID: PMC11182247 DOI: 10.3389/fopht.2023.1267119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma, the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African descent. Specifically, previous research has indicated that primary open-angle glaucoma (POAG), the most common form of disease, is more prevalent, severe, early-onset, and rapidly-progressive in populations of African ancestry. Recent studies have identified genetic variations that may contribute to the greater burden of disease in this population. In particular, mitochondrial genetics has emerged as a profoundly influential factor in multiple neurodegenerative diseases, including POAG. Several hypotheses explaining the underlying mechanisms of mitochondrial genetic contribution to disease progression have been proposed, including nuclear-mitochondrial gene mismatch. Exploring the fundamentals of mitochondrial genetics and disease pathways within the understudied African ancestry population can lead to groundbreaking advancements in the research and clinical understanding of POAG. This article discusses the currently known involvements of mitochondrial genetic factors in POAG, recent directions of study, and potential future prospects in mitochondrial genetic studies in individuals of African descent.
Collapse
Affiliation(s)
- Grace Kuang
- Penn Medicine Center for Genetics in Complex Disease, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Rebecca Salowe
- Penn Medicine Center for Genetics in Complex Disease, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joan O'Brien
- Penn Medicine Center for Genetics in Complex Disease, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Siegfried CJ, Shui YB. Racial Disparities in Glaucoma: From Epidemiology to Pathophysiology. MISSOURI MEDICINE 2022; 119:49-54. [PMID: 36033149 PMCID: PMC9312450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among individuals of African and Latinx descent compared to those of European background, there is a higher prevalence, earlier onset, more rapid progression of primary open angle glaucoma and greater incidence of blindness. Although some suggest that outreach, education and screening programs may expand earlier diagnosis, and attention to access, cost of treatment, and adherence will improve outcomes, there is increasing evidence of genetic and physiologic differences which may be associated with these disease disparities.
Collapse
Affiliation(s)
- Carla J Siegfried
- John F. Hardesty MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Ying-Bo Shui
- John F. Hardesty MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Epidemiological Characteristics of Inpatients Undergoing Surgery for Glaucoma at Tianjin Eye Hospital from 2013 to 2017. J Ophthalmol 2021; 2021:3628481. [PMID: 34790415 PMCID: PMC8592764 DOI: 10.1155/2021/3628481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/15/2021] [Indexed: 01/19/2023] Open
Abstract
Purpose To analyze the epidemiological characteristics of inpatients who underwent surgery for glaucoma at Tianjin Eye Hospital from 2013 to 2017. Methods All glaucoma inpatients who underwent surgery at Tianjin Eye Hospital from 2013 to 2017 were evaluated. The relationships of age and sex with different types of glaucoma were analyzed. The differences in the prevalence and family history of glaucoma among patients with different systemic diseases were compared. Additionally, the effects of different surgical methods for primary angle-closure glaucoma (PACG) and primary open-angle glaucoma (POAG) were compared. Results A total of 4539 patients with glaucoma were retrospectively analyzed. The most prevalent type was PACG (60.15%), followed by secondary glaucoma (SG, 25.53%), POAG (7.6%), uncontrollable intraocular pressure (IOP) after antiglaucoma surgery (4.71%), mixed glaucoma (MG, 10%), and congenital glaucoma (CG, 0.9%). The main surgical methods were phacoemulsification (phaco), phacotrabeculectomy (phaco-trab), and trabeculectomy (trab). The rate of phaco-trab increased, while that of trab decreased. The proportion of women in the PACG group was higher than those in the POAG and SG groups, and there was a pronounced tendency for family clustering (P < 0.001), while in the POAG and SG groups, the proportions of men and those with diabetes were higher (P < 0.05). Conclusions In Tianjin Eye Hospital from 2013 to 2017, the main type of glaucoma was PACG. Female sex and a family history of glaucoma were risk factors for PACG, while male sex and hyperglycemia were risk factors for POAG and SG. Among the antiglaucoma surgery methods, the proportion of phaco-trab increased, while the proportion of trab decreased.
