1
|
Ghosh S, Herberg S. ECM biomaterials for modeling of outflow cell biology in health and disease. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100091. [PMID: 38528909 PMCID: PMC10961487 DOI: 10.1016/j.bbiosy.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
This review highlights the importance of extracellular matrix (ECM) biomaterials in understanding the biology of human trabecular meshwork (TM) and Schlemm's canal (SC) cells under normal and simulated glaucoma-like conditions. We provide an overview of recent progress in the development and application of state-of-the-art 3D ECM biomaterials including cell-derived ECM, ECM scaffolds, Matrigel, and ECM hydrogels for studies of TM and SC cell (patho)biology. Such bioengineered platforms enable accurate and reliable modeling of tissue-like cell-cell and cell-ECM interactions. They bridge the gap between conventional 2D approaches and in vivo/ex vivo models, and have the potential to aid in the identification of the causal mechanism(s) for outflow dysfunction in ocular hypertensive glaucoma. We discuss each model's benefits and limitations, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
2
|
Karimi A, Razaghi R, D'costa SD, Torbati S, Ebrahimi S, Rahmati SM, Kelley MJ, Acott TS, Gong H. Implementing new computational methods for the study of JCT and SC inner wall basement membrane biomechanics and hydrodynamics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107909. [PMID: 37976613 PMCID: PMC10840991 DOI: 10.1016/j.cmpb.2023.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The conventional aqueous outflow pathway, which includes the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and the inner wall endothelium of Schlemm's canal (SC), regulates intraocular pressure (IOP) by controlling the aqueous humor outflow resistance. Despite its importance, our understanding of the biomechanics and hydrodynamics within this region remains limited. Fluid-structure interaction (FSI) offers a way to estimate the biomechanical properties of the JCT and SC under various loading and boundary conditions, providing valuable insights that are beyond the reach of current imaging techniques. METHODS In this study, a normal human eye was fixed at a pressure of 7 mm Hg, and two radial wedges of the TM tissues, which included the SC inner wall basement membrane and JCT, were dissected, processed, and imaged using 3D serial block-face scanning electron microscopy (SBF-SEM). Four different sets of images were used to create 3D finite element (FE) models of the JCT and inner wall endothelial cells of SC with their basement membrane. The outer JCT portion was carefully removed as the outflow resistance is not in that region, leaving only the SCE inner wall and a few µm of the tissue, which does contain the resistance. An inverse iterative FE algorithm was then utilized to calculate the unloaded geometry of the JCT/SC complex at an aqueous humor pressure of 0 mm Hg. Then in the model, the intertrabecular spaces, pores, and giant vacuole contents were replaced by aqueous humor, and FSI was employed to pressurize the JCT/SC complex from 0 to 15 mm Hg. RESULTS In the JCT/SC complex, the shear stress of the aqueous humor is not evenly distributed. Areas proximal to the inner wall of SC experience larger stresses, reaching up to 10 Pa, while those closer to the JCT undergo lower stresses, approximately 4 Pa. Within this complex, giant vacuoles with or without I-pore behave differently. Those without I-pores experience a more significant strain, around 14%, compared to those with I-pores, where the strain is roughly 9%. CONCLUSIONS The distribution of aqueous humor wall shear stress is not uniform within the JCT/SC complex, which may contribute to our understanding of the underlying selective mechanisms in the pathway.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Saeed Torbati
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sina Ebrahimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States.
| | | | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States.
