1
|
Folorunso OS, Sinha NR, Singh A, Xi L, Pulimamidi VK, Cho WJ, Mittal SK, Chauhan SK. TIMP-2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00470-X. [PMID: 39732392 DOI: 10.1016/j.ajpath.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/30/2024]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined. Here, the TIMP expression in human corneal epithelial (HCLE) cells under homeostatic and inflammatory milieus was profiled to examine their contribution to the healing of injured cornea epithelia. Transcriptionally, TIMP-2 was highly expressed in HCLE when stimulated with 100 ng/mL IL-1β or scratch-wounded. Unlike TIMP-1, recombinant TIMP-2 (rTIMP-2) significantly promoted epithelial cell wound closure compared to untreated and TIMP-2-neutralizing conditions. At 12 hours, the Ki-67+ cells significantly increased 3-fold compared to untreated cells, suggesting that rTIMP-2 is associated with cell proliferation. Furthermore, rTIMP-2 treatment significantly suppressed inflammatory cytokine expression (IL-1β, IL-6, IL-8, and TNFα) and injury-induced matrix metalloproteinases (MMP-1, -2, -3, -9, -10, and -13). Topical treatment of injured mouse cornea with 0.1 mg/mL rTIMP-2 significantly promoted corneal re-epithelialization and improved tissue integrity. The treatment suppressed the expression of inflammatory cytokines and MMPs, as well as the infiltration of neutrophils at the injury site. These findings indicate that TIMP-2 promotes faster wound healing by suppressing injury-induced inflammation and MMP expression, suggesting a potential therapeutic target for corneal wound management.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nishant R Sinha
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Aastha Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Lei Xi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Vinay K Pulimamidi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - WonKyung J Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Barone V, Scirocco L, Surico PL, Micera A, Cutrupi F, Coassin M, Di Zazzo A. Mast cells and ocular surface: An update review. Exp Eye Res 2024; 245:109982. [PMID: 38942134 DOI: 10.1016/j.exer.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Mast cells (MCs), traditionally viewed as key players in IgE-mediated allergic responses, are increasingly recognized for their versatile roles. Situated at critical barrier sites such as the ocular surface, these sentinel cells participate in a broad array of physiological and pathological processes. This review presents a comprehensive update on the immune pathophysiology of MCs, with a particular focus on the mechanisms underlying innate immunity. It highlights their roles at the ocular surface, emphasizing their participation in allergic reactions, maintenance of corneal homeostasis, neovascularization, wound healing, and immune responses in corneal grafts. The review also explores the potential of MCs as therapeutic targets, given their significant contributions to disease pathogenesis and their capacity to modulate immunity. Through a thorough examination of current literature, we aim to elucidate the immune pathophysiology and multifaceted roles of MCs in ocular surface health and disease, suggesting directions for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Vincenzo Barone
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Laura Scirocco
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Pier Luigi Surico
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS - Fondazione Bietti, Rome, Italy
| | - Francesco Cutrupi
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Marco Coassin
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy; Rare Corneal Diseases Center, Campus Bio-Medico University Hospital Foundation, Rome, Italy.
| |
Collapse
|
4
|
Zielke C, Nielsen JE, Lin JS, Barron AE. Between good and evil: Complexation of the human cathelicidin LL-37 with nucleic acids. Biophys J 2024; 123:1316-1328. [PMID: 37919905 PMCID: PMC11163296 DOI: 10.1016/j.bpj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
The innate immune system provides a crucial first line of defense against invading pathogens attacking the body. As the only member of the human cathelicidin family, the antimicrobial peptide LL-37 has been shown to have antiviral, antifungal, and antibacterial properties. In complexation with nucleic acids, LL-37 is suggested to maintain its beneficial health effects while also acting as a condensation agent for the nucleic acid. Complexes formed by LL-37 and nucleic acids have been shown to be immunostimulatory with a positive impact on the human innate immune system. However, some studies also suggest that in some circumstances, LL-37/nucleic acid complexes may be a contributing factor to autoimmune disorders such as psoriasis and systemic lupus erythematosus. This review provides a comprehensive discussion of research highlighting the beneficial health effects of LL-37/nucleic acid complexes, as well as discussing observed detrimental effects. We will emphasize why it is important to investigate and elucidate structural characteristics, such as condensation patterns of nucleic acids within complexation, and their mechanisms of action, to shed light on the intricate physiological effects of LL-37 and the seemingly contradictory role of LL-37/nucleic acid complexes in the innate immune response.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California.
| |
Collapse
|
5
|
Uysal BS, Sarıkaya B, Dizakar SÖA, Kaplanoğlu GT, Gümüşderelioğlu M. Investigation of healing strategies in a rat corneal opacity model with polychromatic light and stem cells injection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112874. [PMID: 38422971 DOI: 10.1016/j.jphotobiol.2024.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Corneal opacities are a major cause of vision loss worldwide. However, the current therapies are suboptimal to manage the corneal wound healing process. Therefore, there is an obvious need to develop new treatment strategies that are efficient in promoting wound healing in patients with severe corneal disorders. In this study, we investigated and compared the efficacy of adipose-derived mesenchymal stem cells (ADMSCs) and photobiomodulation (PBM) with polychromatic light in the NIR (600-1200 nm) alone and in combination, on corneal opacity, inflammatory response, and tissue architecture in a rat corneal opacity model created by mechanical injury. All animals were divided into four groups randomly following the injury: injury only (no treatment), ADMSCs treatment, PBM treatment and combined (ADMSCs+PBM) treatment (n = 12 eyes per group). At the 10th and 30th day following injury, corneal opacity formation, neovascularization, and corneal thickness were assessed. On the 30th day the harvested corneas were analyzed by transmission electron microscopy (TEM), histological evaluation, immunohistochemical (IHC) staining and real-time polymerase chain reaction (RT-PCR). On day 30, the corneal opacity score, neovascularization grade, and corneal thickness in all treatment groups were significantly lower in comparison with the untreated injured corneas. The TEM imaging and H&E staining together clearly revealed a significant enhancement in corneal regeneration with improved corneal microenvironment and reduced vascularization in the combined administration of PBM and ADMSCs compared to treatment of PBM and ADMSCs alone. In addition, the IHC staining, and RT-PCR analysis supported our hypothesis that combining ADMSCs therapy with PBM alleviated the inflammatory response, and significantly decreased scar formation compared to either ADMSCs or PBM alone during the corneal wound healing.
