1
|
Zhang ZH, Wu TY, Ju C, Zuo XS, Wang XK, Ma YG, Luo L, Zhu ZJ, Song ZW, Yao Z, Zhou J, Wang Z, Hu XY. Photobiomodulation Increases M2-Type Polarization of Macrophages by Inhibiting Versican Production After Spinal Cord Injury. Mol Neurobiol 2024; 61:6950-6967. [PMID: 38363534 DOI: 10.1007/s12035-024-03980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- General Hospital of Northern Theater Command, Shenyang, 110000, Liaoning Province, China
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ting-Yu Wu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao-Shuang Zuo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xuan-Kang Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yang-Guang Ma
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Jie Zhu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Wen Song
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Xue-Yu Hu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
2
|
Matczyńska E, Szymańczak R, Stradomska K, Łyszkiewicz P, Jędrzejowska M, Kamińska K, Beć-Gajowniczek M, Suchecka E, Zagulski M, Wiącek M, Wylęgała E, Machalińska A, Mossakowska M, Puzianowska-Kuźnicka M, Teper S, Boguszewska-Chachulska A. Whole-Exome Analysis for Polish Caucasian Patients with Retinal Dystrophies and the Creation of a Reference Genomic Database for the Polish Population. Genes (Basel) 2024; 15:1011. [PMID: 39202371 PMCID: PMC11353931 DOI: 10.3390/genes15081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
We present the results of the first study of a large cohort of patients with inherited retinal dystrophies (IRD) performed for the Polish population using whole-exome sequencing (WES) in the years 2016-2019. Moreover, to facilitate such diagnostic analyses and enable future application of gene therapy and genome editing for IRD patients, a Polish genomic reference database (POLGENOM) was created based on whole-genome sequences of healthy Polish Caucasian nonagenarians and centenarians. The newly constructed database served as a control, providing a comparison for variant frequencies in the Polish population. The diagnostic yield for the selected group of IRD patients reached 64.9%. The study uncovered the most common pathogenic variants in ABCA4 and USH2A in the European population, along with several novel causative variants. A significant frequency of the ABCA4 complex haplotype p.(Leu541Pro; Ala1038Val) was observed, as well as that of the p.Gly1961Glu variant. The first VCAN causative variant NM_004385.5:c.4004-2A>G in Poland was found and described. Moreover, one of the first patients with the RPE65 causative variants was identified, and, in consequence, could receive the dedicated gene therapy. The availability of the reference POLGENOM database enabled comprehensive variant characterisation during the NGS data analysis, confirming the utility of a population-specific genomic database for enhancing diagnostic accuracy. Study findings suggest the significance of genetic testing in elder patients with unclear aetiology of eye diseases. The combined approach of NGS and the reference genomic database can improve the diagnosis, management, and future treatment of IRDs.
Collapse
Affiliation(s)
- Ewa Matczyńska
- Genomed S.A., 02-971 Warsaw, Poland
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | | | | | | | | | | - Marta Wiącek
- First Department of Ophthalmology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Małgorzata Mossakowska
- Study on Ageing and Longevity, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Scientific Research, Branch in Bielsko-Biala, Medical University of Silesia, 43-300 Bielsko-Biała, Poland
| | | |
Collapse
|
3
|
Govers BM, van Huet RAC, Roosing S, Keijser S, Los LI, den Hollander AI, Klevering BJ. The genetics and disease mechanisms of rhegmatogenous retinal detachment. Prog Retin Eye Res 2023; 97:101158. [PMID: 36621380 DOI: 10.1016/j.preteyeres.2022.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.