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States.
| |
Collapse
|
3
|
Karimi A, Razaghi R, Kelley MJ, Acott TS, Gong H. Biomechanics of the JCT and SC Inner Wall Endothelial Cells with Their Basement Membrane Using 3D Serial Block-Face Scanning Electron Microscopy. Bioengineering (Basel) 2023; 10:1038. [PMID: 37760140 PMCID: PMC10525990 DOI: 10.3390/bioengineering10091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND More than ~70% of the aqueous humor exits the eye through the conventional aqueous outflow pathway that is comprised of the trabecular meshwork (TM), juxtacanalicular tissue (JCT), the inner wall endothelium of Schlemm's canal (SC). The flow resistance in the JCT and SC inner wall basement membrane is thought to play an important role in the regulation of the intraocular pressure (IOP) in the eye, but current imaging techniques do not provide enough information about the mechanics of these tissues or the aqueous humor in this area. METHODS A normal human eye was perfusion-fixed and a radial wedge of the TM tissue from a high-flow region was dissected. The tissues were then sliced and imaged using serial block-face scanning electron microscopy. Slices from these images were selected and segmented to create a 3D finite element model of the JCT and SC cells with an inner wall basement membrane. The aqueous humor was used to replace the intertrabecular spaces, pores, and giant vacuoles, and fluid-structure interaction was employed to couple the motion of the tissues with the aqueous humor. RESULTS Higher tensile stresses (0.8-kPa) and strains (25%) were observed in the basement membrane beneath giant vacuoles with open pores. The volumetric average wall shear stress was higher in SC than in JCT/SC. As the aqueous humor approached the inner wall basement membrane of SC, the velocity of the flow decreased, resulting in the formation of small eddies immediately after the flow left the inner wall. CONCLUSIONS Improved modeling of SC and JCT can enhance our understanding of outflow resistance and funneling. Serial block-face scanning electron microscopy with fluid-structure interaction can achieve this, and the observed micro-segmental flow patterns in ex vivo perfused human eyes suggest a hypothetical mechanism.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97208, USA
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
| | - Mary J. Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
- Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR 97208, USA
| | - Ted S. Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
- Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97208, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Yu PK, Tay E, An D, Cringle SJ, Morgan WH, Yu DY. Topographic distribution and phenotypic heterogeneity of Schlemm's canal endothelium in human donor eyes. Exp Eye Res 2023; 226:109309. [PMID: 36400284 DOI: 10.1016/j.exer.2022.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Endothelium phenotype is known to be closely associated with flow shear stress. This study is to determine the topographic distribution of endothelial cells and the phenotype of different quadrants and regions of Schlemm's canal using human donor eyes. This study infers differences in flow dynamics based on cell shape and intracellular structure. The Schlemm's canal from 15 human donor eyes were either perfusion labelled using silver stain or dissected for float labeling with Phalloidin to enable visualization of endothelial cell border and intracellular structure. Data were acquired for endothelial cells from the outer and inner wall of Schlemm's canal and grouped according to quadrant of origin. Measurements included endothelial cell length, width, area, and aspect ratio and compared between quadrants. Endothelial cells are mostly spindle-shape and the cell size on the outer wall are larger and longer than those from the inner wall. Significant differences in endothelial cell size and shape were seen in different quadrants. The endothelial cells have varied shapes and orientations close to large ostia in the outer wall and remarkably long endothelial cells were found in the walls of collector channels. F-actin aggregation was found at all endothelial cell borders, and inside some of the endothelial cytoplasm. The presence of various spindle shapes, significant phenotype heterogeneity and F-actin aggregation of endothelial cells indicates aqueous humor flow likely creates variations in shear stress within Schlemm's canal. Further investigation of the relationship between the phenotype heterogeneity and hydrodynamics of aqueous flow may help us understand the mechanisms of outflow resistance changes in glaucoma.
Collapse
Affiliation(s)
- Paula K Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia; Lions Eye Institute, The University of Western Australia, Perth, Australia
| | | | - Dong An
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia; Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Stephen J Cringle
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia; Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - William H Morgan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia; Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia; Lions Eye Institute, The University of Western Australia, Perth, Australia.
