1
|
Mitroo D, Das DN, Hamilton PD, Kumfer BM, Ravi N. Combustion conditions influence toxicity of flame-generated soot to ocular (ARPE-19) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123307. [PMID: 38190877 DOI: 10.1016/j.envpol.2024.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Soot is a prevalent aerosol found both indoors and outdoors that has several sources, such as natural (e.g., wildfires), civilian (e.g., cooking), or military (e.g., burn pit operation). Additionally, within the sources, factors that influence the physicochemical properties of the soot include combustion temperature, oxygen availability, and fuel type. Being able to reproduce soot in the laboratory and systematically assess its toxicity is important in the pursuit of elucidating pathologies associated with its exposure. Of the organs of interest, we targeted the eye given the scant attention received. Yet, air pollution constituents such as soot have been linked to diseases such as age-related macular degeneration and proliferative vitreoretinopathy. We developed a bench-scale system to synthesize different types of soot, that is, soot with a systematically varied physical attributes or chemical composition. We used common analytical techniques to probe such properties, and used statistical analyses to correlate them with toxicity in vitro using ARPE-19 cells. Within the range of flame conditions studied, we find that soot toxicity increases with increasing oxygen concentration in fuel-rich premixed flames, and weakly increases with decreasing flame temperature. Additionally, soot particles produced in premixed flames are generally smaller in size, exhibit a lesser fractal structure, and are considerably more toxic to ARPE-19 cells than soot particles produced in non-premixed flames.
Collapse
Affiliation(s)
- Dhruv Mitroo
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Durgesh N Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA
| | - Paul D Hamilton
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Benjamin M Kumfer
- Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nathan Ravi
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA; Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA; Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Jiao J, Liu L, Xiao K, Liu Q, Long Q. Atmospheric pollutant black carbon induces ocular surface damage in mice. Exp Eye Res 2024; 239:109755. [PMID: 38128749 DOI: 10.1016/j.exer.2023.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The threats of air pollution to human health have been gradually discovered, including its effects on eyes. The purpose of the study is to investigate the potential correlation between ocular surface exposure to black carbon and ocular surface structural damage as well as tear film dysfunction. To achieve this goal, 60 6-8-week-aged male BALB/C mice were randomly divided into 4 groups (n = 15). 0.5 mg/ml (group A), 1 mg/ml (group B), 5 mg/ml (group C) black carbon suspension droplets and PBS solution (group D) were used in the right eyes, 4 μl per time of three times per day. Tear break-up time, corneal fluorescein staining scores, and tear volume were assessed before treatment (day 0) and on days 4, 7, 10, and 14 after treatment. On day 14, the mice were sacrificed, and corneal and conjunctival tissues were collected for histological analysis. As the exposure time increased, there were no significant changes in the measured parameters from PBS-treated group of mice (P > 0.05). However, in the black carbon-treated group, there were significant decreases in tear film break-up time, significant increases in corneal fluorescein staining scores, and significant reductions in tear secretion (all P < 0.05). After 14 days, H&E staining of the corneal epithelium showed that in the PBS-treated group of mice, the corneal epithelial cells were neatly arranged, with no inflammatory cell infiltration, while in the black carbon-treated group, the corneal epithelium was significantly thickened, the basal cell arrangement was disrupted, the number of cell layers increased, and there was evidence of inflammatory cell infiltration. In the ultrastructure of the corneal epithelium, it could be observed that the black carbon-treated group had an increased amount of corneal epithelial cell detachment compared to the PBS-treated group, at the same time, the intercellular connections were looser, and there was a decrease in the number of microvilli and desmosomes in the black carbon-treated group. The results indicate that the ocular surface exposure to black carbon can result in a decrease in tear film stability and tear secretion in mice. Moreover, it can induce alterations in the corneal structure.
Collapse
Affiliation(s)
- Jingyi Jiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Lin Liu
- State Key Laboratory of Environmental Chemistry & Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry & Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
3
|
Patel S, Mittal R, Kumar N, Galor A. The environment and dry eye-manifestations, mechanisms, and more. FRONTIERS IN TOXICOLOGY 2023; 5:1173683. [PMID: 37681211 PMCID: PMC10482047 DOI: 10.3389/ftox.2023.1173683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial condition that often presents with chronic symptoms of pain (that can be characterized as "dryness," "burning," and "irritation," to name a few) and/or fluctuating or poor-quality vision. Given its multifactorial nature, several pathophysiologic mechanisms have been identified that can underlie symptoms, including tear film, ocular surface, and/or corneal somatosensory nerve abnormalities. Research has focused on understanding how environmental exposures can increase the risk for DED flares and negatively impact the tear film, the ocular surface, and/or nerve health. Given that DED is a common condition that negatively impacts physical and mental functioning, managing DED requires multiple strategies. These can include both medical approaches and modulating adverse environmental conditions, the latter of which may be a cost-effective way to avoid DED flares. Thus, an understanding of how environmental exposures relate to disease is important. This Review summarizes research on the relationships between environmental exposures and DED, in the hope that this information will engage healthcare professionals and patients to consider environmental manipulations in their management of DED.