Collapse
Affiliation(s)
- Betül Seher Uysal
- Gazi University, Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| | - Burcu Sarıkaya
- Balıkesir University, Faculty of Medicine, Department of Medical Genetics, Balıkesir, Turkey
| | | | - Gülnur Take Kaplanoğlu
- Gazi University, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Graduate School of Science and Engineering, Bioengineering Division, Ankara, Turkey.
| |
Collapse
|
6
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
7
|
Mishra N, Kant R, Goswami DG, Petrash JM, Agarwal C, Tewari-Singh N, Agarwal R. Metabolomics for identifying pathways involved in vesicating agent lewisite-induced corneal injury. Exp Eye Res 2023; 236:109672. [PMID: 37797797 PMCID: PMC10843384 DOI: 10.1016/j.exer.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-β-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Dinesh G Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Singh A, Cho WJ, Pulimamidi VK, Mittal SK, Chauhan SK. Interleukin-11 Suppresses Ocular Surface Inflammation and Accelerates Wound Healing. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 37910094 PMCID: PMC10627293 DOI: 10.1167/iovs.64.14.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Purpose Regulation of inflammation is critical for achieving favorable outcomes in wound healing. In this study, we determine the functional role and mechanism of action of IL-11, an immunomodulatory cytokine, in regulating inflammatory response at the ocular surface. Methods Corneal injury was induced by mechanical removal of the epithelium and anterior stroma using an AlgerBrush II. Transcript and protein levels of IL-11 in injured cornea were quantified using real-time PCR and ELISA analysis. Corneal inflammation was assessed by measuring frequencies of total CD45+ inflammatory cells, CD11b+Ly6G+ polymorphonuclear cells (neutrophils), and CD11b+Ly6G- mononuclear cells (macrophages, monocytes) at the ocular surface using flow cytometry. To assess the effect of IL-11 on innate immune cell function, cell activation marker and inflammatory cytokines including major histocompatibility complex (MHC) class II, myeloperoxidase (MPO), TNFα, and inducible nitric oxide synthase (iNOS) were measured following recombinant IL-11 treatment (1 µg/mL). Injured corneas were topically treated with IL-11 (1 µg/mL), and wound healing was evaluated using corneal fluorescein staining. Results Corneal injury resulted in increased levels of IL-11 in the cornea, particularly in the stroma. Neutrophils and CD11b+ mononuclear cells (macrophages, monocytes) substantially expressed IL-11 receptor. Interestingly, IL-11 significantly downregulated the activation of immune cells, as evidenced by the lower expression of MHC II and TNFα by CD11b+ mononuclear cells and lower levels of MPO by neutrophils. Topical administration of IL-11 to injured corneas led to faster wound healing and better retention of tissue architecture. Conclusions Our findings demonstrate IL-11 is a key modulator of ocular surface inflammation and provide novel evidence of IL-11 as a potential therapeutic to control inflammatory damage and accelerate wound repair following injury.
Collapse
Affiliation(s)
- Aastha Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Vinay K Pulimamidi
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
De Giovanni M, Chen H, Li X, Cyster JG. GPR35 and mediators from platelets and mast cells in neutrophil migration and inflammation. Immunol Rev 2023; 317:187-202. [PMID: 36928841 PMCID: PMC10504419 DOI: 10.1111/imr.13194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Neutrophil recruitment from circulation to sites of inflammation is guided by multiple chemoattractant cues emanating from tissue cells, immune cells, and platelets. Here, we focus on the function of one G-protein coupled receptor, GPR35, in neutrophil recruitment. GPR35 has been challenging to study due the description of multiple ligands and G-protein couplings. Recently, we found that GPR35-expressing hematopoietic cells respond to the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). We discuss distinct response profiles of GPR35 to 5-HIAA compared to other ligands. To place the functions of 5-HIAA in context, we summarize the actions of serotonin in vascular biology and leukocyte recruitment. Important sources of serotonin and 5-HIAA are platelets and mast cells. We discuss the dynamics of cell migration into inflamed tissues and how multiple platelet and mast cell-derived mediators, including 5-HIAA, cooperate to promote neutrophil recruitment. Additional actions of GPR35 in tissue physiology are reviewed. Finally, we discuss how clinically approved drugs that modulate serotonin uptake and metabolism may influence 5-HIAA-GPR35 function, and we speculate about broader influences of the GPR35 ligand-receptor system in immunity and disease.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hongwen Chen
- Departments of Molecular Genetics and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Departments of Molecular Genetics and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Ruiz-Lozano RE, Salan-Gomez M, Rodriguez-Garcia A, Quiroga-Garza ME, Ramos-Dávila EM, Perez VL, Azar NS, Merayo-Lloves J, Hernandez-Camarena JC, Valdez-García JE. Wessely corneal ring phenomenon: An unsolved pathophysiological dilemma. Surv Ophthalmol 2023:S0039-6257(23)00041-3. [PMID: 36882129 DOI: 10.1016/j.survophthal.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The cornea is a densely innervated, avascular tissue showing exceptional inflammatory and immune responses. The cornea is a site of lymphangiogenic and angiogenic privilege devoid of blood and lymphatic vessels that limits the entry of inflammatory cells from the adjacent and highly immunoreactive conjunctiva. Immunological and anatomical differences between the central and peripheral cornea are also necessary to sustain passive immune privilege. The lower density of antigen-presenting cells in the central cornea and the 5:1 peripheral-to-central corneal ratio of C1 are 2 main features conferring passive immune privilege. C1 activates the complement system by antigen-antibody complexes more effectively in the peripheral cornea and, thus, protects the central corneas' transparency from immune-driven and inflammatory reactions. Wessely rings, also known as corneal immune rings, are non-infectious ring-shaped stromal infiltrates usually formed in the peripheral cornea. They result from a hypersensitivity reaction to foreign antigens, including those of microorganism origin. Thus, they are thought to be composed of inflammatory cells and antigen-antibody complexes. Corneal immune rings have been associated with various infectious and non-infectious causes, including foreign bodies, contact lens wear, refractive procedures, and drugs. We describe the anatomical and immunologic basis underlying Wessely ring formation, its causes, clinical presentation, and management.
Collapse
Affiliation(s)
- Raul E Ruiz-Lozano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Marcelo Salan-Gomez
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Alejandro Rodriguez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Manuel E Quiroga-Garza
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Eugenia M Ramos-Dávila
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Victor L Perez
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Nadim S Azar
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Jesus Merayo-Lloves
- Instituto Universitario Fernández Vega, Universidad de Oviedo, Oviedo, Spain
| | - Julio C Hernandez-Camarena
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Jorge E Valdez-García
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico.
| |
Collapse
|
12
|
Elbasiony E, Cho WJ, Singh A, Mittal SK, Zoukhri D, Chauhan SK. Increased activity of lacrimal gland mast cells are associated with corneal epitheliopathy in aged mice. NPJ AGING 2023; 9:2. [PMID: 36849524 PMCID: PMC9971332 DOI: 10.1038/s41514-023-00099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
The lacrimal gland undergoes significant structural and functional deterioration with aging. Marked with increased inflammation and fibrosis, the aged lacrimal gland is unable to perform its protective function. As a result, the ocular surface becomes highly susceptible to various ocular surface pathologies, including corneal epitheliopathy. We and others have previously shown that mast cells mediate tissue inflammation by recruiting other immune cells. However, despite their well-known characteristics of secreting various inflammatory mediators, whether mast cells contribute to the immune cell aggregation and activation, and acinar dystrophy of the aged lacrimal gland has not been investigated. Here, we demonstrate the role of mast cells in age-related lacrimal gland pathophysiology using mast cell-deficient (cKitw-sh) mice. Our data demonstrated a significant increase in mast cell frequencies and immune cell infiltration in the lacrimal gland of aged mice. Interestingly, mast cell deficiency resulted in a substantial reduction in inflammation and preservation of lacrimal gland structure, suggesting that mast cells mediate the aging process of the lacrimal gland.
