1
|
Tapasztó B, Flitcroft DI, Aclimandos WA, Jonas JB, De Faber JTHN, Nagy ZZ, Kestelyn PG, Januleviciene I, Grzybowski A, Vidinova CN, Guggenheim JA, Polling JR, Wolffsohn JS, Tideman JWL, Allen PM, Baraas RC, Saunders KJ, McCullough SJ, Gray LS, Wahl S, Smirnova IY, Formenti M, Radhakrishnan H, Resnikoff S, Németh J. Myopia management algorithm. Annexe to the article titled Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur J Ophthalmol 2024; 34:952-966. [PMID: 38087768 PMCID: PMC11295429 DOI: 10.1177/11206721231219532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
Myopia is becoming increasingly common in young generations all over the world, and it is predicted to become the most common cause of blindness and visual impairment in later life in the near future. Because myopia can cause serious complications and vision loss, it is critical to create and prescribe effective myopia treatment solutions that can help prevent or delay the onset and progression of myopia. The scientific understanding of myopia's causes, genetic background, environmental conditions, and various management techniques, including therapies to prevent or postpone its development and slow its progression, is rapidly expanding. However, some significant information gaps exist on this subject, making it difficult to develop an effective intervention plan. As with the creation of this present algorithm, a compromise is to work on best practices and reach consensus among a wide number of specialists. The quick rise in information regarding myopia management may be difficult for the busy eye care provider, but it necessitates a continuing need to evaluate new research and implement it into daily practice. To assist eye care providers in developing these strategies, an algorithm has been proposed that covers all aspects of myopia mitigation and management. The algorithm aims to provide practical assistance in choosing and developing an effective myopia management strategy tailored to the individual child. It incorporates the latest research findings and covers a wide range of modalities, from primary, secondary, and tertiary myopia prevention to interventions that reduce the progression of myopia.
Collapse
Affiliation(s)
- Beáta Tapasztó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Daniel Ian Flitcroft
- Temple Street Children's Hospital, Dublin, Ireland
- Centre for Eye Research Ireland (CERI) Technological University, Dublin, Ireland
| | | | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | | | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Christina Nicolaeva Vidinova
- Department of Ophthalmology, Military Medical Academy, Sofia, Bulgaria
- Department of Optometry, Sofia University “St. Kliment Ohridski“, Sofia, Bulgaria
| | | | - Jan Roelof Polling
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Optometry and Orthoptics, University of Applied Science, Utrecht, The Netherlands
| | - James S Wolffsohn
- Optometry and Vision Science Research Group, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - J Willem L Tideman
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department Ophthalmology, Martini Hospital, Groningen, The Netherlands
| | - Peter M Allen
- Vision and Hearing Sciences Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Kathryn J Saunders
- Centre for Optometry and Vision Science, Ulster University, Coleraine, UK
| | - Sara J McCullough
- Centre for Optometry and Vision Science, Ulster University, Coleraine, UK
| | | | - Siegfried Wahl
- Institute for Ophthalmic Research, University Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Tübingen, Germany
| | | | - Marino Formenti
- Department of Physics, School of Science, University of Padova, Padova, Italy
| | - Hema Radhakrishnan
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Serge Resnikoff
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Brien Holden Vision Institute, Sydney, Australia
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
2
|
Yang Z, Yang K, Li Z, Hu Y, Jiang J, Tang X, Zeng J, Wang M, Yang X. Using three-dimensional modelling of the anterior sclera to investigate the scleral profile in myopic eyes. Ophthalmic Physiol Opt 2024; 44:219-228. [PMID: 37811684 DOI: 10.1111/opo.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE This study used three-dimensional (3D) modelling to investigate scleral profiles in myopic eyes and compare them with emmetropic eyes. METHODS In this prospective observational study, the eyes of 151 participants were analysed using the corneoscleral profile module (CSP) of the Pentacam HR. Non-rotationally symmetrical ellipsoids were fitted to the anterior scleral sagittal height. Three radii were analysed, namely the nasal-temporal (Rx), superior-inferior (Ry) and anterior-posterior (Rz) orientations. Additionally, the area index (AI) and aspherical parameters (Qxy, Qxz and Qyz) of the anterior sclera-fitted ellipsoid (ASFE) were quantified. RESULTS The findings showed an increase in Rx (-0.349 mm/D), Ry (-0.373 mm/D), Rz (-1.232 mm/D) and AI (-36.165 mm2 /D) with increasing myopia. From emmetropia to high myopia, the vertical and horizontal planes of the anterior sclera became increasingly prolate (emmetropia, Qxz: 0.02, Qyz: 0.01; low myopia, Qxz: -0.28, Qyz: -0.28; high myopia, Qxz: -0.41, Qyz: -0.43). There were no significant differences in the coronal plane across the three groups (H = 2.65, p = 0.27). The anterior scleral shape of high myopes in the horizontal and vertical planes was more prolate than that of emmetropes and low myopes (Qxz, high myopes vs. low myopes: p = 0.03, high myopes vs. emmetropes: p < 0.001; Qyz, high myopes vs. low myopes: p = 0.04, high myopes vs. emmetropes: p < 0.001). CONCLUSIONS As the degree of myopia increased, non-uniform anterior scleral enlargement was observed. These findings provide a better understanding of the anterior segment with varying degrees of myopia.
