1
|
Shen T, Sheriff S, You Y, Jiang J, Schulz A, Francis H, Mirzaei M, Saks D, Palanivel V, Basavarajappa D, Chitranshi N, Gupta V, Wen W, Sachdev PS, Jia H, Sun X, Graham SL, Gupta VK. Brain-Derived Neurotrophic Factor Val66Met is Associated with Variation in Cortical Structure in Healthy Aging Subjects. Aging Dis 2024; 15:2315-2327. [PMID: 38916728 PMCID: PMC11346411 DOI: 10.14336/ad.2024.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Aging is associated with progressive brain atrophy and declines in learning and memory, often attributed to hippocampal or cortical deterioration. The role of brain-derived neurotrophic factor (BDNF) in modulating the structural and functional changes in the brain and visual system, particularly in relation to BDNF Val66Met polymorphism, remains underexplored. In this present cross-sectional observational study, we aimed to assess the effects of BDNF polymorphism on brain structural integrity, cognitive function, and visual pathway alterations. A total of 108 older individuals with no evidence of dementia and a mean (SD) age of 67.3 (9.1) years were recruited from the Optic Nerve Decline and Cognitive Change (ONDCC) study cohort. The BDNF Met allele carriage had a significant association with lower entorhinal cortex volume (6.7% lower compared to the Val/Val genotype, P = 0.02) and posterior cingulate volume (3.2% lower than the Val/Val group, P = 0.03), after adjusting for confounding factors including age, sex and estimated total intracranial volumes (eTIV). No significant associations were identified between the BDNF Val66Met genotype and other brain volumetric or diffusion measures, cognitive performances, or vision parameters except for temporal retinal nerve fibre layer thickness. Small but significant correlations were found between visual structural and functional, cognitive, and brain morphological metrics. Our findings suggest that carriage of BDNF Val66Met polymorphism is associated with lower entorhinal cortex and posterior cingulate volumes and may be involved in modulating the cortical morphology along the aging process.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Samran Sheriff
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuyi You
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Angela Schulz
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Heather Francis
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Neurology Department, Royal North Shore Hospital, St Leonards NSW 2065, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Danit Saks
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Veer Gupta
- Faculty of Health, Deakin University, VIC 3125, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW 2031, Australia
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Stuart L Graham
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
2
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Galindo C, Nguyen VT, Hill B, Sims N, Heck A, Negron M, Lusk C. Brain-derived neurotrophic factor rs6265 (Val66Met) single nucleotide polymorphism as a master modifier of human pathophysiology. Neural Regen Res 2023. [PMID: 35799516 PMCID: PMC9241394 DOI: 10.4103/1673-5374.343894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor is the most prevalent member of the nerve growth factor family. Since its discovery in 1978, this enigmatic molecule has spawned more than 27,000 publications, most of which are focused on neurological disorders. Brain-derived neurotrophic factor is indispensable during embryogenesis and postnatally for the normal development and function of both the central and peripheral nervous systems. It is becoming increasingly clear, however, that brain-derived neurotrophic factor likewise plays crucial roles in a variety of other biological functions independently of sympathetic or parasympathetic involvement. Brain-derived neurotrophic factor is also increasingly recognized as a sophisticated environmental sensor and master coordinator of whole organismal physiology. To that point, we recently found that a common nonsynonymous (Val66→Met) single nucleotide polymorphism in the brain-derived neurotrophic factor gene (rs6265) not only substantially alters basal cardiac transcriptomics in mice but subtly influences heart gene expression and function differentially in males and females. In addition to a short description of recent results from associative neuropsychiatric studies, this review provides an eclectic assortment of research reports that support a modulatory role for rs6265 including and beyond the central nervous system.