Collapse
Affiliation(s)
- Elsayed Elbasiony
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Aastha Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Driss Zoukhri
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Filiberti A, Gmyrek GB, Berube AN, Carr DJJ. Osteopontin contributes to virus resistance associated with type I IFN expression, activation of downstream ifn-inducible effector genes, and CCR2 +CD115 +CD206 + macrophage infiltration following ocular HSV-1 infection of mice. Front Immunol 2023; 13:1028341. [PMID: 36685562 PMCID: PMC9846535 DOI: 10.3389/fimmu.2022.1028341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Ocular pathology is often associated with acute herpes simplex virus (HSV)-1 infection of the cornea in mice. The present study was undertaken to determine the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6 wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea with HSV-1 were evaluated for susceptibility to infection and cornea pathology. OPN KO mice were found to possess significantly more infectious virus in the cornea at day 3 and day 7 post infection compared to infected WT mice. Coupled with these findings, HSV-1-infected OPN KO mouse corneas were found to express less interferon (IFN)-α1, double-stranded RNA-dependent protein kinase, and RNase L compared to infected WT animals early post infection that likely contributed to decreased resistance. Notably, OPN KO mice displayed significantly less corneal opacity and neovascularization compared to WT mice that paralleled a decrease in expression of vascular endothelial growth factor (VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN KO mice aligned with a decrease in total leukocyte infiltration into the cornea and specifically, in neutrophils at day 3 post infection and in macrophage subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+ -expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was unaltered comparing infected WT to OPN KO mice. Likewise, there was no difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in the draining lymph node with both sets functionally competent in response to virus antigen comparing WT to OPN KO mice. Collectively, these results demonstrate OPN deficiency directly influences the host innate immune response to ocular HSV-1 infection reducing some aspects of inflammation but at a cost with an increase in local HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Amanda N. Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel J. J. Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
14
|
Shukla S, Cho W, Elbasiony E, Singh RB, Mittal SK, Chauhan SK. Non-immune and immune functions of interleukin-36γ suppress epithelial repair at the ocular surface. FASEB J 2022; 36:10.1096/fj.202200174RR. [PMID: 35781326 PMCID: PMC9924024 DOI: 10.1096/fj.202200174rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023]
Abstract
Regulation of innate inflammation is critical for maintaining tissue homeostasis and barrier function, especially in those interfacing the external environments such as the skin and cornea. Expression of pro-inflammatory cytokines by injured tissues has been shown to exacerbate the inflammatory cascade, causing tissue damage. Interleukin 36, a subfamily of the IL-1 superfamily, consists of three pro-inflammatory agonists-IL36α, IL36β, and IL36γ and an IL36 receptor antagonist (IL36Ra). The current investigation, for the first time, reports that IL36γ is the primary agonist expressed by the corneal epithelium, which is significantly upregulated following corneal injury. The function of IL36γ on non-immune cells, in addition to innate inflammatory cells, in regulating tissue homeostasis has not been well investigated. Using a loss-of-function approach via neutralizing antibody treatment, our data demonstrate that blocking endogenously expressed IL36γ in epithelial cells promotes rapid re-epithelialization in in vitro wound closure assay. Finally, by utilizing a naturally occurring antagonist IL36Ra in a well-established murine model of ocular injury, our study demonstrates that inhibition of IL36γ accelerates epithelial regeneration and suppresses tissue inflammation. Given rapid wound healing is critical for re-establishing normal tissue structure and function, our investigation on the function of IL36γ provides evidence for the development of novel IL36γ-targeting strategies to promote tissue repair.
Collapse
Affiliation(s)
- Sachin Shukla
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- L.V. Prasad Eye Institute, Hyderabad, India
| | - WonKyung Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sharad K. Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Song J, Hu L, Liu B, Jiang N, Huang H, Luo J, Wang L, Zeng J, Huang F, Huang M, Cai L, Tang L, Chen S, Chen Y, Wu A, Zheng S, Chen Q. The Emerging Role of Immune Cells and Targeted Therapeutic Strategies in Diabetic Wounds Healing. J Inflamm Res 2022; 15:4119-4138. [PMID: 35898820 PMCID: PMC9309318 DOI: 10.2147/jir.s371939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Poor wound healing in individuals with diabetes has long plagued clinicians, and immune cells play key roles in the inflammation, proliferation and remodeling that occur in wound healing. When skin integrity is damaged, immune cells migrate to the wound bed through the actions of chemokines and jointly restore tissue homeostasis and barrier function by exerting their respective biological functions. An imbalance of immune cells often leads to ineffective and disordered inflammatory responses. Due to the maladjusted microenvironment, the wound is unable to smoothly transition to the proliferation and remodeling stage, causing it to develop into a chronic refractory wound. However, chronic refractory wounds consistently lead to negative outcomes, such as long treatment cycles, high hospitalization rates, high medical costs, high disability rates, high mortality rates, and many adverse consequences. Therefore, strategies that promote the rational distribution and coordinated development of immune cells during wound healing are very important for the treatment of diabetic wounds (DW). Here, we explored the following aspects by performing a literature review: 1) the current situation of DW and an introduction to the biological functions of immune cells; 2) the role of immune cells in DW; and 3) existing (or undeveloped) therapies targeting immune cells to promote wound healing to provide new ideas for basic research, clinical treatment and nursing of DW.