Collapse
Affiliation(s)
- Birgit M Govers
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Keijser
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonoor I Los
- Department of Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA
| | - B Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Joynt AT, Kavanagh EW, Newby GA, Mitchell S, Eastman AC, Paul KC, Bowling AD, Osorio DL, Merlo CA, Patel SU, Raraigh KS, Liu DR, Sharma N, Cutting GR. Protospacer modification improves base editing of a canonical splice site variant and recovery of CFTR function in human airway epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:335-350. [PMID: 37547293 PMCID: PMC10400809 DOI: 10.1016/j.omtn.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Canonical splice site variants affecting the 5' GT and 3' AG nucleotides of introns result in severe missplicing and account for about 10% of disease-causing genomic alterations. Treatment of such variants has proven challenging due to the unstable mRNA or protein isoforms that typically result from disruption of these sites. Here, we investigate CRISPR-Cas9-mediated adenine base editing for such variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We validate a CFTR expression minigene (EMG) system for testing base editing designs for two different targets. We then use the EMG system to test non-standard single-guide RNAs with either shortened or lengthened protospacers to correct the most common cystic fibrosis-causing variant in individuals of African descent (c.2988+1G>A). Varying the spacer region length allowed placement of the editing window in a more efficient context and enabled use of alternate protospacer adjacent motifs. Using these modifications, we restored clinically significant levels of CFTR function to human airway epithelial cells from two donors bearing the c.2988+1G>A variant.
Collapse
Affiliation(s)
- Anya T. Joynt
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Erin W. Kavanagh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shakela Mitchell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Alice C. Eastman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Kathleen C. Paul
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Alyssa D. Bowling
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Derek L. Osorio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Christian A. Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Shivani U. Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Karen S. Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Neeraj Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Wight TN, Day AJ, Kang I, Harten IA, Kaber G, Briggs DC, Braun KR, Lemire JM, Kinsella MG, Hinek A, Merrilees MJ. V3: an enigmatic isoform of the proteoglycan versican. Am J Physiol Cell Physiol 2023; 325:C519-C537. [PMID: 37399500 PMCID: PMC10511178 DOI: 10.1152/ajpcell.00059.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Joan M Lemire
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mervyn J Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Parra MM, Spoth E, Ronquillo CC, Henderson R, Hartnett ME. Multimodal Retinal Imaging Findings in Two Cousins With VCAN-Related Vitreoretinopathy or Wagner Disease. Ophthalmic Surg Lasers Imaging Retina 2022; 53:639-643. [PMID: 36378611 DOI: 10.3928/23258160-20221026-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wagner disease is a rare, nonsyndromic vitreoretinopathy caused by autosomal dominant variants in the versican (VCAN) gene. It is associated with abnormalities of the vitreoretinal interface that can lead to peripheral traction and retinal detachments, which also occur in other vitreoretinopathies such as X-linked retinoschisis (XLRS), familial exudative vitreoretinopathy (FEVR) and Stickler syndrome. There is variability in the clinical phenotype in Wagner disease potentially due to variants in VCAN gene variants. In this article, we report a family harboring the VCAN c.9265+1G>C variant and describe the clinical and retinal findings in two members. [Ophthalmic Surg Lasers Imaging Retina 2022;53:639-643.].
Collapse
|
7
|
Ayagama T, Bose SJ, Capel RA, Priestman DA, Berridge G, Fischer R, Galione A, Platt FM, Kramer H, Burton RA. A modified density gradient proteomic-based method to analyze endolysosomal proteins in cardiac tissue. iScience 2021; 24:102949. [PMID: 34466782 PMCID: PMC8384914 DOI: 10.1016/j.isci.2021.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
The importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.3 g/mL); and EL with negligible contamination from SR or Mito (1.04 g/mL) were analyzed using Western blot, enzyme activity assay, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis (adapted discontinuous Percoll and sucrose differential density gradient). Kyoto Encyclopedia of Genes and Genomes, Reactome, Panther, and Gene Ontology pathway analysis showed good coverage of RAB proteins and lysosomal cathepsins (including cardiac-specific cathepsin D) in the purified EL fraction. Significant EL proteins recovered included catalytic activity proteins. We thus present a comprehensive protocol and data set of guinea pig atrial EL organelle proteomics using techniques also applicable for non-cardiac tissue.