Collapse
|
10
|
WDR36-Associated Neurodegeneration: A Case Report Highlights Possible Mechanisms of Normal Tension Glaucoma. Genes (Basel) 2021; 12:genes12101624. [PMID: 34681019 PMCID: PMC8536154 DOI: 10.3390/genes12101624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
WDR36 is one of a number of genes implicated in the pathogenesis of adult-onset primary open angle glaucoma (POAG). Here we describe in detail the phenotype of a patient with pathogenic variation in WDR36 who presented with a protracted history of central vision loss. On exam visual acuities were at 20/100 level, had a tritan color defect and showed central arcuate visual field defects on visual field testing. Enlarged cup-to-disk ratios with normal intraocular pressures were associated with severe thinning of the ganglion cell layer (GCL) and retinal nerve fiber layer consistent with a clinical diagnosis of normal tension glaucoma. Full-field electroretinograms revealed a severe inner retinal dysfunction with reduced amplitudes and remarkably delayed timings of the b-wave, but preserved photoreceptor (a-wave) function. The pattern described herein recapitulates some of the findings of an animal model of WDR36-associated POAG and suggests a mechanism of disease that involves a retina-wide inner retinal dysfunction and neurodegeneration beyond the GCL. Further detailed structural and functional characterizations of patients with a pathogenic variant in the WDR36 gene are required to confirm these findings.
Collapse
|
11
|
Association of the SNP rs112369934 near TRIM66 Gene with POAG Endophenotypes in African Americans. Genes (Basel) 2021; 12:genes12091420. [PMID: 34573402 PMCID: PMC8471280 DOI: 10.3390/genes12091420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
We investigated the association of the single nucleotide polymorphism (SNP) rs112369934 near the TRIM66 gene with qualitative and quantitative phenotypes of primary open-angle glaucoma (POAG) in African Americans (AA). AA subjects over 35 years old were recruited for the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study in Philadelphia, PA. Glaucoma cases were evaluated for phenotypes associated with POAG pathogenesis, and the associations between rs112369934 and phenotypes were investigated by logistic regression analysis and in gender-stratified case cohorts: The SNP rs112369934 was found to have a suggestive association with retinal nerve fiber layer (RNFL) thickness and cup-to-disc ratio (CDR) in 1087 male AA POAG cases, individuals with the TC genotype having thinner RNFL (95% CI 0.85 to 6.61, p = 0.01) and larger CDR (95% CI -0.07 to -0.01, p = 0.02) than those with wildtype TT. No other significant associations were found. In conclusion SNP rs112369934 may play a role in POAG pathogenesis in male AA individuals. However, this SNP has been implicated in higher POAG risk in both male and female AA POAG cases.
Collapse
|
12
|
Sandoval-Acuña C, Torrealba N, Tomkova V, Jadhav SB, Blazkova K, Merta L, Lettlova S, Adamcová MK, Rosel D, Brábek J, Neuzil J, Stursa J, Werner L, Truksa J. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res 2021; 81:2289-2303. [PMID: 33685989 DOI: 10.1158/0008-5472.can-20-1628] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
Collapse
Affiliation(s)
- Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Natalia Torrealba
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Sukanya B Jadhav
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Kristyna Blazkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Ladislav Merta
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Miroslava K Adamcová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Rosel
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jan Brábek
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jan Stursa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Lukas Werner
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.
| |
Collapse
|
13
|
Kim KY, Ju WK. cAMP/PKA pathway and mitochondrial protection in oxidative stress-induced optic nerve head astrocytes. Neural Regen Res 2021; 16:108-109. [PMID: 32788457 PMCID: PMC7818876 DOI: 10.4103/1673-5374.286962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Keun-Young Kim
- National Center for Microscopy and Imaging Research and Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Edwards G, Perkins GA, Kim KY, Kong Y, Lee Y, Choi SH, Liu Y, Skowronska-Krawczyk D, Weinreb RN, Zangwill L, Strack S, Ju WK. Loss of AKAP1 triggers Drp1 dephosphorylation-mediated mitochondrial fission and loss in retinal ganglion cells. Cell Death Dis 2020; 11:254. [PMID: 32312949 PMCID: PMC7170863 DOI: 10.1038/s41419-020-2456-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Impairment of mitochondrial structure and function is strongly linked to glaucoma pathogenesis. Despite the widely appreciated disease relevance of mitochondrial dysfunction and loss, the molecular mechanisms underlying mitochondrial fragmentation and metabolic stress in glaucoma are poorly understood. We demonstrate here that glaucomatous retinal ganglion cells (RGCs) show loss of A-kinase anchoring protein 1 (AKAP1), activation of calcineurin (CaN) and reduction of dynamin-related protein 1 (Drp1) phosphorylation at serine 637 (Ser637). These findings suggest that AKAP1-mediated phosphorylation of Drp1 at Ser637 has a critical role in RGC survival in glaucomatous neurodegeneration. Male mice lacking AKAP1 show increases in CaN and total Drp1 levels, as well as a decrease in Drp1 phosphorylation at Ser637 in the retina. Ultrastructural analysis of mitochondria shows that loss of AKAP1 triggers mitochondrial fragmentation and loss, as well as mitophagosome formation in RGCs. Loss of AKAP1 deregulates oxidative phosphorylation (OXPHOS) complexes (Cxs) by increasing CxII and decreasing CxIII-V, leading to metabolic and oxidative stress. Also, loss of AKAP1 decreases Akt phosphorylation at Serine 473 (Ser473) and threonine 308 (Thr308) and activates the Bim/Bax signaling pathway in the retina. These results suggest that loss of AKAP1 has a critical role in RGC dysfunction by decreasing Drp1 phosphorylation at Ser637, deregulating OXPHOS, decreasing Akt phosphorylation at Ser473 and Thr308, and activating the Bim/Bax pathway in glaucomatous neurodegeneration. Thus, we propose that overexpression of AKAP1 or modulation of Drp1 phosphorylation at Ser637 are potential therapeutic strategies for neuroprotective intervention in glaucoma and other mitochondria-related optic neuropathies.