Collapse
|
4
|
He JN, Ng TK, Lu SY, Tam POS, Chan PP, Tham CC, Pang CP, Chen LJ, Chu WK. Genetic association of ANGPT2 with primary open-angle glaucoma. EYE AND VISION (LONDON, ENGLAND) 2022; 9:37. [PMID: 36199153 PMCID: PMC9535884 DOI: 10.1186/s40662-022-00309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To determine the association of the ANGPT2 gene with primary open-angle glaucoma (POAG) in Chinese. METHODS Six single-nucleotide polymorphisms (SNPs) in ANGPT2 (rs2515487, rs2922869, rs13255574, rs4455855, rs13269021, and rs11775442) were genotyped in a total of 2601 study subjects from two cohorts. One is a Hong Kong Chinese cohort of 484 high tension glaucoma (HTG) and 537 normal tension glaucoma (NTG) patients, and 496 non-glaucoma control subjects. Another cohort is a Shantou Chinese cohort of 403 HTG and 135 NTG patients, and 543 non-glaucoma control subjects. Subgroup analysis by sex was conducted. Outcomes from different cohorts were combined for meta-analysis. RESULTS The association of SNP rs11775442 with NTG in the Hong Kong cohort [P = 0.0498, OR = 1.24, 95% confidence interval (CI) 1.00-1.55] after adjusting for age and sex did not reach statistical significance after Bonferroni correction. Other SNPs were not significantly associated with NTG, HTG and POAG in individual cohort or in the combined analyses (P > 0.05). In the subgroup analysis by sex, SNP rs13269021 in the Shantou cohort, but not in the Hong Kong cohort, was significantly associated with NTG in males (P = 0.0081, OR = 1.67, 95% CI: 1.14-2.43) but not in females (P = 0.874). In the combined analyses by sex, no SNPs were significantly associated with NTG, HTG and POAG. CONCLUSIONS In the subgroup analysis by sex, a significant association was shown in SNP rs13269021 with NTG in Shantou males, but not in Hong Kong males. Further studies are needed to verify the association between ANGPT2 locus (rs13269021) and NTG in Chinese males.
Collapse
Affiliation(s)
- Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Kin Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shi Yao Lu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pancy Oi Sin Tam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Poemen P Chan
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment and Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Lim Por-Yen Eye Genetics Research Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Hussain N, Sher SF, Lin X, Adil M. Association of VEGF Gene Polymorphism (rs699947) with Glaucoma and In-Silico Study of Antiglaucoma Bioactive Compounds. Appl Biochem Biotechnol 2022; 194:5185-5195. [PMID: 35713843 DOI: 10.1007/s12010-022-04014-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a useful expert in various maturation and other problems such as glaucoma. VEGF gene is located on the short arm of chromosome 6. It has 8 exons and 6 introns. This investigation was planned to check out the relationship of VEGF polymorphism with glaucoma patients and to cause in silico limitation of carbonic anhydrase to diminish the intraocular strain of watery humor to fix glaucoma. In this examination, a large portion of the glaucoma patients (n = 70) were males (66%) when contrasted with females (34%) as the p-value was 0.025 which showed critical outcomes and subsequently demonstrated that the sickness was more predominant in males. Glaucoma for the most part influences people between the ages of 50-60 years followed by the age bunch between 30 and 40 years. Around 36 (51.4%) were experiencing watering in the eyes, 28 (40%) had photophobia, 9 (12.8%) had a hazy cornea, 6 (8.6%) had expanded eye globe, and 15 patients (21.3%) had rosy eyes. Factual tests showed that VEGF quality SNP rs699947 had no huge relationship with glaucoma (POAG). In this study, various carbonic anhydrase inhibitor phytochemicals and synthetic chemicals were screened in silico which may be used as antiglaucoma drugs.
Collapse
Affiliation(s)
- Nageen Hussain
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Sonia Falek Sher
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Xuming Lin
- Department of Ophthalmology, Yantai Yuhuangding Hospital, No. 20, Yuhuangding East Road, Yantai City, 264000, Shandong Province, China.