Collapse
Affiliation(s)
- Jianying Song
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lixin Hu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bo Liu
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Houqiang Huang
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - JieSi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Huang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Luyao Cai
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lingyu Tang
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shunli Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yinyi Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Silin Zheng
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qi Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
16
|
TRPV1 + sensory nerves modulate corneal inflammation after epithelial abrasion via RAMP1 and SSTR5 signaling. Mucosal Immunol 2022; 15:867-881. [PMID: 35680973 DOI: 10.1038/s41385-022-00533-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Timely initiation and termination of inflammatory response after corneal epithelial abrasion is critical for the recovery of vision. The cornea is innervated with rich sensory nerves with highly dense TRPV1 nociceptors. However, the roles of TRPV1+ sensory neurons in corneal inflammation after epithelial abrasion are not completely understood. Here, we found that depletion of TRPV1+ sensory nerves using resiniferatoxin (RTX) and blockade of TRPV1 using AMG-517 delayed corneal wound closure and enhanced the infiltration of neutrophils and γδ T cells to the wounded cornea after epithelial abrasion. Furthermore, depletion of TRPV1+ sensory nerves increased the number and TNF-α production of corneal CCR2+ macrophages and decreased the number of corneal CCR2- macrophages and IL-10 production. In addition, the TRPV1+ sensory nerves inhibited the recruitment of neutrophils and γδ T cells to the cornea via RAMP1 and SSTR5 signaling, decreased the responses of CCR2+ macrophages via RAMP1 signaling, and increased the responses of CCR2- macrophages via SSTR5 signaling. Collectively, our results suggest that the TRPV1+ sensory nerves suppress inflammation to support corneal wound healing via RAMP1 and SSTR5 signaling, revealing potential approaches for improving defective corneal wound healing in patients with sensory neuropathy.
Collapse
|
17
|
Corneal stromal repair and regeneration. Prog Retin Eye Res 2022; 91:101090. [DOI: 10.1016/j.preteyeres.2022.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023]
|
18
|
Li F, Yu R, Sun X, Chen X, Xu P, Huang Y, Huang S, Xue Y, Fu T, Liu J, Li Z. Autonomic nervous system receptor-mediated regulation of mast cell degranulation modulates the inflammation after corneal epithelial abrasion. Exp Eye Res 2022; 219:109065. [PMID: 35421396 DOI: 10.1016/j.exer.2022.109065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
Mast cells (MCs) regulate wound healing and are influenced by the autonomic nervous system (ANS). However, the underlying mechanisms affecting wound healing outcomes remain elusive. Here, we explored the specific role of the ANS by regulating MC degranulation following corneal epithelium abrasion. A mouse model of corneal abrasion was established by mechanically removing a 2-mm central epithelium. Wound closure, neutrophil infiltration, and transcription of injured corneas were investigated using whole-mount immunostaining, flow cytometry, and RNA-sequencing analysis, respectively. Inhibition of MC degranulation by the MC stabilizers cromolyn sodium and lodoxamide tromethamine increased the infiltration of neutrophils and delayed healing of abraded corneas. Moreover, transcriptomic profiling analysis showed that purified MCs from the limbus expressed adrenergic and cholinergic receptors. Pharmacological manipulation and sympathectomy with 6-hydroxydopamine confirmed that sympathetic nervous system signaling inhibited MC degranulation after corneal abrasion, whereas parasympathetic nervous system signaling enhanced MC degranulation. We conclude that normal degranulation of MCs in the corneal limbus and crosstalk between the ANS and MCs are crucial for the appropriate control of inflammation and the repair progress of wounded corneas. This suggests a potential approach for improving defective corneal wound healing by the administration of clinically available autonomic activity-modulating agents.
Collapse
Affiliation(s)
- Fanying Li
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Ruoxun Yu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xin Sun
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengyang Xu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yijia Huang
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuoya Huang
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
19
|
Role of Damage-Associated Molecular Patterns (DAMPs/Alarmins) in Severe Ocular Allergic Diseases. Cells 2022; 11:cells11061051. [PMID: 35326502 PMCID: PMC8946931 DOI: 10.3390/cells11061051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Severe ocular allergic diseases, such as atopic keratoconjunctivitis and vernal keratoconjunctivitis, cause severe allergic inflammation in the conjunctiva and corneal epithelial damage, resulting in visual disturbances. The involvement of damage (danger)-associated molecular patterns (DAMPs/alarmins) in the pathogenesis of these diseases has been recognized. Alarmins released from damaged corneal epithelial cells or eosinophils play a critical role in the induction of corneal lesions, vicious loop of corneal injury, and exacerbation of conjunctival allergic inflammation. Alarmins in the conjunctiva also play an essential role in the development of both allergic inflammation, based on the acquired immune system, and type 2 inflammation by innate immune responses in the ocular surface. Therefore, alarmins may be a potentially important therapeutic target in severe refractory ocular allergic diseases.
Collapse
|
20
|
Chen Y, Wang S, Alemi H, Dohlman T, Dana R. Immune regulation of the ocular surface. Exp Eye Res 2022; 218:109007. [PMID: 35257715 PMCID: PMC9050918 DOI: 10.1016/j.exer.2022.109007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023]
Abstract
Despite constant exposure to various environmental stimuli, the ocular surface remains intact and uninflamed while maintaining the transparency of the cornea and its visual function. This 'immune privilege' of the ocular surface is not simply a result of the physical barrier function of the mucosal lining but, more importantly, is actively maintained through a variety of immunoregulatory mechanisms that prevent the disruption of immune homeostasis. In this review, we focus on essential molecular and cellular players that promote immune quiescence in steady-state conditions and suppress inflammation in disease-states. Specifically, we examine the interactions between the ocular surface and its local draining lymphoid compartment, by encompassing the corneal epithelium, corneal nerves and cornea-resident myeloid cells, conjunctival goblet cells, and regulatory T cells (Treg) in the context of ocular surface autoimmune inflammation (dry eye disease) and alloimmunity (corneal transplantation). A better understanding of the immunoregulatory mechanisms will facilitate the development of novel, targeted immunomodulatory strategies for a broad range of ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
21
|
Lamy R, Wolf M, Bispo C, Clay SM, Zheng S, Wolfreys F, Pan P, Chan MF. Characterization of Recruited Mononuclear Phagocytes following Corneal Chemical Injury. Int J Mol Sci 2022; 23:ijms23052574. [PMID: 35269717 PMCID: PMC8910730 DOI: 10.3390/ijms23052574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Mononuclear phagocytes (MP) have central importance in innate immunity, inflammation, and fibrosis. Recruited MPs, such as macrophages, are plastic cells and can switch from an inflammatory to a restorative phenotype during the healing process. However, the role of the MPs in corneal wound healing is not completely understood. The purpose of this study is to characterize the kinetics of recruited MPs and evaluate the role of macrophage metalloelastase (MMP12) in the healing process, using an in vivo corneal chemical injury model. Unwounded and wounded corneas of wild-type (WT) and Mmp12-/- mice were collected at 1, 3, and 6 days after chemical injury and processed for flow cytometry analysis. Corneal MP phenotype significantly changed over time with recruited Ly6Chigh (proinflammatory) cells being most abundant at 1 day post-injury. Ly6Cint cells were highly expressed at 3 days post-injury and Ly6Cneg (patrolling) cells became the predominant cell type at 6 days post-injury. CD11c+ dendritic cells were abundant in corneas from Mmp12-/- mice at 6 days post-injury. These findings show the temporal phenotypic plasticity of recruited MPs and provide valuable insight into the role of the MPs in the corneal repair response, which may help guide the future development of MP-targeted therapies.