| |
Collapse
|
5
|
Qiao Y, Sun Z, Tan C, Lai J, Sun X, Chen J. Intracameral Injection of AAV-DJ.COMP-ANG1 Reduces the IOP of Mice by Reshaping the Trabecular Outflow Pathway. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36520455 PMCID: PMC9769031 DOI: 10.1167/iovs.63.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The angiopoietin-1 (ANG1)-TIE signaling pathway orchestrates the development and maintenance of the Schlemm's canal (SC). In this study, we investigated the impact of adeno-associated virus (AAV)-mediated gene therapy with cartilage oligomeric matrix protein-ANG1 (COMP-ANG1) on trabecular outflow pathway. Methods Different serotypes of AAVs were compared for transduction specificity and efficiency in the anterior segment. The selected AAVs encoding COMP-ANG1 or ZsGreen1 (control) were delivered into the anterior chambers of wild-type C57BL/6J mice. The IOP and ocular surface were monitored regularly. Ocular perfusion was performed to measure the outflow facility and label flow patterns of the trabecular drainage pathway. Structural features of SC as well as limbal, retinal, and skin vessels were visualized by immunostaining. Ultrastructural changes in the SC and trabecular meshwork were observed under transmission electron microscopy. Results AAV-DJ could effectively infect the anterior segment. Intracameral injection of AAV-DJ.COMP-ANG1 lowered IOP in wild-type C57BL/6J mice. No signs of inflammation or angiogenesis were noticed. Four weeks after AAV injection, the conventional outflow facility and effective filtration area were increased significantly (P = 0.005 and P = 0.04, respectively). Consistently, the area of the SC was enlarged (P < 0.001) with increased density of giant vacuoles in the inner wall (P = 0.006). In addition, the SC endothelia lay on a more discontinuous basement membrane (P = 0.046) and a more porous juxtacanalicular tissue (P = 0.005) in the COMP-ANG1 group. Conclusions Intracamerally injected AAV-DJ.COMP-ANG1 offers a significant IOP-lowering effect by remodeling the trabecular outflow pathway of mouse eyes.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongmou Sun
- University of Rochester, School of Medicine and Dentistry, Rochester, New York, New York, United States
| | - Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyi Lai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
6
|
Lewczuk K, Jabłońska J, Konopińska J, Mariak Z, Rękas M. Schlemm's canal: the outflow 'vessel'. Acta Ophthalmol 2022; 100:e881-e890. [PMID: 34519170 PMCID: PMC9293138 DOI: 10.1111/aos.15027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
In a healthy eye, the aqueous humour (AH) flows via the ciliary body and trabecular meshwork into the collector channels, which carry it to the episcleral veins. In glaucoma, a heterogeneous group of eye disorders affecting approximately 60 million individuals worldwide, the juxtacanalicular meshwork offers greater resistance to the outflow of the AH, leading to an increase in outflow resistance that gradually results in elevated intraocular pressure (IOP). The present review comprehensively covers the morphology of Schlemm’s canal (SC) and AH pathways. The path of the AH from the anterior chamber through the trabeculum into suprascleral and conjunctival veins via collector channels is described, and the role of SC in the development of glaucoma and outflow resistance is discussed. Finally, channelography is presented as a precise method of assessing the conventional drainage pathway and facilitating localization of an uncollapsed collector and aqueous veins. Attention is also given to the relationship between aqueous and episcleral veins and heartbeat. Possible directions of future research are proposed.