Collapse
Affiliation(s)
- Sneh Patel
- Division of Physical Medicine and Rehabilitation, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Rhiya Mittal
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami, Miami, FL, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
- Ophthalmology and Research Services, Miami VA Medical Center, Miami, FL, United States
| |
Collapse
|
4
|
Jing D, Jiang X, Zhou P, Ren X, Su J, Hao R, Zhang M, Wan Y, Li X. Evidence of air pollution-related ocular signs and altered inflammatory cytokine profile of the ocular surface in Beijing. Sci Rep 2022; 12:18359. [PMID: 36319699 PMCID: PMC9626484 DOI: 10.1038/s41598-022-23294-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022] Open
Abstract
We evaluated how different degrees of air pollution affect the ocular surface of a cohort of human subjects in Beijing by correlating in-patient test outcomes with tear cytokines. A cross-sectional study involving 221 volunteers was carried out in different districts of Beijing. Air pollution indices were recorded for 7 d (including the visit day). The indices recorded were the air quality index (AQI), which is a dimensionless measure that quantitatively describes the state of air quality, concentrations of particulate matter smaller than 2.5 μm (PM2.5) and 10 μm (PM10), sulfur dioxide (SO2), ozone (O3), and nitrogen dioxide (NO2). The Ocular Symptom Disease Index (OSDI) questionnaire provided. Subsequently, subjects underwent slit-lamp examination, which included meibomian gland examination, conjunctival congestion score, conjunctivochalasis grade, tear meniscus height (TMH), tear breakup time (TBUT), corneal fluorescein staining (CFS), Schirmer I test, and conjunctival impression cytology. The concentrations of vascular endothelial growth factor (VEGF), interleukins (IL)-1β, IL-6 and IL-8 in tears were measured by microsphere-based immunoassay analysis. According to the value of the AQI, participants are divided into a slightly polluted (SP) group (n = 103) which the AQI value is less than or equal to 100 and a heavily polluted (HP) group (n = 118) whose AQI value is more than 100. Air pollution is related to ocular discomfort based on tear cytokine concentrations. PM2.5, PM10 and NO2 were positively correlated with OSDI, MG expressibility, meibum score, meiboscore, conjunctival congestion score, Schirmer I test value, TMH, goblet-cell density, concentrations of IL-6, and VEGF were negatively correlated with TBUT. PM2.5 and PM10 appear to be the major risk factors to the ocular surface, with NO2 being another important risk factor based on this study. The symptoms and signs of eye discomfort in the SP group were significantly less severe than those in the HP group, and tear cytokine concentrations (IL-6 and VEGF) were lower. Air pollution degrees were significantly correlated with tear cytokine concentrations, indicating an alteration of cytokine balance at the ocular surface under different degrees of air pollution.