Collapse
Affiliation(s)
- Zhengfei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - KaiQi Yang
- Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhouyue Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jinyun Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianghua Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - JunWen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mengyi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Nilsen NG, Gilson SJ, Lindgren H, Kjærland M, Pedersen HR, Baraas RC. Seasonal and Annual Change in Physiological Ocular Growth of 7- to 11-Year-Old Norwegian Children. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 38064230 PMCID: PMC10709800 DOI: 10.1167/iovs.64.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose To investigate seasonal and annual change in physiological eye growth in Norwegian school children. Methods Measurements of ocular biometry, non-cycloplegic spherical equivalent autorefraction (SER), and choroidal thickness (ChT) were obtained for 92 children (44 females) aged 7 to 11 years at four time points over a year (November 2019-November 2020). Seasons (3- and 5-month intervals) were classified as winter (November-January), winter-spring (January-June), and summer-autumn (June-November). Cycloplegic SER was obtained in January and used to group children. The seasonal and annual changes were tested with a linear mixed-effects model (P values were adjusted for multiple comparisons). Results All the children experienced annual ocular growth, irrespective of SER, but less so during the summer-autumn. The baseline SER was lower (P < 0.001), axial length (AL) was longer (P < 0.038), and choroids were thicker in 10- to 11-year-old than 7- to 8-year-old mild hyperopes (P = 0.002). Assuming mild hyperopes (n = 65) experience only physiological eye growth, modeling revealed seasonal and annual increases in AL across sex and age (P < 0.018), with less change during the summer-autumn than winter-spring. The 7- to 8-year-olds had a larger decrease annually and over winter-spring in SER (P ≤ 0.036) and in ChT over winter-spring than the 10- to 11-year-olds (P = 0.006). Conclusions There were significant seasonal and annual changes in AL in children who had physiological eye growth irrespective of age within this cohort. Annual changes in SER and seasonal choroidal thinning were only observed in 7- to 8-year-old children. This indicates continued emmetropization in 7- to 8-year-olds and a transition to maintaining emmetropia in 10- to 11-year-olds.
Collapse
Affiliation(s)
- Nickolai G. Nilsen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J. Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Helene Lindgren
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Marianne Kjærland
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R. Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Rigmor C. Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
4
|
Li DL, Qin Y, Zheng YJ, Yin ZJ, Li YZ, Ma R, Liang G, Pan CW. Refractive Associations With Whole Eye Movement Distance and Time Among Chinese University Students: A Corvis ST Study. Transl Vis Sci Technol 2023; 12:13. [PMID: 38085247 PMCID: PMC10720759 DOI: 10.1167/tvst.12.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose Eye movement has been frequently studied in clinical conditions, but the association with myopia has been less explored, especially in population-based samples. The purpose of this study was to assess the associations of eye movement measured by the Corvis ST with refractive status in healthy university students. Methods A total of 1640 healthy students were included in the study (19.0 ± 0.9 years). Eye movement parameters (whole eye movement [WEM]; whole eye movement time [WEMT]) were measured by the Corvis ST. Spherical equivalent (SE) was measured using an autorefractor without cycloplegia. IOL Master was used to assess axial length (AL). Results AL was negatively correlated with WEM and WEMT (rWEM = -0.28, rWEMT = -0.08), and SE was positively correlated with WEM and WEMT (rWEM = 0.21, rWEMT = 0.14). For the risk of high myopia, breakpoint analysis and restricted cubic spline model showed that the knots of the significant steep downward trend of WEM and WEMT were 0.27 mm and 20.4 ms, respectively. The piecewise linear regression model revealed a significant correlation between AL, SE, and WEM when the value of WEM was below 0.27 mm. Additionally, when WEMT exceeded 20.4 ms, a significant decrease in AL and an increase in SE were observed with increasing WEMT. Conclusions A larger distance and longer duration of eye movement were correlated with a lower degree of myopia and shorter AL, and there was a threshold effect. Translational Relevance The findings might aid in understanding the pathogenesis of myopia and provide a theoretical foundation for clinical diagnosis and prediction.