Collapse
Affiliation(s)
- Ricardo Lamy
- Department of Ophthalmology, University of California, San Francisco, CA 94158, USA; (R.L.); (M.W.); (S.M.C.); (S.Z.); (F.W.); (P.P.)
| | - Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, CA 94158, USA; (R.L.); (M.W.); (S.M.C.); (S.Z.); (F.W.); (P.P.)
| | - Claudia Bispo
- UCSF Parnassus Flow Cytometry Core Facility, University of California, San Francisco, CA 94143, USA;
| | - Selene M. Clay
- Department of Ophthalmology, University of California, San Francisco, CA 94158, USA; (R.L.); (M.W.); (S.M.C.); (S.Z.); (F.W.); (P.P.)
| | - Siyu Zheng
- Department of Ophthalmology, University of California, San Francisco, CA 94158, USA; (R.L.); (M.W.); (S.M.C.); (S.Z.); (F.W.); (P.P.)
| | - Finn Wolfreys
- Department of Ophthalmology, University of California, San Francisco, CA 94158, USA; (R.L.); (M.W.); (S.M.C.); (S.Z.); (F.W.); (P.P.)
| | - Peipei Pan
- Department of Ophthalmology, University of California, San Francisco, CA 94158, USA; (R.L.); (M.W.); (S.M.C.); (S.Z.); (F.W.); (P.P.)
| | - Matilda F. Chan
- Department of Ophthalmology, University of California, San Francisco, CA 94158, USA; (R.L.); (M.W.); (S.M.C.); (S.Z.); (F.W.); (P.P.)
- Francis I. Proctor Foundation, University of California, San Francisco, CA 94158, USA
- Correspondence:
| |
Collapse
|
22
|
Kempuraj D, Mohan RR. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines 2022; 10:biomedicines10020339. [PMID: 35203548 PMCID: PMC8961790 DOI: 10.3390/biomedicines10020339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a robust cellular mechanism for disposing of harmful molecules or recycling them to cells, which also regulates physiopathological processes in cornea. Dysregulated autophagy causes inefficient clearance of unwanted proteins and cellular debris, mitochondrial disorganization, defective inflammation, organ dysfunctions, cell death, and diseases. The cornea accounts for two-thirds of the refraction of light that occurs in the eyes, but is prone to trauma/injury and infection. The extracellular matrix (ECM) is a noncellular dynamic macromolecular network in corneal tissues comprised of collagens, proteoglycans, elastin, fibronectin, laminins, hyaluronan, and glycoproteins. The ECM undergoes remodeling by matrix-degrading enzymes and maintains corneal transparency. Autophagy plays an important role in the ECM and wound healing maintenance. Delayed/dysregulated autophagy impacts the ECM and wound healing, and can lead to corneal dysfunction. Stromal wound healing involves responses from the corneal epithelium, basement membrane, keratocytes, the ECM, and many cytokines and chemokines, including transforming growth factor beta-1 and platelet-derived growth factor. Mild corneal injuries self-repair, but greater injuries lead to corneal haze/scars/fibrosis and vision loss due to disruptions in the ECM, autophagy, and normal wound healing processes. Presently, the precise role of autophagy and ECM remodeling in corneal wound healing is elusive. This review discusses recent trends in autophagy and ECM modulation in the context of corneal wound healing and homeostasis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA;
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA;
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
23
|
Cho W, Mittal SK, Elbasiony E, Chauhan SK. Ocular surface mast cells promote inflammatory lymphangiogenesis. Microvasc Res 2022; 141:104320. [PMID: 35031275 PMCID: PMC8923954 DOI: 10.1016/j.mvr.2022.104320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Abstract
Mast cells, sentinel immune cells, are most abundantly expressed in vascularized tissues that interface the external environment, such as the skin and ocular surface. Our previous reports have shown mast cells reside closely with vascular endothelial cells and mediate the pathogenic angiogenic response. However, the contribution of mast cells and their underlying mechanisms on lymphangiogenesis have not been fully deciphered. Using a murine model of inflammatory corneal angiogenesis, we observed adjacent migration of activated mast cells with new lymph vessel growth. Our in vitro co-culture assays demonstrate that mast cells express high levels of of VEGF-D and directly promote lymphatic endothelial cell tube formation and proliferation. Moreover, our loss-of-function approaches, using mast cell knockout mice and cromolyn-mediated mast cell inhibition, showed mast cell deficiency suppresses the induction of inflammatory lymphangiogenesis and VEGF-D expression at the ocular surface following corneal tissue insult. Our findings suggest blockade of mast cells as a potential therapeutic strategy to inhibit pathological lymphangiogenesis.
Collapse
Affiliation(s)
- WonKyung Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Kang K, Zhou Q, McGinn L, Nguyen T, Luo Y, Djalilian A, Rosenblatt M. High fat diet induced gut dysbiosis alters corneal epithelial injury response in mice. Ocul Surf 2022; 23:49-59. [PMID: 34808360 PMCID: PMC8792274 DOI: 10.1016/j.jtos.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Commensal microbiome secretes various metabolites that can exert important effects on the host immunity and inflammation and can alter cellular functions. However, little is known regarding the effect of microbiome on corneal immunity and genetic expression. The purpose of this study is to describe the effect of diet-induced gut dysbiosis on corneal immunity and corneal gene expression after wounding. METHODS This study is approved by the Animal Care and Use of the University of Illinois. Six-week-old female C57BL6 mice were fed on a normal chow diet (ND), isocaloric low-fat control diet (LFD), or a 21% milk high-fat diet (HFD) for six weeks. 2 mm corneal epithelial debridement was performed (n = 10). Fecal samples from mice were used for microbial diversity analysis (n > 3). Immunofluorescence staining of corneal wholemount tissue post-debridement was used to visualize immune cell distribution. RNA Seq was performed on tissue samples from corneas following debridement. RESULTS Mice fed differing diets had significant alterations in gut microbial diversities. After corneal debridement, HFD mice experienced delayed wound healing in comparison to LFD mice and ND mice groups. However, fecal transplantation led to normalization of wound closure rates. Increased γδTCR staining was observed in the LFD group, and decreased LY6G was observed in HFD group (p < 0.05). Gene Ontology terms of differentially expressed genes included response to external stimulus, cell proliferation, migration, adhesion, defense response and leukocyte migration. Top over-represented pathways included ECM-receptor interaction, Cytokine-cytokine receptor interaction, Focal adhesion and Leukocyte trans-endothelial migration. CONCLUSIONS Gut microbial dysbiosis alters corneal immune cell distribution, corneal response to injury, and genes related to epithelial function and corneal immunity.