Collapse
Affiliation(s)
- Katarzyna Lewczuk
- Department of Ophthalmology Military Institute of Medicine Warsaw Poland
| | - Joanna Jabłońska
- Department of Ophthalmology Military Institute of Medicine Warsaw Poland
| | - Joanna Konopińska
- Department of Ophthalmology Medical University in Bialystok Białystok Poland
| | - Zofia Mariak
- Department of Ophthalmology Medical University in Bialystok Białystok Poland
| | - Marek Rękas
- Department of Ophthalmology Military Institute of Medicine Warsaw Poland
| |
Collapse
|
7
|
Swain DL, Yasmin S, Fernandes B, Lamaj G, Su Y, Gong H. Schlemm’s Canal Endothelium Cellular Connectivity in Giant Vacuole and Pore Formation in Different Flow-type Areas: A Serial Block-Face Scanning Electron Microscopy Study. Front Cell Dev Biol 2022; 10:867376. [PMID: 35493087 PMCID: PMC9043561 DOI: 10.3389/fcell.2022.867376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Glaucoma is associated with increased resistance in the conventional aqueous humor (AH) outflow pathway of the eye. The majority of resistance is thought to reside in the juxtacanalicular connective tissue (JCT) region of the trabecular meshwork and is modulated by the inner wall (IW) endothelial cells of Schlemm’s canal (SC). The IW cells form connections with the underlying JCT cells/matrix, and these connections are thought to modulate outflow resistance. Two ways by which AH crosses the IW endothelium are through: 1) the formation of outpouchings in IW cells called giant vacuoles (GVs) and their intracellular pores (I-pores), and 2) intercellular pores between two adjacent IW cells (B-pores). AH outflow is segmental with areas of high-, low-, and non-flow around the circumference of the eye. To investigate whether changes in cellular connectivity play a role in segmental outflow regulation, we used global imaging, serial block-face scanning electron microscopy (SBF-SEM), and 3D reconstruction to examine individual IW cells from different flow areas of ex vivo perfused normal human donor eyes. Specifically, we investigated the differences in cellular dimensions, connections with JCT cells/matrix, GVs, and pores in SC IW cells between high-, low-, and non-flow areas. Our data showed that: 1) IW cell-JCT cell/matrix connectivity was significantly decreased in the cells in high-flow areas compared to those in low- and non-flow areas; 2) GVs in the cells of high-flow areas had significantly fewer connections beneath them compared to GVs in the cells of low- and non-flow areas; 3) Type IV GVs (with I-pores and basal openings) had significantly fewer connections beneath them compared to Type I GVs (no I-pore or basal opening). Our results suggest that a decreased number of cellular connections between the IW and JCT in high-flow areas is associated with increased numbers of GVs with I-pores and larger Type IV GVs observed in previous studies. Therefore, modulating the number of cellular connections may affect the amount of high-flow area around the eye and thereby modulate AH outflow.
Collapse
Affiliation(s)
- David L. Swain
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Senila Yasmin
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Beatriz Fernandes
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Ganimete Lamaj
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Yanfeng Su
- The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Haiyan Gong,
| |
Collapse
|
8
|
Acott TS, Vranka JA, Keller KE, Raghunathan V, Kelley MJ. Normal and glaucomatous outflow regulation. Prog Retin Eye Res 2021; 82:100897. [PMID: 32795516 PMCID: PMC7876168 DOI: 10.1016/j.preteyeres.2020.100897] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Glaucoma remains only partially understood, particularly at the level of intraocular pressure (IOP) regulation. Trabecular meshwork (TM) and Schlemm's canal inner wall endothelium (SCE) are key to IOP regulation and their characteristics and behavior are the focus of much investigation. This is becoming more apparent with time. We and others have studied the TM and SCE's extracellular matrix (ECM) extensively and unraveled much about its functions and role in regulating aqueous outflow. Ongoing ECM turnover is required to maintain IOP regulation and several TM ECM manipulations modulate outflow facility. We have established clearly that the outflow pathway senses sustained pressure deviations and responds by adjusting the outflow resistance correctively to keep IOP within an appropriately narrow range which will not normally damage the optic nerve. The glaucomatous outflow pathway has in many cases lost this IOP homeostatic response, apparently due at least in part, to loss of TM cells. Depletion of TM cells eliminates the IOP homeostatic response, while restoration of TM cells restores it. Aqueous outflow is not homogeneous, but rather segmental with regions of high, intermediate and low flow. In general, glaucomatous eyes have more low flow regions than normal eyes. There are distinctive molecular differences between high and low flow regions, and during the response to an IOP homeostatic pressure challenge, additional changes in segmental molecular composition occur. In conjunction with these changes, the biomechanical properties of the juxtacanalicular (JCT) segmental regions are different, with low flow regions being stiffer than high flow regions. The JCT ECM of glaucomatous eyes is around 20 times stiffer than in normal eyes. The aqueous humor outflow resistance has been studied extensively, but neither the exact molecular components that comprise the resistance nor their exact location have been established. Our hypothetical model, based on considerable available data, posits that the continuous SCE basal lamina, which lies between 125 and 500 nm beneath the SCE basal surface, is the primary source of normal resistance. On the surface of JCT cells, small and highly controlled focal degradation of its components by podosome- or invadopodia-like structures, PILS, occurs in response to pressure-induced mechanical stretching. Sub-micron sized basement membrane discontinuities develop in the SCE basement membrane and these discontinuities allow passage of aqueous humor to and through SCE giant vacuoles and pores. JCT cells then relocate versican with its highly charged glycosaminoglycan side chains into the discontinuities and by manipulation of their orientation and concentration, the JCT and perhaps the SCE cells regulate the amount of fluid passage. Testing this outflow resistance hypothesis is ongoing in our lab and has the potential to advance our understanding of IOP regulation and of glaucoma.