Collapse
Affiliation(s)
- Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu Qin
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
| | - Zhi-Jian Yin
- Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali, China
| | - Yue-Zu Li
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
| | - Rong Ma
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
| | - Gang Liang
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Marinescu MC, Dascalescu DMC, Constantin MM, Coviltir V, Potop V, Stanila D, Constantin F, Alexandrescu C, Ciuluvica RC, Voinea LM. Particular Anatomy of the Hyperopic Eye and Potential Clinical Implications. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1660. [PMID: 37763779 PMCID: PMC10536421 DOI: 10.3390/medicina59091660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Hyperopia is a refractive error which affects cognitive and social development if uncorrected and raises the risk of primary angle-closure glaucoma (PACG). Materials and Methods: The study included only the right eye-40 hyperopic eyes in the study group (spherical equivalent (SE) under pharmacological cycloplegia over 0.50 D), 34 emmetropic eyes in the control group (SE between -0.50 D and +0.50 D). A complete ophthalmological evaluation was performed, including autorefractometry to measure SE, and additionally we performed Ocular Response Analyser: Corneal Hysteresis (CH), Corneal Resistance Factor (CRF); specular microscopy: Endothelial cell density (CD), Cell variability (CV), Hexagonality (Hex), Aladdin biometry: Anterior Chamber Depth (ACD), Axial Length (AL), Central Corneal Thickness (CCT). IBM SPSS 26 was used for statistical analysis. Results: The mean age of the entire cohort was 22.93 years (SD ± 12.069), 66.22% being female and 33.78% male. The hyperopic eyes had significantly lower AL, ACD, higher SE, CH, CRF. In the hyperopia group, there are significant, negative correlations between CH and AL (r -0.335), CRF and AL (r -0.334), SE-AL (r -0.593), ACD and CV (r -0.528), CV and CRF (r -0.438), CH (r -0.379), and positive correlations between CCT and CH (r 0.393) or CRF (r 0.435), CD and ACD (r 0.509) or CH (0.384). Age is significantly, negatively correlated with ACD (r -0.447), CH (r -0.544), CRF (r -0.539), CD (r -0.546) and positively with CV (r 0.470). Conclusions: Our study suggests a particular biomechanical behavior of the cornea in hyperopia, in relation with morphological and endothelial parameters. Moreover, the negative correlation between age and ACD suggests a shallower anterior chamber as patients age, increasing the risk for PACG.