Collapse
Affiliation(s)
- Genea Edwards
- Hamilton Glaucoma Center and Shiley Eye Center, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research and Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research and Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - YeEun Kong
- Hamilton Glaucoma Center and Shiley Eye Center, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Yonghoon Lee
- Hamilton Glaucoma Center and Shiley Eye Center, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yujia Liu
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Dorota Skowronska-Krawczyk
- Hamilton Glaucoma Center and Shiley Eye Center, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center and Shiley Eye Center, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Linda Zangwill
- Hamilton Glaucoma Center and Shiley Eye Center, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Stefan Strack
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Center, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Kikut A, Vaughn M, Salowe R, Sanyal M, Merriam S, Lee R, Becker E, Lomax-Reese S, Lewis M, Ryan R, Ross A, Cui QN, Addis V, Sankar PS, Miller-Ellis E, Cannuscio C, O'Brien J. Evaluation of a multimedia marketing campaign to engage African American patients in glaucoma screening. Prev Med Rep 2020; 17:101057. [PMID: 32025476 PMCID: PMC6997297 DOI: 10.1016/j.pmedr.2020.101057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Our objective was to determine which messaging approaches from a marketing campaign were most effective in recruiting African American individuals to a glaucoma screening and research study. We conducted a multimedia marketing campaign in Philadelphia from 01/31/2018 to 06/30/2018. Messaging approaches included radio advertisements and interviews (conducted in partnership with a local radio station with a large African American listener base), print materials, event tables, and online postings. Participants received free glaucoma screenings and the opportunity to enroll in our glaucoma genetics study. These screenings allowed individuals with glaucoma to receive a full examination and treatment plan with a glaucoma specialist, as well as to contribute to future efforts to identify genetic variants underlying this disease. We compared inquiry, enrollment, and cost yield for each messaging approach. Our campaign resulted in 154 unique inquiries, with 98 patients receiving glaucoma screenings (64%) and 60 patients enrolling in our study (39%). Commercials on WURD radio yielded the highest number of inquiries (62%) and enrollments (62%), but at relatively high cost ($814/enrolled patient). The most inexpensive approach that yielded more than five enrollments was postcards ($429/enrolled patient). Our campaign suggests that high-frequency commercials and postcards distributed at targeted healthcare locations are particularly effective and affordable options for connecting with the African American community. Our findings can help to inform recruitment efforts for other understudied diseases in minority populations.