Collapse
Affiliation(s)
- Dalan Jing
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Xiaodan Jiang
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Peng Zhou
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Xiaotong Ren
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Jie Su
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Ran Hao
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Mingzhong Zhang
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Yu Wan
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| | - Xuemin Li
- grid.411642.40000 0004 0605 3760Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191 People’s Republic of China
| |
Collapse
|
5
|
Li X, Kang B, Eom Y, Zhong J, Lee HK, Kim HM, Song JS. SIRT1 Protects Against Particulate Matter-Induced Oxidative Stress in Human Corneal and Conjunctival Epithelial Cells. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 36169947 PMCID: PMC9526373 DOI: 10.1167/iovs.63.10.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Sirtuin1 (SIRT1) as a hot therapeutic target for oxidative stress-associated diseases that has been extensively studied. This study aimed to determine the changes in SIRT1 expression in particulate matter (PM)-induced corneal and conjunctival epithelial cell damage and explore potential drugs to reduce PM-associated ocular surface injury. Methods Immortalized human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs) were exposed to an ambient PM sample. Cytotoxicity was evaluated by water-soluble tetrazolium salt-8 assay. SIRT1 expression was measured by Western blot analysis. Reactive oxygen species (ROS) production, cell apoptosis, mitochondrial function, and cell senescence were assessed by using 2',7'-dichlorofluorescein diacetate assay, annexin V apoptosis assay, tetramethylrhodamine ethyl ester assay, and senescence β-galactosidase staining, respectively. Results PM-induced cytotoxicity of HCECs and HCjECs occurred in a dose-dependent manner. Increased ROS production, as well as decreased SIRT1 expression, were observed in HCECs and HCjECs after 200 µg/mL PM exposure. In addition, PM induced oxidative stress-mediated cellular damage, including cell apoptosis, mitochondrial damage, and cell senescence. Interestingly, SRT1720, a SIRT1 activator, increased SIRT1 expression and decreased ROS production and attenuated PM-induced cell damage in HCECs and HCjECs. Conclusions This study determined that SIRT1 was involved in PM-induced oxidative stress in HCECs and HCjECs and found that ROS overproduction may a key factor in PM-induced SIRT1 downregulation. The SIRT1 activator, SRT1720, can effectively upregulate SIRT1 expression and inhibit ROS production, thereby reversing PM-induced cell damage. This study provides a new potential target for clinical treatment of PM-associated ocular surface diseases.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Boram Kang
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jingxiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Ophthalmology, Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Mohamed HB, Abd El-Hamid BN, Fathalla D, Fouad EA. Current trends in pharmaceutical treatment of Dry Eye Disease: A review. Eur J Pharm Sci 2022; 175:106206. [PMID: 35568107 DOI: 10.1016/j.ejps.2022.106206] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023]
Abstract
Dry eye disease (DED), keratoconjunctivitis sicca or dysfunctional tear syndrome, is the most prevalent ophthalmic disease which affects a substantial segment of people worldwide with increasing frequency. It is considered a multifactorial disease of the ocular surface and tear film, characterized by a variation of signs and symptoms. The symptoms range from mild to severe itching, burning, irritation, eye fatigue, and ocular inflammation that may lead to potential damage to the cornea, conjunctiva and even vision loss. Correspondingly, depending on the different manifestations and pathophysiology, the treatment must be tailored specifically to each patient by targeting the specific mechanisms implicated in their disease. Currently, there are several medical products and techniques available or under investigation for the treatment of DED. The present article focused on the pathophysiology of DED, the new diagnostic approach and the recently developed drug delivery systems or devices reducing the progress of the disease and treating the causes.
Collapse
Affiliation(s)
- Hebatallah B Mohamed
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt.
| | - Basma N Abd El-Hamid
- Department of Pharmaceutics Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Dina Fathalla
- Department of Pharmaceutics Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Ehab A Fouad
- Department of Pharmaceutics Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
7
|
Li X, Kang B, Eom Y, Zhong J, Lee HK, Kim HM, Song JS. Comparison of cytotoxicity effects induced by four different types of nanoparticles in human corneal and conjunctival epithelial cells. Sci Rep 2022; 12:155. [PMID: 34997120 PMCID: PMC8742118 DOI: 10.1038/s41598-021-04199-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of particulate matter (PM) on ocular surface health has attracted increased attention in recent years. Previous studies have reported that differences in the chemical composition of PM can affect the toxicological response. However, available information on the toxic effects of chemical components of PM on the ocular surface is insufficient. In this paper, we aimed to investigate the toxicity effects of chemical components of PM on the ocular surface, focusing on the effects of four different types of nanoparticles (NPs) in human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs), which include titanium dioxide (TiO2), carbon black (CB), zinc dioxide (ZnO), and silicon dioxide (SiO2). We found that the in vitro cytotoxic effects of CB, ZnO, and SiO2 NPs are dependent on particle properties and cell type as well as the exposure concentration and time. Here, the order of increasing toxicity was SiO2 → CB → ZnO, while TiO2 demonstrated no toxicity. Moreover, toxic effects appearing more severe in HCECs than HCjECs. Reactive oxygen species (ROS)-mediated oxidative stress plays a key role in the toxicity of these three NPs in HCECs and HCjECs, leading to apoptosis and mitochondrial damage, which are also important contributors to aging. Sirtuin1 (SIRT1) as an NAD+-dependent protein deacetylase that seems to play a potential protective role in this process. These findings implied that ROS and/or SIRT1 may become a potential target of clinical treatment of PM- or NP-related ocular surface diseases.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Boram Kang
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Jingxiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Ophthalmology, Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea.