| | - Muhammad Adil
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
6
|
Shen T, Sheriff S, You Y, Jiang J, Schulz A, Francis H, Mirzaei M, Saks D, Chitranshi N, Gupta V, Singh MF, Klistorner A, Wen W, Sachdev P, Gupta VK, Graham SL. Evaluating associations of RNFL thickness and multifocal VEP with cognitive assessment and brain MRI volumes in older adults: Optic nerve decline and cognitive change (ONDCC) initiative. AGING BRAIN 2022; 2:100049. [PMID: 36908892 PMCID: PMC9997126 DOI: 10.1016/j.nbas.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
To examine the relationships of retinal structural (optical coherence tomography) and visual functional (multifocal visual evoked potentials, mfVEP) indices with neuropsychological and brain structural measurements in healthy older subjects. 95 participants (mean (SD) age 68.1 (9.0)) years were recruited in the Optic Nerve Decline and Cognitive Change (ONDCC) study in this observational clinical investigation. OCT was conducted for retinal nerve fibre layer (RNFL) and mfVEP for amplitude and latency measurements. Participants undertook neuropsychological tests for cognitive performance and MRI for volumetric evaluation of various brain regions. Generalised estimating equation models were used for association analysis (p < 0.05). The brain volumetric measures including total grey matter (GM), cortex, thalamus, hippocampal and fourth ventricular volumes were significantly associated with global and sectoral RNFL. RNFL thickness correlated with delayed recalls of California verbal learning test (CVLT) and Rey complex figure test (RCFT). The mfVEP amplitudes associated with cerebral white matter (WM) and cingulate GM volumes in MRI and CVLT, RCFT and trail making test outcomes. A significant association of mfVEP latency with logical memory delayed recall and thalamus volume was also observed. Our results suggested significant association of specific RNFL and mfVEP measures with distinctive brain region volumes and cognitive tests reflecting performance in memory, visuospatial and executive functional domains. These findings indicate that the mfVEP and RNFL measurements may parallel brain structural and neuropsychological measures in the older population.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Corresponding authors at: Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's hospital), School of Medicine, Shanghai Jiao Tong University and Macquarie University.
| | - Samran Sheriff
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing and the Neuropsychiatric Institute, University of New South Wales, Sydney, NSW, Australia
| | - Angela Schulz
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Heather Francis
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Danit Saks
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- Faculty of Health, Deakin University, VIC, Australia
| | | | - Alexander Klistorner
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing and the Neuropsychiatric Institute, University of New South Wales, Sydney, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing and the Neuropsychiatric Institute, University of New South Wales, Sydney, NSW, Australia
| | - Vivek K. Gupta
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Corresponding authors at: Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's hospital), School of Medicine, Shanghai Jiao Tong University and Macquarie University.
| | - Stuart L. Graham
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Zhou M, Lu B, Tan W, Fu M. Identification of lncRNA-miRNA-mRNA regulatory network associated with primary open angle glaucoma. BMC Ophthalmol 2020; 20:104. [PMID: 32178636 PMCID: PMC7076920 DOI: 10.1186/s12886-020-01365-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Primary open angle glaucoma (POAG) is a multifactorial disorder characterized by a progressive permanent degeneration of retinal ganglion cell (RGCs) death. An increasing number of studies have suggested that long noncoding RNAs (lncRNAs) have the ability to regulate gene expression; however, thus far, the mechanisms and functions of lncRNAs in the development of POAG are still unclear. METHODS Using the data from Gene Expression Omnibus (GEO), differentially expressed lncRNAs and differentially expressed mRNAs between POAG patients and controls were identified. Then, the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was constructed, and the key lncRNAs in POAG were identified. A Gene Ontology (GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to assess the enriched biological functions of mRNA in the ceRNA network. RESULTS During this study, a POAG-related ceRNA network with 37 miRNA nodes, 248 lncRNA nodes, 178 mRNA nodes, and 1985 edges was constructed. In addition, four lncRNAs (DNAJC27-AS1, AF121898, OIP5-AS1, and SNX29P2) were established as hub RNAs in this ceRNA network. The functional assay showed that 18 GO terms and 17 pathways were enriched. CONCLUSION This study provides novel insights into the lncRNA-related ceRNA network in POAG, and the four lncRNAs were identified in the development of POAG.