Collapse
Affiliation(s)
- Ava Kikut
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marquis Vaughn
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Salowe
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohima Sanyal
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sayaka Merriam
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Roy Lee
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Becker
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Ahmara Ross
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N. Cui
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Addis
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Prithvi S. Sankar
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Carolyn Cannuscio
- Department of Family Medicine and Community Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Cui QN, Ramakrishnan MS, Gudiseva HV, Collins DW, Pistilli M, Lee R, Chavali VM, Lehman A, Addis VM, O'Brien JM. Mitochondrial haplogroup L1c2 is associated with increased disease severity in African American patients with primary open-angle glaucoma. JOURNAL OF CLINICAL & EXPERIMENTAL OPHTHALMOLOGY 2019; 10:799. [PMID: 31192031 PMCID: PMC6561505 DOI: 10.4172/2155-9570.1000799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The purpose of this study is to evaluate the role mitochondrial inheritance plays in primary open-angle glaucoma (POAG) characteristics in African Americans. METHODS POAG cases from the L1c2 and L1b mitochondrial haplogroups were compared in a retrospective case-case study. Twenty-six pairs of self-identified African American POAG cases from L1c2 and L1b mitochondrial haplogroups matched on age (mean [SD] = 71.2 [9.6] and 71.3 [9.6] years, respectively; p = 0.97), sex (21 female and 5 male pairs), and family history of glaucoma (positive in 15/26 [58%] pairs) were included. RESULTS L1c2 subjects displayed higher vertical cup-to-disc ratio (0.75 [0.12] and 0.67 [0.16], respectively; p = 0.01, Bonferroni-corrected p = 0.08), worse pattern standard deviation on visual field (VF) testing (5.5 [3.5] and 3.5 [2.7]; p = 0.005, Bonferroni-corrected p = 0.02), and more severe glaucoma based on American Glaucoma Society staging criteria (p = 0.04, Bonferroni-corrected p = 0.32) compared to L1b subjects. L1c2 also trended towards worse mean deviation on VF compared to L1b (-8.2 [7.6] and -5.8 [6.8], respectively, p = 0.17). Best corrected visual acuity, central corneal thickness, maximum intraocular pressure (IOP), and cataract severity were comparable between L1c2 and L1b haplogroups (p ≥ 0.49), as was retinal nerve fiber layer thickness on optical coherence tomography (75.1 [14.1] and 75.1 [13.0]; p = 0.99). CONCLUSION Results demonstrated worse glaucomatous cupping and more severe VF loss in the L1c2 compared to the L1b haplogroup despite comparable IOP. Findings implicate mitochondrial inheritance as a factor affecting POAG severity and may ultimately contribute to stratifying POAG patients into phenotypically and genotypically distinct subgroups.
Collapse
Affiliation(s)
- Qi N Cui
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | | | | | - David W Collins
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Maxwell Pistilli
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Roy Lee
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | | | - Amanda Lehman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Victoria M Addis
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Joan M O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Gudiseva HV, Pistilli M, Salowe R, Singh LN, Collins DW, Cole B, He J, Merriam S, Khachataryan N, Henderer J, Addis V, Cui QN, Sankar PS, Miller-Ellis E, Chavali VRM, Ying GS, Wallace D, O'Brien JM. The association of mitochondrial DNA haplogroups with POAG in African Americans. Exp Eye Res 2019; 181:85-89. [PMID: 30653964 PMCID: PMC6443410 DOI: 10.1016/j.exer.2019.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of primary open-angle glaucoma (POAG). However, the potential significance of mitochondrial DNA (mtDNA) haplogroups to POAG has not been evaluated in the overaffected African American population. To investigate the association of mtDNA haplogroups with POAG and its phenotypic characteristics, genotyping data from 4081 African American subjects (1919 cases and 2162 controls) was analyzed using 1293 positions on mtDNA. The overall frequency of mtDNA haplogroups in the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study cohort was 37% L3, 29% L2, 21% L1, 4% L0, and 10% non-African haplogroups (non-L). When all haplogroups (L0, L1, L2, and non-L) were compared against theL3 reference group, after adjusting by age and principal component of ancestry, the non-L3 haplogroups showed higher risk of POAG (OR-1.19, p = 0.02), with a particularly strong association among males (OR = 1.41, p = 0.003). More specifically the non-L group was associated with higher POAG risk than the L3 haplogroup (OR = 1.77, p = 0.007, Bonferroni adjusted p = 0.027) and to the L3e (n = 256, OR = 1.92, p = 0.007, Bonferroni adjusted p = 0.029). No significant association was found when genders were analyzed together or in female only analysis. There were no significant differences in various POAG endophenotypes across mtDNA haplogroups. This study expands our knowledge of mitochondrial genetics and mtDNA haplogroup associations in African American POAG. Further work is needed to better understand the functional role of mtDNA polymorphisms and their interactions with nuclear genes that affect POAG.
Collapse
Affiliation(s)
- Harini V Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell Pistilli
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Salowe
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Collins
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Cole
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sayaka Merriam
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jeffrey Henderer
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Victoria Addis
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Prithvi S Sankar
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Gui-Shuang Ying
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan M O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA. joan.o'
| |
Collapse
|