Collapse
Affiliation(s)
- Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Qiang Zhou
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Lander McGinn
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuncin Luo
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Djalilian
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Shahriary A, Sabzevari M, Jadidi K, Yazdani F, Aghamollaei H. The Role of Inflammatory Cytokines in Neovascularization of Chemical Ocular Injury. Ocul Immunol Inflamm 2021; 30:1149-1161. [PMID: 33734925 DOI: 10.1080/09273948.2020.1870148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aim: Chemical injuries can potentially lead to the necrosis anterior segment of the eye, and cornea in particular. Inflammatory cytokines are the first factors produced after chemical ocular injuries. Inflammation via promoting the angiogenesis factor tries to implement the wound healing mechanism in the epithelial and stromal layer of the cornea. Methods: Narrative review.Results: In our review, we described the patterns of chemical injuries in the cornea and their molecular mechanisms associated with the expression of inflammatory cytokines. Moreover, the effects of inflammation signals on angiogenesis factors and CNV were explained. Conclusion: The contribution of inflammation and angiogenesis causes de novo formation of blood vessels that is known as the corneal neovascularization (CNV). The new vascularity interrupts cornea clarity and visual acuity. Inflammation also depleted the Limbal stem cells (LSCs) in the limbus causing the failure of normal corneal epithelial healing and conjunctivalization of the cornea.
Collapse
Affiliation(s)
- Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Sabzevari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Farshad Yazdani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Spatial Distribution of Mast Cells Regulates Asymmetrical Angiogenesis at the Ocular Surface. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1108-1117. [PMID: 33705754 DOI: 10.1016/j.ajpath.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
Mast cells, historically known for their function as effector cells in the induction of allergic diseases, reside in all vascularized tissues of the body, particularly, in proximity to blood and lymphatic vessels. Despite being neighboring sentinel cells to blood vessels, whether the spatial distribution of mast cells regulates the degree of angiogenesis remains to be investigated. Herein, an asymmetrical distribution of mast cells was shown at the murine ocular surface, with the higher number of mast cells distributed along the nasal limbus of the cornea compared with the temporal side. Using a well-characterized murine model of suture-induced corneal neovascularization, insult to the nasal side was shown to result in more extensive angiogenesis compared with that to the temporal side. To directly assess the impact of the spatial distribution of mast cell on angiogenesis, neovascularization was induced in mast cell-deficient mice (cKitw-sh). Unlike the wild-type (C57BL/6) mice, cKitw-sh mice did not show disproportionate growth of corneal blood vessels following the temporal and nasal insult. Moreover, cromolyn-mediated pharmacologic blockade of mast cells at the ocular surface attenuated the asymmetrical nasal and temporal neovascularization, suggesting that spatial distribution of mast cells significantly contributes to angiogenic response at the ocular surface.
Collapse
|
27
|
Abstract
The cornea is a special interface between the internal ocular tissue and the external environment that provides a powerful chemical, physical, and biological barrier against the invasion of harmful substances and pathogenic microbes. This protective effect is determined by the unique anatomical structure and cellular composition of the cornea, especially its locally resident innate immune cells, such as Langerhans cells (LCs), mast cells (MCs), macrophages, γδ T lymphocytes, and innate lymphoid cells. Recent studies have demonstrated the importance of these immune cells in terms of producing different cytokines and other growth factors in corneal homeostasis and its pathologic conditions. This review paper briefly describes the latest information on these resident immune cells by specifically analyzing research from our laboratory.
Collapse
Affiliation(s)
- Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| |
Collapse
|
28
|
Flitter BA, Fang X, Matthay MA, Gronert K. The potential of lipid mediator networks as ocular surface therapeutics and biomarkers. Ocul Surf 2021; 19:104-114. [PMID: 32360792 PMCID: PMC7606340 DOI: 10.1016/j.jtos.2020.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/03/2023]
Abstract
In the last twenty years an impressive body of evidence in diverse inflammatory animal disease models and human tissues, has established polyunsaturated fatty acids (PUFA) derived specialized-pro-resolving mediators (SPM), as essential mediators for controlling acute inflammation, immune responses, wound healing and for resolving acute inflammation in many non-ocular tissues. SPM pathways and receptors are highly expressed in the ocular surface where they regulate wound healing, nerve regeneration, innate immunity and sex-specific regulation of auto-immune responses. Recent evidence indicates that in the eye these resident SPM networks are important for maintaining ocular surface health and immune homeostasis. Here, we will review and discuss evidence for SPMs and other PUFA-derived mediators as important endogenous regulators, biomarkers for ocular surface health and disease and their therapeutic potential.
Collapse
Affiliation(s)
- Becca A Flitter
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Xiaohui Fang
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Karsten Gronert
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA; Infectious Diseases and Immunity Program, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
29
|
Inomata T, Fujimoto K, Okumura Y, Zhu J, Fujio K, Shokirova H, Miura M, Okano M, Funaki T, Sung J, Negishi N, Murakami A. Novel immunotherapeutic effects of topically administered ripasudil (K-115) on corneal allograft survival. Sci Rep 2020; 10:19817. [PMID: 33188243 PMCID: PMC7666179 DOI: 10.1038/s41598-020-76882-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal allograft survival is mediated by the variety of immunological reactions and wound healing process. Our aim was to explore the effects of topical administration of ripasudil, a selective Rho-associated coiled-coil protein kinase inhibitor, on corneal allograft survival. Ripasudil was administered to mice thrice a day after allogeneic corneal transplantation. Corneal graft survival, opacity, neovascularization, re-epithelization, immune cell infiltration, and mRNA levels of angiogenic and pro-inflammatory factors in the grafted cornea and draining lymph nodes (dLNs) were evaluated with slit-lamp microscopy, immunohistochemistry, flow cytometry, and polymerase chain reaction. Graft survival was significantly prolonged with lower graft opacity and neovascularization scores in 0.4% and 2.0% ripasudil-treated groups, and mRNA levels of angiogenic and pro-inflammatory factors in ripasudil-treated grafted corneas were reduced. Moreover, 0.4% and 2.0% ripasudil reduced CD45+-infiltrated leukocyte frequency, Cd11b and Cd11c mRNA levels, and the frequencies of mature dendritic cells, IFNγ-, and IL-17- producing CD4+T cells in the dLNs of recipients. Re-epithelization rate of the grafted cornea was significantly higher in the 0.4% and 2.0% ripasudil groups than in the control. Topically applied ripasudil prolonged graft survival by downregulating neovascularization and inflammation factors, while promoting corneal re-epithelization, suggesting that ripasudil may be useful for suppressing immunological rejection in corneal transplantation.