Collapse
Affiliation(s)
- Thamali Ayagama
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Samuel J. Bose
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Rebecca A. Capel
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | | | - Georgina Berridge
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Antony Galione
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Frances M. Platt
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN UK
| | | |
Collapse
|
8
|
Li JX, He JJ, Elsheikha HM, Ma J, Xu XP, Zhu XQ. ROP18-Mediated Transcriptional Reprogramming of HEK293T Cell Reveals New Roles of ROP18 in the Interplay Between Toxoplasma gondii and the Host Cell. Front Cell Infect Microbiol 2020; 10:586946. [PMID: 33330132 PMCID: PMC7734210 DOI: 10.3389/fcimb.2020.586946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions of ROP18, we examined the transcriptional response of human embryonic kidney cells (HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway enrichment analyses showed that differentially expressed genes (DEGs) were significantly enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG pathway enrichment analysis revealed that DEGs were involved in several disease-related pathways, such as nervous system diseases and eye disease. ROP18 significantly increased the alternative splicing pattern “retained intron” and altered the expression of 144 transcription factors (TFs). These results provide new insight into how ROP18 may influence biological processes in the host cells via altering the expression of genes, TFs, and pathways. More in vitro and in vivo studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Pei Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
9
|
Velez G, Mahajan VB. Molecular Surgery: Proteomics of a Rare Genetic Disease Gives Insight into Common Causes of Blindness. iScience 2020; 23:101667. [PMID: 33134897 PMCID: PMC7586135 DOI: 10.1016/j.isci.2020.101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rare diseases are an emerging global health priority. Although individually rare, the prevalence of rare "orphan" diseases is high, affecting approximately 300 million people worldwide. Treatments for these conditions are often inadequate, leaving the disease to progress unabated. Here, we review the clinical features and pathophysiology of neovascular inflammatory vitreoretinopathy (NIV), a rare inflammatory retinal disease caused by mutations in the CAPN5 gene. Although the prevalence of NIV is low (1 in 1,000,000 people), the disease mimics more common causes of blindness (e.g. uveitis, retinitis pigmentosa, proliferative diabetic retinopathy, and proliferative vitreoretinopathy) at distinct clinical stages. There is no cure for NIV to date. We highlight how personalized proteomics helped identify potential stage-specific biomarkers and drug targets in liquid vitreous biopsies. The NIV vitreous proteome revealed enrichment of molecular pathways associated with common retinal pathologies and implicated superior targets for therapeutic drug repositioning. In addition, we review our pipeline for collecting, storing, and analyzing ophthalmic surgical samples. This approach can be adapted to treat a variety of rare genetic diseases.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
10
|
Identification of Novel Copy Number Variations of VCAN Gene in Three Chinese Families with Wagner Disease. Genes (Basel) 2020; 11:genes11090992. [PMID: 32854301 PMCID: PMC7564609 DOI: 10.3390/genes11090992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
The VCAN/versican gene encodes an important component of the extracellular matrix, the chondroitin sulfate proteoglycan 2 (CSPG2/versican). Heterozygous variants targeting exon 8 of VCAN have been shown to cause Wagner disease, a rare autosomal dominant non-syndromic vitreoretinopathy that induces retinal detachment, cataracts and permanent visual loss. In this study, we report on six patients from three unrelated families with Wagner disease in whom we identified three novel copy number variations of VCAN. Quantitative real-time polymerase chain reaction analysis identified deletions, including one exon–intron boundary of exon 8 or both exons 8 and 9, causing the haploinsufficiency of VCAN mRNAs.
Collapse
|
11
|
Li H, Li H, Yang L, Sun Z, Wu S, Sui R. Clinical and genetic study on two Chinese families with Wagner vitreoretinopathy. Ophthalmic Genet 2020; 41:432-439. [PMID: 32623950 DOI: 10.1080/13816810.2020.1786843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Wagner vitreoretinopathy (WVR) is a rare non-syndromic autosomal dominant inherited vitreoretinopathy. We studied the phenotypes of two Chinese families with WVR and identified the pathogenic variants. MATERIALS AND METHODS Four affected individuals were involved in this study. Three of them underwent detailed ophthalmic examinations, including best-corrected visual acuity (BCVA), dilated ophthalmoscopy, optical coherence tomography (OCT), visual field testing, and electroretinograms (ERG). The DNA sample of the proband was sequenced using our customized capture panel, which includes 338 retinal disease genes. Sanger sequencing was performed for validation and segregation. RESULTS Affected subjects manifested typical WVR features, including an optically empty vitreous with vitreoretinal membranes and veils, chorioretinal atrophy, and presenile cataracts. One patient was complicated with retinal detachment. BCVA ranged from light perception to 20/33. Reduced retinal thickness, loss, or discontinuation of ellipsoid and interdigitation zone were shown by OCT. Visual field testing displayed various degrees of peripheral vision loss. ERG recorded moderate to severe decline of both rod and cone responses. Next generation sequencing (NGS) combined with segregation test revealed two splice-site pathogenic variants (c.9265 + 2 T > A and c.4004-1 G > T) in VCAN gene. CONCLUSIONS Clinical manifestations are highly variable among WVR patients. Retinal detachment is common in WVR and the most vision-threatening complication. Next generation sequencing is a useful tool in precise diagnosis of this spectrum of diseases with highly heterogeneous or overlapped phenotypes.