Collapse
Affiliation(s)
- Maria-Cristina Marinescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Dana-Margareta-Cornelia Dascalescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | | | - Valeria Coviltir
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Vasile Potop
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Dan Stanila
- Department of Ophthalmology, Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania
| | - Farah Constantin
- Department of Ophthalmology, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | - Cristina Alexandrescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
| | | | | |
Collapse
|
6
|
Rozema JJ. Refractive development I: Biometric changes during emmetropisation. Ophthalmic Physiol Opt 2023; 43:347-367. [PMID: 36740946 DOI: 10.1111/opo.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE Although there are many reports on ocular growth, these data are often fragmented into separate parameters or for limited age ranges. This work intends to create an overview of normal eye growth (i.e., in absence of myopisation) for the period before birth until 18 years of age. METHODS The data for this analysis were taken from a search of six literature databases using keywords such as "[Parameter] & [age group]", with [Parameter] the ocular parameter under study and [age group] an indication of age. This yielded 34,409 references that, after screening of title, abstract and text, left 294 references with usable data. Where possible, additional parameters were calculated, such as the Bennett crystalline lens power, whole eye power and axial power. RESULTS There were 3422 average values for 17 parameters, calculated over a combined total of 679,398 individually measured or calculated values. The age-related change in refractive error was best fitted by a sum of four exponentials (r2 = 0.58), while all other biometric parameters could be fitted well by a sum of two exponentials and a linear term ('bi-exponential function'; r2 range: 0.64-0.99). The first exponential of the bi-exponential fits typically reached 95% of its end value before 18 months, suggesting that these reached genetically pre-programmed passive growth. The second exponentials reached this point between 4 years of age for the anterior curvature and well past adulthood for most lenticular dimensions, suggesting that this part represents the active control underlying emmetropisation. The ocular components each have different growth rates, but growth rate changes occur simultaneously at first and then act independently after birth. CONCLUSIONS Most biometric parameters grow according to a bi-exponential pattern associated with passive and actively modulated eye growth. This may form an interesting reference to understand myopisation.
Collapse
Affiliation(s)
- Jos J Rozema
- Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.,Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| |
Collapse
|
7
|
Pedersen HR, Svarverud E, Hagen LA, Gilson SJ, Baraas RC. Comparing ocular biometry and autorefraction measurements from the Myopia Master with the IOLMaster 700 and the Huvitz HRK-8000A autorefractor. Ophthalmic Physiol Opt 2023; 43:410-417. [PMID: 36734669 DOI: 10.1111/opo.13101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE To compare axial length (AL) and corneal radius (CR) measured with the Oculus Myopia Master and the Zeiss IOLMaster 700, and cycloplegic refractive error measured with the Myopia Master and the Huvitz Auto Ref/Keratometer (HRK-8000A). METHODS The study included both eyes of 74 participants (16 male), with a mean (SD) age of 22.8 (3.7) years. The parameters indicated were measured under cycloplegia with these instruments: Myopia Master (AL, CR and refractive error), IOLMaster 700 (AL and CR) and HRK-8000A (refractive error and CR). Bland-Altman plots with mixed effects 95% limits of agreement (LoA) and corresponding 95% confidence intervals were used to assess the agreement in ocular biometry between the Myopia Master and the IOLMaster 700, and for refractive error between the Myopia Master and the HRK-8000A. RESULTS The analysis included 139 eyes, of which 52 were myopic (spherical equivalent refractive error, SER ≤ -0.50 D), 32 emmetropic and 55 hyperopic (SER ≥ 0.50 D). The 95% LoA for AL between the Myopia Master and IOLMaster 700 was -0.097 to 0.089 mm. There was no mean difference in AL [mean (SD) = -0.004 (0.047) mm, p = 0.34]. There was a significant difference in mean CR, with that measured with the Myopia Master being flatter than that found with the IOLMaster 700 [0.035 (0.028) mm, p < 0.001]. The 95% LoA for CR was -0.02 to 0.09 mm. Compared with HRK-8000A, the Myopia Master measured a significantly more negative SER [-0.19 (0.33) D, p < 0.001], with 95% LoA of -0.86 to 0.46 D. CONCLUSION The LoA for measurements of SER, CR and AL when comparing the Myopia Master with the HRK-8000A and the IOLMaster 700 were wider than deemed acceptable for making direct comparisons. This indicates that the instruments cannot be used interchangeably in clinical practice or research.