Collapse
Affiliation(s)
- Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mikiko Okano
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshinari Funaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Naoko Negishi
- Atopy (Allergic) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Indoor Environment Neurophysiology Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Activation of ocular surface mast cells promotes corneal neovascularization. Ocul Surf 2020; 18:857-864. [PMID: 32916251 DOI: 10.1016/j.jtos.2020.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Mast cells, historically known for their effector function in the induction of allergic diseases, reside in all vascularized tissues of the body in particular proximity to blood and lymphatic vessels. As neighboring sentinel cells to blood vessels, mast cells have been associated with angiogenesis. Here we assess the direct contribution of mast cells to neovascularization at the ocular surface. METHODS Corneal neovascularization was induced by placing a single figure-of-eight intrastromal suture 1 mm from the limbus in mast cell-deficient (cKitW-sh), C57BL/6, and Balb/c mice. Corneas were harvested at 6 h post-suture to quantify cKit+FcεR1+ mast cells using flow cytometry and tear wash was collected within 6 h to measure β-hexosaminidase and tryptase. Neovascularization was assessed using slit-lamp biomicroscope and immunohistochemistry analysis of corneas harvested on day 4 post-suture. To investigate the effects of mast cells on blood vessel growth, mast cells were co-cultured with vascular endothelial cells (VECs), and tube formation and proliferation of VECs were measured. 2% cromolyn was administered locally to inhibit mast cell activation in vivo. RESULTS Placement of corneal suture activates ocular surface mast cells, which infiltrate into the cornea adjacent to new vessels. Mast cell-deficient mice develop significantly fewer new vessels following suture placement. Mast cells directly promote VEC proliferation and tube formation, partly through secreting high levels of VEGF-A. Pharmacological inhibition of mast cell activation results in significantly less corneal neovascularization. CONCLUSION Our data demonstrate that ocular surface mast cells are critical to corneal neovascularization, suggesting mast cells as a potential therapeutic target in the treatment of corneal neovascularization.
Collapse
|
31
|
Boumil EF, Castro N, Phillips AT, Chatterton JE, McCauley SM, Wolfson AD, Shmushkovich T, Ridilla M, Bernstein AM. USP10 Targeted Self-Deliverable siRNA to Prevent Scarring in the Cornea. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1029-1043. [PMID: 32829179 PMCID: PMC7452140 DOI: 10.1016/j.omtn.2020.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Ocular scarring after surgery, trauma, or infection leads to vision loss. The transparent cornea is an excellent model system to test anti-scarring therapies. Cholesterol-conjugated fully modified asymmetric small interfering RNAs (siRNAs) (self-deliverable siRNAs [sdRNAs]) are a novel modality for in vivo gene knockdown, transfecting cells and tissues without any additional formulations. Myofibroblasts are a main contributor to scarring and fibrosis. αv integrins play a central role in myofibroblast pathological adhesion, overcontraction, and transforming growth factor β (TGF-β) activation. Previously, we demonstrated that αv integrins are protected from intracellular degradation after wounding by upregulation of the deubiquitinase (DUB) ubiquitin-specific protease 10 (USP10), leading to integrin cell surface accumulation. In this study, we tested whether knockdown of USP10 with a USP10-targeting sdRNA (termed US09) will reduce scarring after wounding a rabbit cornea in vivo. The wounded corneal stroma was treated once with US09 or non-targeting control (NTC) sdRNA. At 6 weeks US09 treatment resulted in faster wound closure, limited scarring, and suppression of fibrotic markers and immune response. Specifically, fibronectin-extra domain A (EDA), collagen III, and a-smooth muscle actin (p < 0.05), CD45+ cell infiltration (p < 0.01), and apoptosis at 24 (p < 0.01) and 48 h (p < 0.05) were reduced post-wounding. Corneal thickness and cell proliferation were restored to unwounded parameters. Targeting the DUB, USP10 is a novel strategy to reduce scarring. This study indicates that ubiquitin-mediated pathways should be considered in the pathogenesis of fibrotic healing.
Collapse
Affiliation(s)
- Edward F Boumil
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Nileyma Castro
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andrew T Phillips
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | - Marc Ridilla
- Repair Biotechnologies, 841 East Fayette Street, Syracuse, NY 13210, USA
| | - Audrey M Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
32
|
Micera A, Jirsova K, Esposito G, Balzamino BO, Di Zazzo A, Bonini S. Mast Cells Populate the Corneoscleral Limbus: New Insights for Our Understanding of Limbal Microenvironment. Invest Ophthalmol Vis Sci 2020; 61:43. [PMID: 32207813 PMCID: PMC7401584 DOI: 10.1167/iovs.61.3.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Although stem cell activity represents a crucial feature in corneal and ocular surface homeostasis, other cells populating this region and the neighboring zones might participate and influence local microenvironment. Mast cells, the long-lived and tissue-sited immune cells, have been previously reported in corneoscleral specimens. Herein, mast cells were investigated in corneoscleral tissues and related to microenvironment protein expression. Methods Twenty-six (14 male/12 female; older than 60 years) human corneoscleral specimens were sectioned for light and fluorescent immunostaining (CD45, p63, Ck-3/7/12/19, tryptase/AA1, and chymase/CC1). Corneal, limbal, and conjunctival squares were produced for molecular and biochemical analysis. Statistical comparisons were carried out by ANOVA. Results Toluidine blue staining identified metachromatic intact or degranulated mast cells in the area below the palisades' Vogt (Ck-3/12-positive epithelium and underneath p63 immunoreactivity). Tryptase immunoreactivity was observed close to palisades' Vogt, whereas no specific signal was detected for chymase. Tryptase/AA1 transcripts were quantified in limbal and conjunctival RNA extracts, whereas no specific amplification was detected in corneal ones. Few mediators were overexpressed in limbal extracts with respect to corneal (Neural cell adhesion molecule (NCAM), Intercellular adhesion molecule 3 (ICAM3), Brain-derived Neurotrophic factor (BDNF), and neurotrophin 3 (NT3); P < 0.00083) and conjunctival (NCAM, ICAM3, and NT3; P < 0.05) protein extracts. A trend to an increase was observed for Nerve Growth Factor (NGF) in limbal extracts (P > 0.05). Conclusions The specific observation of tryptase phenotype and the interesting protein signature of microenvironment (adhesion molecules, growth factors, and neurotrophins), known to partake mast cell behavior, at least in other areas, would provide additional information to better understand this crucial zone in the framework of ocular surface healthiness.