Collapse
Affiliation(s)
- Minwen Zhou
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Bing Lu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Wei Tan
- The Department of Ophthalmology, The Third Affiliated Hospital of Zunyi Medical University, 98 Feng huang Road, Zunyi, China
| | - Mingshui Fu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Eye Diseases, Shanghai, China. .,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
| |
Collapse
|
8
|
You Y, Barnett MH, Yiannikas C, Parratt J, Matthews J, Graham SL, Klistorner A. Chronic demyelination exacerbates neuroaxonal loss in patients with MS with unilateral optic neuritis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e700. [PMID: 32170043 PMCID: PMC7136042 DOI: 10.1212/nxi.0000000000000700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022]
Abstract
Objective To examine the effect of chronic demyelination in the optic nerve of patients with MS on progressive loss of retinal ganglion cell (RGC) axons. Methods Progressive retinal nerve fiber layer (RNFL) loss, as measured by optical coherence tomography, was longitudinally examined in 51 patients with MS with a history of unilateral optic neuritis (ON) and 25 normal controls. Patients were examined annually with a median of 4-year follow-up. Pairwise intereye comparison was performed between ON and fellow non-ON (NON) eyes of patients with MS using the linear mixed-effects model and survival analysis. The latency asymmetry of multifocal visual evoked potential (mfVEP) was used to determine the level of demyelination in the optic nerve. Results Although both ON and NON eyes demonstrate significantly faster loss of RGC axons compared with normal subjects, ON eyes with severe chronic demyelination show accelerated thinning in the RNFL in the temporal sector of the optic disc (temporal RNFL [tRNFL]) compared with fellow eyes (evidenced by both the linear mixed-effects model and survival analysis). Furthermore, progressive tRNFL thinning is associated with the degree of optic nerve demyelination and reflects the topography of pathology in the optic nerve. More rapid axonal loss in ON eyes is also functionally evidenced by mfVEP amplitude reduction, which correlates with the level of optic nerve demyelination. Conclusions Although the effect of demyelination on axonal survival has been demonstrated in experimental studies, our results provide first clinically meaningful evidence that chronic demyelination is associated with progressive axonal loss in human MS.
Collapse
Affiliation(s)
- Yuyi You
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia.
| | - Michael H Barnett
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Con Yiannikas
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - John Parratt
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Jim Matthews
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Stuart L Graham
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Alexander Klistorner
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| |
Collapse
|
9
|
Shen T, Gupta V, Yiannikas C, Klistorner A, Graham SL, You Y. Association Between BDNF Val66Met Polymorphism and Optic Neuritis Damage in Neuromyelitis Optica Spectrum Disorder. Front Neurosci 2019; 13:1236. [PMID: 31803011 PMCID: PMC6877654 DOI: 10.3389/fnins.2019.01236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS). The purpose of the study was to examine the association between the brain-derived neurotrophic factor (BDNF) Val66Met genotype and structural and functional optic nerve damage in the eyes of NMOSD patients. A total of 17 NMOSD subjects (34 eyes) were included in the study and were divided into subgroups based on optic neuritis (ON) history and BDNF Val66Met polymorphisms. The mean (range) age was 47.8 (23–78) years, and the mean (SD) disease duration was 7.4 (2–39) years. All participants had undergone optical coherence tomography (OCT) scans for global retinal nerve fiber layer (gRNFL) and ganglion cell-inner plexiform layer (GCIPL) thickness and multifocal visual evoked potential (mfVEP) test for amplitude and latency. BDNF Val66Met polymorphisms were genotyped in all participants. OCT and mfVEP changes were compared between two genotype groups (Met carriers vs. Val homozygotes) by using the generalised estimating equation (GEE) models. The BDNF Val66Met polymorphism was significantly associated with more severe nerve fiber layer damage and axonal loss in ON eyes of NMOSD subjects. Met carriers had more significantly reduced GCIPL (P = 0.002) and gRNFL (P < 0.001) thickness as well as more delayed mfVEP latency (P = 0.008) in ON eyes. No association was found between Val66Met variants and non-ON (NON)-eye of the participants. These findings suggest that the BDNF Val66Met polymorphism may be associated with optic nerve damage caused by acute ON attacks in NMOSD patients.
Collapse
Affiliation(s)
- Ting Shen
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Con Yiannikas
- Australia Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Alexander Klistorner
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|