Collapse
Affiliation(s)
- Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kate E Keller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR, 97239, USA
| |
Collapse
|
9
|
Swain DL, Le TD, Yasmin S, Fernandes B, Lamaj G, Dasgupta I, Gao Y, Gong H. Morphological factors associated with giant vacuoles with I-pores in Schlemm's canal endothelial cells of human eyes: A serial block-face scanning electron microscopy study. Exp Eye Res 2021; 205:108488. [PMID: 33571532 DOI: 10.1016/j.exer.2021.108488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Increased intraocular pressure (IOP) is the main risk factor for primary open-angle glaucoma and results from impaired drainage of aqueous humor (AH) through the trabecular outflow pathway. AH must pass the inner wall (IW) endothelium of Schlemm's canal (SC), which is a monolayer held together by tight junctions, to exit the eye. One route across the IW is through giant vacuoles (GVs) with their basal openings and intracellular pores (I-pores). AH drainage through the trabecular outflow pathway is segmental. Whether more GVs with both basal openings and I-pores are present in the active flow areas and factors that may influence formation of GVs with I-pores have not been fully elucidated due to limitations in imaging methods. In this study, we applied a relatively new technique, serial block-face scanning electron microscopy (SBF-SEM), to investigate morphological factors associated with GVs with I-pores in different flow areas. Two normal human donor eyes were perfused at 15 mmHg with fluorescent tracers to label the outflow pattern followed by perfusion-fixation. Six radial wedges of trabecular meshwork including SC (2 each from high-, low-, and non-flow areas) were imaged using SBF-SEM (total: 9802 images). Total GVs, I-pores, basal openings, and four types of GVs were identified. Percentages of GVs with I-pores and basal openings and number of I-pores/GV were determined. Overall, 14.4% (477/3302) of GVs had I-pores. Overall percentage of GVs with both I-pores and basal openings was higher in high- (15.7%), than low- (12.6%) or non-flow (7.3%) areas. Of GVs with I-pores, 83.2% had a single I-pore; 16.8% had multiple I-pores (range: 2-6). Additionally, 180 GVs (90 with I-pores and 90 without I-pores) were randomly selected, manually segmented, and three-dimensionally (3D) reconstructed to determine size, shape, and thickness of the cellular lining. Size of GVs (including median volume, surface area, and maximal cross-sectional area) with I-pores (n = 90) was significantly larger than GVs without I-pores (n = 90) using 3D-reconstructed GVs (P ≤ 0.01). Most I-pores (73.3%; 66/90) were located on or close to GV's maximal cross-sectional area with significant thinning of the cellular lining. Our results suggest that larger size and thinner cellular lining of GVs may contribute to formation of GVs with I-pores. More GVs with I-pores and basal openings were observed in high-flow areas, suggesting these GVs do provide a channel through which AH passes into SC and that increasing this type of GV may be a potential strategy to increase aqueous outflow for glaucoma treatment.