Collapse
|
33
|
Epithelium-derived IL-33 activates mast cells to initiate neutrophil recruitment following corneal injury. Ocul Surf 2020; 18:633-640. [PMID: 32615259 DOI: 10.1016/j.jtos.2020.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Neutrophils play a critical role in defending against threats such as microbial infection, yet their activation during innate immune response incites collateral damage to healthy tissues. We have previously shown that corneal injury induces mast cells to express the neutrophil chemoattractant CXCL2. Here we delineate the mechanism of injury-induced, non-IgE-mediated mast cell activation at the ocular surface. METHODS Corneal injury was induced by mechanical removal of the epithelium and anterior stroma in mast cell deficient (cKitW-sh) and C57BL/6 mice using Algerbrush II. Corneas were analyzed for frequencies of total CD45+ inflammatory cells, CD11b+Ly6G+ neutrophils, and cKit+FcεR1+ mast cells using flow cytometry. Mast cells were stimulated with different inflammatory factors known to increase during corneal injury (IL-33, IL-1β, IL-36γ, IL-6, SDF1α and Substance P) and assessed for the secretion of β-hexosaminidase, tryptase and CXCL2 using ELISA. IL-33 neutralizing antibody (1 mg/ml) was administered locally for mast cell inhibition in vivo. RESULTS Mast cell deficient mice failed to recruit early neutrophils to the injured corneas. IL-33 stimulation upregulated CXCL2 secretion by mast cells. Corneal injury resulted in amplified expression of IL-33 at the cornea and epithelium was identified as its primary source. Topical neutralization of IL-33 at the ocular surface inhibited mast cell activation, limited neutrophil infiltration, and reduced corneal inflammatory haze, normalizing tissue architecture following ocular injury. CONCLUSIONS These data implicate IL-33 in mast cell activation and early neutrophil recruitment in non-allergic inflammation, suggesting IL-33 as a potential therapeutic target in inflammatory disorders of the ocular surface.
Collapse
|
34
|
Bosmans G, Appeltans I, Stakenborg N, Gomez‐Pinilla PJ, Florens MV, Aguilera‐Lizarraga J, Matteoli G, Boeckxstaens GE. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. Allergy 2019; 74:1748-1759. [PMID: 30897213 PMCID: PMC6790670 DOI: 10.1111/all.13790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
Background The vagus nerve has emerged as an important modulator of the intestinal immune system. Its anti‐inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy. Methods Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA‐specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis. Results When compared to control mice, VGX did not significantly affect the development and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages. Conclusions These results underscore the anti‐inflammatory properties of the vagus nerve and the potential of neuro‐immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic approaches in the treatment of not only food allergy but also other immune‐mediated diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Iris Appeltans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Pedro J. Gomez‐Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Morgane V. Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Javier Aguilera‐Lizarraga
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Guy E. Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| |
Collapse
|
35
|
Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, Chauhan SK. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul Surf 2019; 17:729-736. [PMID: 31279065 DOI: 10.1016/j.jtos.2019.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Corneal injuries are associated with significant impairment in vision. Mesenchymal stem cells (MSCs) have been shown to limit inflammation and promote tissue repair at the ocular surface. Here, we evaluate the efficacies of different modes of MSC delivery (topical, subconjunctival, intraperitoneal [IP] and intravenous [IV]) to promote tissue repair and restore corneal transparency in a murine model of corneal injury. METHODS MSCs were purified from the bone marrow of C57BL/6 mice and expanded using plastic adherence in vitro. Corneal injury was created using an Algerbrush, and 0.5 × 106 MSCs/mouse were administered via topical, subconjunctival, IP or IV routes. Qdot-labeled MSCs were employed to determine the effect of route of administration on corneal and conjunctival MSC frequencies. Corneal opacity scores were calculated using ImageJ. Expression of inflammatory cytokines was quantified by qPCR, and infiltration of CD45+ cells was evaluated by flow cytometry. RESULTS Subconjunctival or IV administration results in increased frequencies of MSCs in ocular surface tissues following corneal injury, relative to topical or intraperitoneal delivery. Subconjunctival or IV administration reduces: (i) corneal opacity, (ii) tissue fibrosis as quantified by α-Sma expression, (iii) the expression of inflammatory cytokines (Il-1β and Tnf-α) and (iv) CD45+ inflammatory cell infiltration relative to untreated injured control animals. Administration via subconjunctival or IV routes was observed to accelerate corneal repair by restoring tissue architecture and epithelial integrity. CONCLUSIONS Our data suggest that subconjunctival or IV delivery of MSCs has superior therapeutic efficacy compared to topical or IP delivery following corneal injury.
Collapse
Affiliation(s)
- Sachin Shukla
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Center for Ocular Regeneration, L. V. Prasad Eye Institute, Hyderabad, India
| | - Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Institute of Ophthalmology, University College London, London, UK
| | - Elsayed Elbasiony
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Disha Singhania
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Srikant K Sahu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; L.V. Prasad Eye Institute, Bhubaneswar, Odisha, India.
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Mast cells: A key component in the pathogenesis of Neuromyelitis Optica Spectrum Disorder? Immunobiology 2019; 224:706-709. [PMID: 31221437 DOI: 10.1016/j.imbio.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is characterized as an autoimmune, inflammatory and demyelinating disease of the Central Nervous System (CNS). Its pathogenesis is due to the presence of anti-aquaporin 4 immunoglobulin G1 antibodies (anti-AQP4IgG), with presence of lymphocytes T Helper 1 and 17 (TH1 and TH17), in addition to previous neuroinflammation. The Mast cell (MC) is a granular cell present in all vascularized tissues, close to vessels, nerves, and meninges. In CNS, MCs are in the area postrema, choroid plexus, thalamus and hypothalamus. MC has ability to transmigrate between the nervous tissue and the lymphoid organs, interacting with the cells of both systems. These cells reach the CNS during development through vessel migration. Most MCs reside on the abluminal side of the vessels, where it can communicate with neurons, glial cells, endothelial cells and the extracellular matrix. Considering the role of MCs in neurodegenerative diseases has been extensively discussed, we hypothesized MCs participate in the pathogenesis of NMOSD. This cell represents an innate and adaptive immune response regulator, capable of faster responses than microglial cells. The study of MCs in NMOSD can help to elucidate the pathogenesis of this disease and guide new research for the treatment of patients in the future. We believe this cell is an important component in the cascade of NMOSD neuroinflammation.
Collapse
|
37
|
Li M, Mittal SK, Foulsham W, Amouzegar A, Sahu SK, Chauhan SK. Mast cells contribute to the induction of ocular mucosal alloimmunity. Am J Transplant 2019; 19:662-673. [PMID: 30129280 PMCID: PMC7941346 DOI: 10.1111/ajt.15084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 01/25/2023]
Abstract
Beyond their historical role as the effector cells in allergic disorders, mast cells have been implicated in regulating both innate and adaptive immune responses. Possessing considerable functional plasticity, mast cells are abundant at mucosal surfaces, where the host and external environments interface. The purpose of this study was to evaluate the contribution of mast cells to allograft rejection at the ocular surface. Using a well-characterized murine model of corneal transplantation, we report that mast cells promote allosensitization. Our data show mast cell frequencies and activation are increased following transplantation. We demonstrate that mast cell inhibition (a) limits the infiltration of inflammatory cells and APC maturation at the graft site; (b) reduces allosensitization and the generation of Th1 cells in draining lymphoid tissues; (c) decreases graft infiltration of alloimmune-inflammatory cells; and (d) prolongs allograft survival. Our data demonstrate a novel function of mast cells in promoting allosensitization at the ocular surface.
Collapse
Affiliation(s)
- Mingshun Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA,Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Sharad K. Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Srikant K. Sahu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA,L.V. Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Sunil K. Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|