| |
Collapse
|
8
|
Carpena-Torres C, Pintor J, Huete-Toral F, Martin-Gil A, Rodríguez-Pomar C, Martínez-Águila A, Carracedo G. Efficacy of Artificial Tears Based on an Extract of Artemia salina Containing Dinucleotides in a Rabbit Dry Eye Model. Int J Mol Sci 2021; 22:ijms222111999. [PMID: 34769429 PMCID: PMC8584318 DOI: 10.3390/ijms222111999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Artemia salina is a brine shrimp containing high concentrations of dinucleotides, molecules with properties for dry eye treatment. For this reason, the purpose of the study was to evaluate the effect of the artificial tears based on an extract of Artemia salina in a rabbit dry eye model. (2) Methods: A prospective and randomized study was carried out. Twenty rabbits were divided into 4 groups (n = 5, each group): healthy rabbits, dry eye rabbits, dry eye rabbits treated with hypromellose (HPMC), and dry eye rabbits treated with Artemia salina. Dry eye was induced by the topical instillation of 0.2% benzalkonium chloride. The measurements were performed before and after the treatment for 5 consecutive days. (3) Results: The topical instillation of artificial tears containing Artemia salina showed beneficial effects on tear secretion, tear break-up time, corneal staining, the density of Goblet cells, heigh of mucin cloud secreted by these cells, and mRNA levels of IL-1β and MMP9 in conjunctival cells. Compared with the HPMC, there was a statistically significant improvement (p < 0.05) with the Artemia salina in all the variables under study, except for the conjunctival hyperemia, density of Goblet cells, and mRNA levels of IL-6. (4) Conclusions: The potential of artificial tears based on Artemia salina as a secretagogue agent for dry eye treatment was confirmed, opening the door for future clinical trials and studies to extrapolate the findings for dry eye patients.
Collapse
Affiliation(s)
- Carlos Carpena-Torres
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
| | - Jesus Pintor
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (J.P.); (F.H.-T.); (A.M.-Á.)
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (J.P.); (F.H.-T.); (A.M.-Á.)
| | - Alba Martin-Gil
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
| | - Candela Rodríguez-Pomar
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
| | - Alejandro Martínez-Águila
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (J.P.); (F.H.-T.); (A.M.-Á.)
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
- Correspondence:
| |
Collapse
|
9
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
10
|
Long Q, Wang L, Shang J, Liu Y, Chen C. Black carbon induces complement activation via NLRP3 inflammasome in human corneal epithelial cells. Curr Eye Res 2021; 47:233-238. [PMID: 34375537 DOI: 10.1080/02713683.2021.1967404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the effect of black carbon (BC) particles on complement activation in human corneal epithelial cells (HCECs), and determine whether this effect can be attenuated by inhibiting the NLPR3 inflammasome pathway. MATERIALS AND METHODS HCECs were treated with fresh BC (FBC) or ozone-oxidized BC (OBC) particles at a concentration of 200 μg/ml for 72hours. Complement activation was observed by detecting C5b-9 protein level in cell culture supernatant using ELISA. HCECs were transfected with duplexes of siRNA targeting NLRP3 (NLRP3-siRNA) at 0.1 pmol/µL for 24 hours to inhibit the NLPR3 inflammasome pathway. RT-qPCR was performed to examine the efficacy of NLRP3-siRNA for inhibition; a random siRNA duplex was used for control siRNA. RESULTS Both FBC exposure and OBC exposure for 72 hours significantly increased the C5b-9 protein level compared to negative control cells (all P < .05). However, the difference in C5b-9 level after FBC exposure and OBC exposure was not statistically significant (P> .05). NLRP3-siRNA transfection reduced C5b-9 protein levels in FBC treated and OBC treated HCECs compared to control (lowered by 27% in the FBC treated group and by 23% in the OBC treated group, all P < .05). CONCLUSIONS BC particles, including FBC and OBC, triggered complement activation, increasing the protein level of C5b-9 in cultured HCECs. siRNA targeting NLRP3 to inhibit NLRP3 generation reduced C5b-9 protein level in HCECs treated with FBC or OBC particles, indicating that BC induces complement activation potentially through the NLRP3 inflammasome in HCECs.