Collapse
Affiliation(s)
- David L Swain
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Thuy Duong Le
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Senila Yasmin
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Beatriz Fernandes
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Ganimete Lamaj
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Indira Dasgupta
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Yanyun Gao
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
10
|
Wang LY, Su GY, Wei ZY, Zhang ZJ, Liang QF. Progress in the basic and clinical research on the Schlemm's canal. Int J Ophthalmol 2020; 13:816-821. [PMID: 32420231 DOI: 10.18240/ijo.2020.05.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness in the world. Intraocular pressure (IOP) plays a key role in glaucoma development and progression. Schlemm's canal (SC), an important structure of the anterior chamber angle, regulates the flow of aqueous humor and maintains IOP. Because of its special function of aqueous outflow, the SC has been intensive investigated recently. Several characteristics of SC in anatomy, physiology and pathophysiology have been revealed. Compare to normal, glaucomatous SC cells are more sensitive to substrate stiffness, have higher stiffness and and lower porosity leading to higher outflow resistance. And SC collapse caused by acute IOP increase is partially or totally reversal. With advanced inspection techniques, high-quality images of the SC can be obtained in vivo, which facilitates SC quantitative measurements clinically and allows us to investigate a new therapy paradigm for glaucoma. In this review, we summarize the basic and clinical research that focused on mechanisms of aqueous outflow resistance and SC changes in physiological, pathological, and post-treatment states.
Collapse
Affiliation(s)
- Le-Ying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Guan-Yu Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zhen-Yu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zi-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Qing-Feng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| |
Collapse
|
11
|
Zhang X, Beckmann L, Miller DA, Shao G, Cai Z, Sun C, Sheibani N, Liu X, Schuman J, Johnson M, Kume T, Zhang HF. In Vivo Imaging of Schlemm's Canal and Limbal Vascular Network in Mouse Using Visible-Light OCT. Invest Ophthalmol Vis Sci 2020; 61:23. [PMID: 32068793 PMCID: PMC7326574 DOI: 10.1167/iovs.61.2.23] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose To validate the ability of visible-light optical coherence tomography (vis-OCT) in imaging the full Schlemm's canal (SC) and its surrounding limbal vascular network in mice in vivo through a compound circumlimbal scan. Methods We developed an anterior segment vis-OCT system and a compound circumlimbal scanning method, which montages eight rotated raster scans. We calibrated the circumlimbal scan geometry using a three-dimensional printed phantom eyeball before imaging wild-type C57BL/6J mice. We measured SC size by segmenting SC cross sections from vis-OCT B-scan images and imaged the limbal microvascular network using vis-OCT angiography (vis-OCTA). To introduce changes in SC size, we used a manometer to adjust the intraocular pressure (IOP) to different levels. To create additional optical scattering contrast to enhance SC imaging, we surgically increased the episcleral venous pressure (EVP) and caused blood reflux into SC. Results Using the compound circumlimbal scan, our anterior segment vis-OCT noninvasively imaged the full SC and limbal microvascular network in mouse for the first time. We observed an average 123% increase in SC volume when we decreased the IOP by 10 mm Hg from the baseline IOP of 7 to 10 mm Hg and an average 72% decrease in SC volume when the IOP level was elevated by 10 mm Hg from the baseline IOP. We also observed location-dependent SC size responses to IOP changes. Blood reflux caused by increased EVP enabled vis-OCTA to directly visualize SC, which matched well with the segmented SC. Conclusions Vis-OCT and vis-OCTA can accurately image the entire SC and limbal microvascular network in vivo using the compound circumlimbal scan. Vis-OCT is also able to quantitatively measure SC responses to changing IOP levels.