Collapse
Affiliation(s)
- Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Ellen Svarverud
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
8
|
Nilsen NG, Gilson SJ, Pedersen HR, Hagen LA, Knoblauch K, Baraas RC. Seasonal Variation in Diurnal Rhythms of the Human Eye: Implications for Continuing Ocular Growth in Adolescents and Young Adults. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 36282117 PMCID: PMC9617503 DOI: 10.1167/iovs.63.11.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose To investigate the diurnal rhythms in the human eye in winter and summer in southeast Norway (latitude 60°N). Methods Eight measures (epochs) of intraocular pressure, ocular biometry, and optical coherence tomography were obtained from healthy participants (17–24 years of age) on a mid-winter's day (n = 35; 6 hours of daylight at solstice) and on a day the following summer (n = 24; 18 hours of daylight at solstice). Participants wore an activity monitor 7 days before measurements. The epochs were scheduled relative to the individual's habitual wake and sleep time: two in the day (morning and midday) and six in the evening (every hour until and 1 hour after sleep time). Saliva was collected for melatonin. A linear mixed-effects model was used to determine significant diurnal variations, and a sinusoid with a 24-hour period was fitted to the data with a nonlinear mixed-effects model to estimate rhythmic statistics. Results All parameters underwent significant diurnal variation in winter and summer (P < 0.002). A 1-hour phase advance was observed for melatonin and ocular axial length in the summer (P < 0.001). The degree of change in axial length was associated with axial length phase advance (R2 = 0.81, P < 0.001) and choroidal thickening (R2 = 0.54, P < 0.001) in summer. Conclusions Diurnal rhythms in ocular biometry appear to be synchronized with melatonin secretion in both winter and summer, revealing seasonal variation of diurnal rhythms in young adult eyes. The association between axial length and seasonal changes in the phase relationships between ocular parameters and melatonin suggests a between-individual variation in adaptation to seasonal changes in ocular diurnal rhythms.
Collapse
Affiliation(s)
- Nickolai G Nilsen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem-Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Université Lyon I, Lyon, France
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
9
|
Muacevic A, Adler JR. A Study Linking Axial Length, Corneal Curvature, and Eye Axis With Demographic Characteristics in the Emmetropic Eyes of Bangladeshi People. Cureus 2022; 14:e29925. [PMID: 36225244 PMCID: PMC9536359 DOI: 10.7759/cureus.29925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Axial length (AL) and corneal curvature (CC) are one of the furthest critical parameters for optometry and oculoplastic surgery. These two variables are crucial in biometry for accurately measuring the power of the intraocular lens in cataract surgery. This research aimed to determine the association linking axial length and corneal curvature with demographic characteristics in emmetropic eyes of Bangladeshi people. Methods This descriptive cross-sectional research was carried out among 200 emmetropic eyes of Bangladeshi people attending the Department of Ophthalmology at Rajshahi Medical College, Bangladesh, with different eye conditions, between July 2017 and June 2018. Data was gathered by conducting person-to-person interviews, checking visual activity using the Snellen chart, and measuring corneal curvature using an auto-keratometer and axial eyeball length using A-scan ultrasonography. Results A total of 200 attendances were studied, 90 males and 110 females. All were emmetropic. The age range was 21-52 years, and the highest contributors were in the 21-30-year age group. The association between right axial length and right corneal curvature shows a negative relation among both sexes. It was -0.61 (β-coefficient (β-coff)), and highly significant in females at -0.89 (β-coff). Additionally, the association between left axial length and left corneal curvature shows a negative relation of -0.65 (β-coff), which was again highly significant in females at -0.87 (β-coff). Both were not significant in males. There was no significant association linking axial length and eye axis in both sexes. The multivariate regression model was used to assess the p-value, and the regression model was adjusted by age. Conclusion Optical parametric measurement is a noninvasive diagnostic and assessment tool that might help in the actual measurement of intraocular lens implantation in cataract surgery and may also provide supplementary information to the researcher domain.
Collapse
|
10
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
11
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
12
|
Chamberlain P, Lazon de la Jara P, Arumugam B, Bullimore MA. Axial length targets for myopia control. Ophthalmic Physiol Opt 2021; 41:523-531. [PMID: 33951213 PMCID: PMC8252804 DOI: 10.1111/opo.12812] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control. METHODS Axial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models. RESULTS The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm). CONCLUSIONS The 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.