Collapse
Affiliation(s)
- Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liqiang Wang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ying Liu
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chen Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
11
|
Kim Y, Choi YH, Kim MK, Paik HJ, Kim DH. Different adverse effects of air pollutants on dry eye disease: Ozone, PM 2.5, and PM 10. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115039. [PMID: 32806456 DOI: 10.1016/j.envpol.2020.115039] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
To date, there have been no well-organized clinical studies evaluating which air pollutants affect dry eye disease (DED). In this study, we investigated changes in the clinical parameters of DED according to exposure to outdoor air pollutants, including PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 μm), PM10 (less than 10 μm), and ozone. A prospective observational study was conducted on 43 DED patients who had used the same topical eye drop treatment between 2016 and 2018 in South Korea. Ocular surface discomfort index (OSDI) score, tear film break-up time (TBUT), corneal fluorescein staining score (CFSS), and tear secretion were measured during each visit. Air pollution data of ambient PM10, PM2.5, and ozone, based on the patients' address, were obtained, and mean concentrations were computed for one day, one week, and one month before the examination. The relationships between air pollutants and DED were analyzed in single- and multi-pollutant models adjusted for demographic and clinical factors. In the multi-pollutant model, the OSDI score was positively correlated with ozone and PM2.5 exposure [ozone: β(exposure for 1 day/1 week) = 0.328 (95% CI: 0.161-0.494)/0.494 (0.286-0.702), p < 0.001/<0.001, per 1 ppb increase; PM2.5: β(1 day/1 week) = 0.378 (0.055-0.699)/0.397 (0.092-0.703), p = 0.022/ = 0.011, per 1 μg/m3 increase], and tear secretion decreased with increased ozone exposure [ozone: β(1 week/1 month) = -0.144 (-0.238 to -0.049)/-0.164 (-0.298 to -0.029), p = 0.003/ = 0.017, per 1 ppb increase]. Interestingly, increased PM10 exposure was only associated with decreased TBUT [β(1 day/1 week/1 month) = -0.028(-0.045 to -0.011)/-0.029(-0.046 to -0.012)/-0.023(-0.034 to -0.006), p = 0.001/ = 0.001/ = 0.018, per 1 μg/m3 increase]. Tear secretion and CFSS were not associated with PM10 exposure. Increased ozone and PM2.5 exposure led to aggravated ocular discomfort, and increased PM10 concentration aggravated tear film stability in patients with DED. Thus, each air pollutant may aggravate DED via different mechanisms of action.
Collapse
Affiliation(s)
- Yewon Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Yoon-Hyeong Choi
- Gachon Particulate Matter Associated Disease Institute, Gachon University, Incheon, South Korea; Department of Preventive Medicine, Gachon University College of Medicine, Incheon, South Korea.
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hae Jung Paik
- Department of Ophthalmology, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea; Gachon Particulate Matter Associated Disease Institute, Gachon University, Incheon, South Korea.
| |
Collapse
|
12
|
The Protective Effect of an Eye Wash Solution on the Ocular Surface Damage Induced by Airborne Carbon Black Exposure. Cornea 2020; 39:1040-1047. [PMID: 32141942 DOI: 10.1097/ico.0000000000002304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the effects of an eye wash solution on the ocular surface damage induced by airborne carbon black (CB) exposure. METHODS Sprague-Dawley rats were exposed to ambient CB for 5 days. During the 5 days, a commercial eye wash solution (Eyebon-W) was used for irrigation twice daily on CB-exposed rat eyes; normal saline was used as the vehicle control. Lactic dehydrogenase (LDH) activity and matrix metallopeptidase (MMP)-9, histamine, and lactoferrin levels were measured in tears. The expression of inflammatory cytokines in the anterior segment of the eyeball was measured by Western blot analysis. RESULTS The ocular surface staining scores, tear LDH activity, tear MMP-9, histamine, and lactoferrin concentrations, and the expression of interleukin-4 and interferon-γ in the eye were significantly increased in the CB group versus the normal control group. When compared with CB group, the Eyebon-W eye wash treatment significantly reversed these elevations induced by CB, including ocular staining scores, tear LDH activity, histamine and MMP-9 concentrations in the tear fluid, and the expression of interleukin-4 in the eye. On the other hand, saline irrigation only reduced the concentrations of histamine and MMP-9 in tear fluid and the expression of interferon-γ in the eye. CONCLUSIONS Both Eyebon-W eye wash treatment and saline irrigation reversed CB-induced ocular surface injury, but the efficacy of Eyebon-W was more significant than that of the saline solution when compared with CB group. The use of an eye wash solution seems to play a protective role for the ocular surface when exposed to airborne particulate matter.
Collapse
|
13
|
Long Q, Huang Y, Shang J, Liu Y, Chen C. Black Carbon Induces Cytotoxicity and NLRP3 Inflammasome Activation in Human Corneal Epithelial Cells. Curr Eye Res 2019; 45:680-685. [PMID: 31765230 DOI: 10.1080/02713683.2019.1698051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, People’s Republic of China
| | - Ying Liu
- Department of Ophthalmology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Chen Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Choi SY, Eom Y, Song JS, Kim HM. Fine dust and eye health. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2019. [DOI: 10.5124/jkma.2019.62.9.486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Soo Youn Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|