Collapse
Affiliation(s)
- Huajin Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China.,Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University , Fuzhou, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| |
Collapse
|
12
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
13
|
Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res 2020; 79:100847. [PMID: 32151758 DOI: 10.1016/j.preteyeres.2020.100847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Macromolecules comprise only 2% of vitreous, yet are responsible for its gel state, transparency, and physiologic function(s) within the eye. Myopia and aging alter collagen and hyaluronan association causing concurrent gel liquefaction and fibrous degeneration. The resulting vitreous opacities and collapse of the vitreous body during posterior vitreous detachment are the most common causes for the visual phenomenon of vitreous floaters. Previously considered innocuous, the vitreous opacities that cause floaters sometimes impact vision by profoundly degrading contrast sensitivity function and impairing quality-of-life. While many people adapt to vitreous floaters, clinically significant cases can be diagnosed with Vision Degrading Myodesopsia based upon echographic assessment of vitreous structure and by measuring contrast sensitivity function. Perhaps due to the ubiquity of floaters, the medical profession has to date largely ignored the plight of those with Vision Degrading Myodesopsia. Improved diagnostics will enable better disease staging and more accurate identification of severe cases that merit therapy. YAG laser treatments may occasionally be slightly effective, but vitrectomy is currently the definitive cure. Future developments will usher in more informative diagnostic approaches as well as safer and more effective therapeutic strategies. Improved laser treatments, new pharmacotherapies, and possibly non-invasive optical corrections are exciting new approaches to pursue. Ultimately, enhanced understanding of the underlying pathogenesis of Vision Degrading Myodesopsia should result in prevention, the ultimate goal of modern Medicine.
Collapse
Affiliation(s)
- J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Proteomic insight into the pathogenesis of CAPN5-vitreoretinopathy. Sci Rep 2019; 9:7608. [PMID: 31110225 PMCID: PMC6527583 DOI: 10.1038/s41598-019-44031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
CAPN5 Neovascular Inflammatory Vitreoretinopathy (CAPN5-NIV; OMIM 193235) is a poorly-understood rare, progressive inflammatory intraocular disease with limited therapeutic options. To profile disease effector proteins in CAPN5-NIV patient vitreous, liquid vitreous biopsies were collected from two groups: eyes from control subjects (n = 4) with idiopathic macular holes (IMH) and eyes from test subjects (n = 12) with different stages of CAPN5-NIV. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein expression changes were evaluated by principal component analysis, 1-way ANOVA (significant p-value < 0.05), hierarchical clustering, gene ontology, and pathway representation. There were 216 differentially-expressed proteins (between CAPN5-NIV and control vitreous), including those unique to and abundant in each clinical stage. Gene ontology analysis revealed decreased synaptic signaling proteins in CAPN5-NIV vitreous compared to controls. Pathway analysis revealed that inflammatory mediators of the acute phase response and the complement cascade were highly-represented. The CAPN5-NIV vitreous proteome displayed characteristic enrichment of proteins and pathways previously-associated with non-infectious posterior uveitis, rhegmatogenous retinal detachment (RRD), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR). This study expands our knowledge of affected molecular pathways in CAPN5-NIV using unbiased, shotgun proteomic analysis rather than targeted detection platforms. The high-levels and representation of acute phase response proteins suggests a functional role for the innate immune system in CAPN5-NIV pathogenesis.
Collapse
|