Collapse
|
13
|
Headache and musculoskeletal pain in school children are associated with uncorrected vision problems and need for glasses: a case-control study. Sci Rep 2021; 11:2093. [PMID: 33483534 PMCID: PMC7822909 DOI: 10.1038/s41598-021-81497-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Musculoskeletal pain and headache are leading causes of years lived with disability, and an escalating problem in school children. Children spend increasingly more time reading and using digital screens, and increased near tasks intensify the workload on the precise coordination of the visual and head-stabilizing systems. Even minor vision problems can provoke headache and neck- and shoulder (pericranial) pain. This study investigated the association between headaches, pericranial tenderness, vision problems, and the need for glasses in children. An eye and physical examination was performed in twenty 10–15 year old children presenting to the school health nurse with headache and pericranial pain (pain group), and twenty age-and-gender matched classmates (control group). The results showed that twice as many children in the pain group had uncorrected vision and needed glasses. Most children were hyperopic, and glasses were recommended mainly for near work. Headache and pericranial tenderness were significantly correlated to reduced binocular vision, reduced distance vision, and the need for new glasses. That uncorrected vision problems are related to upper body musculoskeletal symptoms and headache, indicate that all children with these symptoms should have a full eye examination to promote health and academic performance.
Collapse
|
14
|
Jiang XM, Lu YY, Han X, Tan Q, Wu JS. Proportion and characteristic of emmetropia in schoolchildren aged 6-11y: the Shenzhen elementary school eye study. Int J Ophthalmol 2020; 13:1983-1989. [PMID: 33344200 DOI: 10.18240/ijo.2020.12.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023] Open
Abstract
AIM To investigate the proportion and characteristic of emmetropia in schoolchildren aged 6-11, especially estimate the normal value of ocular biometric parameters of emmetropia. METHODS A population-based cross-sectional study was conducted on children aged 6-11y in Shenzhen. Totally, 2386 schoolchildren from two primary schools were involved. The axial length (AL) and the corneal radius of curvature (CRC) were measured by partial coherence laser interferometry. Noncycloplegic refraction and refractive astigmatism (RA) was measured using autorefraction. The axial length-to-corneal radius of curvature ratio (AL/CRC), corneal astigmatism (CA) and spherical equivalent refraction (SER) were calculated. RESULTS The proportion of emmetropia in elementary school students was 41.30%. This percentage decreased gradually from 6 to 11 years of age and decreased rapidly after 9 years of age. The mean and 95%CI of each parameter were provided for boys and girls aged 6 to 11 years of age with emmetropia according to each age group. The change trend of parameters of boys and girls are similar. After 7 years of age, the AL of non-emmetropia started to increase faster than that of emmetropia. The change trend of AL/CRC was the same as that of AL. The other parameters tend to be stable after 7 years of age. CONCLUSION The age of 7-9 is an important period for the changes of refractive state and ocular biometric parameters of primary school students, and it is a special focus period for children myopia prevention. The normal value and variation of ocular biometric parameters of emmetropia can provide the basis for the clinical judgment of whether or not children's ocular biometric parameters obtained by single measurement and changes obtained by multiple measurements are abnormal.
Collapse
Affiliation(s)
- Xian-Ming Jiang
- Department of Ophthalmology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Ying-Ying Lu
- Scientific Research Center, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Xiao Han
- Department of Ophthalmology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Qian Tan
- Department of Ophthalmology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Jun-Shu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
15
|
Brennan NA, Toubouti YM, Cheng X, Bullimore MA. Efficacy in myopia control. Prog Retin Eye Res 2020; 83:100923. [PMID: 33253901 DOI: 10.1016/j.preteyeres.2020.100923] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
There is rapidly expanding interest in interventions to slow myopia progression in children and teenagers, with the intent of reducing risk of myopia-associated complications later in life. Despite many publications dedicated to the topic, little attention has been devoted to understanding 'efficacy' in myopia control and its application. Treatment effect has been expressed in multiple ways, making comparison between therapies and prognosis for an individual patient difficult. Available efficacy data are generally limited to two to three years making long-term treatment effect uncertain. From an evidence-based perspective, efficacy projection should be conservative and not extend beyond that which has been empirically established. Using this principle, review of the literature, data from our own clinical studies, assessment of demonstrated myopia control treatments and allowance for the limitations and context of available data, we arrive at the following important interpretations: (i) axial elongation is the preferred endpoint for assessing myopic progression; (ii) there is insufficient evidence to suggest that faster progressors, or younger myopes, derive greater benefit from treatment; (iii) the initial rate of reduction of axial elongation by myopia control treatments is not sustained; (iv) consequently, using percentage reduction in progression as an index to describe treatment effect can be very misleading and (v) cumulative absolute reduction in axial elongation (CARE) emerges as a preferred efficacy metric; (vi) maximum CARE that has been measured for existing myopia control treatments is 0.44 mm (which equates to about 1 D); (vii) there is no apparent superior method of treatment, although commonly prescribed therapies such as 0.01% atropine and progressive addition spectacles lenses have not consistently provided clinically important effects; (viii) while different treatments have shown divergent efficacy in the first year, they have shown only small differences after this; (ix) rebound should be assumed until proven otherwise; (x) an illusion of inflated efficacy is created by measurement error in refraction, sample bias in only treating 'measured' fast progressors and regression to the mean; (xi) decision to treat should be based on age of onset (or refraction at a given age), not past progression; (xii) the decreased risk of complications later in life provided by even modest reductions in progression suggest treatment is advised for all young myopes and, because of limitations of available interventions, should be aggressive.