Collapse
|
12
|
Vahabikashi A, Gelman A, Dong B, Gong L, Cha EDK, Schimmel M, Tamm ER, Perkumas K, Stamer WD, Sun C, Zhang HF, Gong H, Johnson M. Increased stiffness and flow resistance of the inner wall of Schlemm's canal in glaucomatous human eyes. Proc Natl Acad Sci U S A 2019; 116:26555-26563. [PMID: 31806762 PMCID: PMC6936716 DOI: 10.1073/pnas.1911837116] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cause of the elevated outflow resistance and consequent ocular hypertension characteristic of glaucoma is unknown. To investigate possible causes for this flow resistance, we used atomic force microscopy (AFM) with 10-µm spherical tips to probe the stiffness of the inner wall of Schlemm's canal as a function of distance from the tissue surface in normal and glaucomatous postmortem human eyes, and 1-µm spherical AFM tips to probe the region immediately below the tissue surface. To localize flow resistance, perfusion and imaging methods were used to characterize the pressure drop in the immediate vicinity of the inner wall using giant vacuoles that form in Schlemm's canal cells as micropressure sensors. Tissue stiffness increased with increasing AFM indentation depth. Tissues from glaucomatous eyes were stiffer compared with normal eyes, with greatly increased stiffness residing within ∼1 µm of the inner-wall surface. Giant vacuole size and density were similar in normal and glaucomatous eyes despite lower flow rate through the latter due to their higher flow resistance. This implied that the elevated flow resistance found in the glaucomatous eyes was localized to the same region as the increased tissue stiffness. Our findings implicate pathological changes to biophysical characteristics of Schlemm's canal endothelia and/or their immediate underlying extracellular matrix as cause for ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
| | - Ariel Gelman
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Biqin Dong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201
| | - Lihua Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Elliott D. K. Cha
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Margit Schimmel
- Institute of Anatomy, University of Regensburg, D-93053 Regensburg, Germany
| | - Ernst R. Tamm
- Institute of Anatomy, University of Regensburg, D-93053 Regensburg, Germany
| | | | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
13
|
Koudouna E, Young RD, Overby DR, Ueno M, Kinoshita S, Knupp C, Quantock AJ. Ultrastructural variability of the juxtacanalicular tissue along the inner wall of Schlemm's canal. Mol Vis 2019; 25:517-526. [PMID: 31588175 PMCID: PMC6776461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
Purpose Increased resistance of aqueous humor drainage from the eye through Schlemm's canal (SC) is the basis for elevated intraocular pressure in glaucoma. Experimental evidence suggests that the bulk of outflow resistance lies in the vicinity of the inner wall endothelial lining of SC and the adjacent juxtacanalicular tissue (JCT). However, there is little understanding of how this resistance is generated, and a detailed understanding of the structure-function relationship of the outflow pathway has not been established yet. In the present study, regional variations in the ultrastructure of the JCT and the inner wall of SC were investigated in three dimensions. Methods With the use of serial block face scanning electron microscopy (SBF-SEM), the volume occupied by the electron lucent spaces of the JCT compared to that occupied by the cellular and extracellular matrix was investigated and quantified. The distribution of giant vacuoles (GVs) and pores in the inner wall endothelium of SC was further examined. Results With increasing distance from the inner wall of SC, the volume of the electron lucent spaces increased above 30%. In contrast, the volume of these spaces in immediate contact with the inner wall endothelium was minimal (<10%). Circumferential variability in the type and distribution of GVs was observed, and the percentage of GVs with pores varied between 3% and 27%. Conclusions These studies provide a detailed quantitative analysis of the ultrastructure of JCT and the distribution of GVs along the circumference of SC in three dimensions, supporting the non-uniform or segmental aqueous outflow.
Collapse
Affiliation(s)
- Elena Koudouna
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Wales, UK
| | - Robert D. Young
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Wales, UK
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, London, UK
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Hirokoji Kawaramachi, Kamigyo-ku, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Hirokoji Kawaramachi, Kamigyo-ku, Kyoto, Japan
| | - Carlo Knupp
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Wales, UK
| | - Andrew J. Quantock
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Wales, UK
| |
Collapse
|