Collapse
Affiliation(s)
- Noel A Brennan
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA.
| | - Youssef M Toubouti
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA
| | - Xu Cheng
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA
| | | |
Collapse
|
16
|
Three-dimensional data capture and analysis of intact eye lenses evidences emmetropia-associated changes in epithelial cell organization. Sci Rep 2020; 10:16898. [PMID: 33037268 PMCID: PMC7547080 DOI: 10.1038/s41598-020-73625-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/17/2020] [Indexed: 01/16/2023] Open
Abstract
Organ and tissue development are highly coordinated processes; lens growth and functional integration into the eye (emmetropia) is a robust example. An epithelial monolayer covers the anterior hemisphere of the lens, and its organization is the key to lens formation and its optical properties throughout all life stages. To better understand how the epithelium supports lens function, we have developed a novel whole tissue imaging system using conventional confocal light microscopy and a specialized analysis software to produce three-dimensional maps for the epithelium of intact mouse lenses. The open source software package geometrically determines the anterior pole position, the equatorial diameter, and three-dimensional coordinates for each detected cell in the epithelium. The user-friendly cell maps, which retain global lens geometry, allow us to document age-dependent changes in the C57/BL6J mouse lens cell distribution characteristics. We evidence changes in epithelial cell density and distribution in C57/BL6J mice during the establishment of emmetropia between postnatal weeks 4-6. These epithelial changes accompany a previously unknown spheroid to lentoid shape transition of the lens as detected by our analyses. When combined with key findings from previous mouse genetic and cell biological studies, we suggest a cytoskeleton-based mechanism likely underpins these observations.
Collapse
|
17
|
Axial growth and refractive change in white European children and young adults: predictive factors for myopia. Sci Rep 2020; 10:15189. [PMID: 32938970 PMCID: PMC7494927 DOI: 10.1038/s41598-020-72240-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
This report describes development of spherical equivalent refraction (SER) and axial length (AL) in two population-based cohorts of white, European children. Predictive factors for myopic growth were explored. Participants were aged 6-7- (n = 390) and 12-13-years (n = 657) at baseline. SER and AL were assessed at baseline and 3, 6 and 9 years prospectively. Between 6 and 16 years: latent growth mixture modelling identified four SER classes (Persistent Emmetropes-PEMM, Persistent Moderate Hyperopes-PMHYP, Persistent High Hyperopes-PHHYP and Emerging Myopes-EMYO) as optimal to characterise refractive progression and two classes to characterise AL. Between 12 and 22-years: five SER classes (PHHYP, PMHYP, PEMM, Low Progressing Myopes-LPMYO and High Progressing Myopes-HPMYO) and four AL classes were identified. EMYO had significantly longer baseline AL (≥ 23.19 mm) (OR 2.5, CI 1.05-5.97) and at least one myopic parent (OR 6.28, CI 1.01-38.93). More myopic SER at 6-7 years (≤ + 0.19D) signalled risk for earlier myopia onset by 10-years in comparison to baseline SER of those who became myopic by 13 or 16 years (p ≤ 0.02). SER and AL progressed more slowly in myopes aged 12-22-years (- 0.16D, 0.15 mm) compared to 6-16-years (- 0.41D, 0.30 mm). These growth trajectories and risk criteria allow prediction of abnormal myopigenic growth and constitute an important resource for developing and testing anti-myopia interventions.
Collapse
|