1
|
Hu Q, Zhang X, Huang J, Peng H, Sun Y, Sang W, Jiang B, Sun D. The STAT1-SLC31A1 axis: Potential regulation of cuproptosis in diabetic retinopathy. Gene 2024; 930:148861. [PMID: 39153705 DOI: 10.1016/j.gene.2024.148861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND By identifying molecular biological markers linked to cuproptosis in diabetic retinopathy (DR), new pathobiological pathways and more accessible diagnostic markers can be developed. METHODS The datasets related to DR were acquired from the Gene Expression Omnibus database, while genes associated with cuproptosis were sourced from previously published compilations. Consensus clustering was conducted to delineate distinct DR subclasses. Feature genes were identified utilizing weighted correlation network analysis (WGCNA). Additionally, two machine-learning algorithms were employed to refine the selection of feature genes. Finally, we conducted preliminary validation experiments to ascertain the involvement of cuproptosis in DR development and the transcriptional regulation of critical genes using both the streptozotocin-induced diabetic mouse model and the high glucose-induced BV2 model. RESULTS In the STZ-induced diabetic mouse retinas, a decrease in the expression of cuproptosis signature proteins (FDX1, DLAT, and NDUFS8) suggested the occurrence of cuproptosis in DR. Subsequently, the expression of eight cuproptosis differential genes was validated through the STZ-induced diabetes and oxygen-induced retinopathy (OIR) models, with the key gene SLC31A1 showing upregulation in both models and dataset species. Further analyses, including weighted gene co-expression network analysis, GSVA, and immune infiltration analysis, indicated a close correlation between cuproptosis and microglia function. Additionally, validation in an in vitro model of microglia indicated the occurrence of cuproptosis in microglia under high glucose conditions, alongside abnormal expression of STAT1 with SLC31A1. CONCLUSION Our findings suggest that STAT1/SLC31A1 may pave the way for a deeper comprehension of the mechanistic basis of DR and offer potential therapeutic avenues.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiayang Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yage Sun
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Ophthalmology, Qiqihar Eye & ENT Hospital, Qiqihar, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Yao Y, Bin X, Xu Y, Chen S, Chen S, Yuan X, Cao Y, Ng TK. Cellular senescence mediates retinal ganglion cell survival regulation post-optic nerve crush injury. Cell Prolif 2024; 57:e13719. [PMID: 39021340 PMCID: PMC11628747 DOI: 10.1111/cpr.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Traumatic optic neuropathy refers to optic nerve (ON) injury by trauma, including explosion and traffic accident. Retinal ganglion cell (RGC) death is the critical pathological cause of irreversible visual impairment and blindness in ON injury. We previously investigated the patterns of 11 modes of cell death in mouse retina post-ON injury. Here we aimed to identify additional signalling pathways regulating RGC survival in rodents post-ON injury. RNA sequencing analysis identified the upregulation of inflammation and cellular senescence-related genes in retina post-ON injury, which were confirmed by immunoblotting and immunofluorescence analyses. Increased expression of senescence-associated β-galactosidase (SA-βgal) in RGCs and activation of microglia were also found. Transforming growth factor-β receptor type II inhibitor (LY2109761) treatment suppressed p15Ink4b and p21Cip1 protein and SA-βgal expression and promoted RGC survival post-ON injury with decreasing the expression of cell death markers in retina. Consistently, senolytics (dasatinib and quercetin) treatments can promote RGC survival and alleviate the reduction of ganglion cell complex thickness and pattern electroretinography activity post-ON injury with reducing SA-βgal, p15Ink4b, p21Cip1, microglial activation and cell death marker expression. In summary, this study revealed the activation of cellular senescence in rodent retina post-ON injury and contribute to RGC survival regulation. Targeting cellular senescence can promote RGC survival after ON injury, suggesting a potential treatment strategy for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Xin Bin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Si Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Xiang‐Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Yingjie Cao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
- Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
3
|
Tawarayama H, Uchida K, Hasegawa H, Yoshida M, Inoue-Yanagimachi M, Sato W, Himori N, Yamamoto M, Nakazawa T. Estrogen, via ESR2 receptor, prevents oxidative stress-induced Müller cell death and stimulates FGF2 production independently of NRF2, attenuating retinal degeneration. Exp Eye Res 2024; 248:110103. [PMID: 39303841 DOI: 10.1016/j.exer.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In this study, we aimed to investigate the effects of the deficient antioxidative gene, nuclear factor-erythroid 2-related factor 2 (Nrf2), on 17β-estradiol (E2)-mediated oxidative stress response, with a specific focus on growth factor production and cell death in Müller cells and retinal tissue. Administration of hydrogen peroxide (H2O2) reduced the viability of Müller cells derived from Nrf2 wild-type (WT) and knockout (KO) mice. However, this effect was more significant in the KO cells than in the WT cells. Pretreatment with E2 inhibited H2O2-induced cell death in both Nrf2 WT and KO Müller cell genotypes. Small interfering RNA-mediated gene silencing of estrogen receptor 2 (Esr2) attenuated the cell survival-promoting activity of E2 in Nrf2 KO Müller cells, while other identified estrogen receptors, Esr1 or G protein-coupled estrogen receptor 1 (Gper1), had no effect. Western blotting revealed higher ESR2 expression levels in Nrf2 KO cells than in WT Müller cells. Conditioned media from E2-and H2O2-treated Nrf2 WT or KO Müller cells enhanced the dissociated retinal cell viability compared with H2O2-treated cells. Both quantitative reverse-transcription polymerase chain reaction assay (qRT-PCR) and enzyme-linked immunosorbent assay exhibited a significant increase in fibroblast growth factor 2 (FGF2) expression levels in E2-and H2O2-treated Nrf2 WT and KO Müller cells compared to those in E2-treated cells. In vivo, administration of N-methyl-N-nitrosourea (MNU) reduced the thickness and cell density of the outer nuclear layer (ONL) in Nrf2 KO mice and enhanced the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells in the ONL. However, E2 administration attenuated these defects in MNU-treated mice. Concomitant administration of MNU and E2 enhanced FGF2 protein levels in retinal lysates of Nrf2 KO mice. In conclusion, E2 demonstrated a significant role in preventing oxidative stress-induced retinal cell death by stimulating FGF2 production in Müller cells, independent of the Nrf2 gene. Based on these findings, we anticipate that exogenous administration of estrogens or ESR2-selective agonists could aid in treating patients with oxidative stress-related retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirokazu Hasegawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masaaki Yoshida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Wataru Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8579, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
4
|
Rejas-González R, Montero-Calle A, Pastora Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J, Pardo Calderón S, Barderas R, Guzman-Aranguez A. Unraveling the nexus of oxidative stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-depth proteomics. Redox Biol 2024; 77:103368. [PMID: 39326071 PMCID: PMC11462071 DOI: 10.1016/j.redox.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic ocular pathologies such as cataracts and glaucoma are emerging as an important problem for public health due to the changes in lifestyle and longevity. These age-related ocular diseases are largely mediated by oxidative stress. Small extracellular vesicles (sEVs) are involved in cell-to-cell communication and transport. There is an increasing interest about the function of small extracellular vesicles (sEVs) in the eye. However, the proteome content and characterization of sEVs released by ocular cells under pathological conditions are not yet well known. Here, we aimed to analyze the protein profile of sEVs and the intracellular protein content from two ocular cell lines (lens epithelial cells and retinal ganglion cells) exposed to oxidative stress to identify altered proteins that could serve as potential diagnostic biomarkers. The protein content was analyzed by quantitative mass spectrometry-based proteomics. Validation was performed by WB and ELISA using cell extracts and aqueous humor from cataract and glaucoma patients. After data analysis, 176 and 7 dysregulated proteins with an expression ratio≥1.5 were identified in lens epithelial cells' protein extract and sEVs, respectively, upon oxidative stress induction. In retinal ganglion cells, oxidative stress induction resulted in the dysregulation of 1033 proteins in cell extracts and 9 proteins in sEVs. In addition, by WB and ELISA, the dysregulation of proteins was mostly confirmed in aqueous humor samples from cataract or glaucoma patients in comparison to ICL individuals, with RAD23B showing high glaucoma diagnostic ability. Importantly, this work expands the knowledge of the proteome characterization of cataracts and glaucoma and provides new potential diagnostic glaucoma biomarkers.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | | | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | | | - Sara Pardo Calderón
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), 28029, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| |
Collapse
|
5
|
Ohno-Oishi M, Meiai Z, Sato K, Kanno S, Kawano C, Ishikawa M, Nakazawa T. SH-SY5Y human neuronal cells with mutations of the CDKN2B-AS1 gene are vulnerable under cultured conditions. Biochem Biophys Rep 2024; 38:101723. [PMID: 38737728 PMCID: PMC11088231 DOI: 10.1016/j.bbrep.2024.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Glaucoma is a common cause of blindness worldwide. Genetic effects are believed to contribute to the onset and progress of glaucoma, but the underlying pathological mechanisms are not fully understood. Here, we set out to introduce mutations into the CDKN2B-AS1 gene, which is known as being the closely associated with glaucoma, in a human neuronal cell line in vitro. We introduced gene mutations with CRISPR/Cas9 into exons and introns into the CDKN2B-AS1 gene. Both mutations strongly promoted neuronal cell death in normal culture conditions. RNA sequencing and pathway analysis revealed that the transcriptional factor Fos is a target molecule regulating CDKN2B-AS1 overexpression. We demonstrated that gene mutation of CDKN2B-AS1 is directly associated with neuronal cell vulnerability in vitro. Additionally, Fos, which is a downstream signaling molecule of CDKN2B-AS1, may be a potential source of new therapeutic targets for neuronal degeneration in diseases such as glaucoma.
Collapse
Affiliation(s)
- Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zou Meiai
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiya Kanno
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Kawano
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
6
|
Sato K, Saigusa D, Kokubun T, Fujioka A, Feng Q, Saito R, Uruno A, Matsukawa N, Ohno-Oishi M, Kunikata H, Yokoyama Y, Yasuda M, Himori N, Omodaka K, Tsuda S, Maekawa S, Yamamoto M, Nakazawa T. Reduced glutathione level in the aqueous humor of patients with primary open-angle glaucoma and normal-tension glaucoma. NPJ AGING 2023; 9:28. [PMID: 37990002 PMCID: PMC10663551 DOI: 10.1038/s41514-023-00124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/22/2023] [Indexed: 11/23/2023]
Abstract
Glaucoma is a leading cause of blindness worldwide in older people. Profiling the aqueous humor, including the metabolites it contains, is useful to understand physiological and pathological conditions in the eye. In the current study, we used mass spectrometry (MS) to characterize the aqueous humor metabolomic profile and biological features of patients with glaucoma. Aqueous humor samples were collected during trabeculectomy surgery or cataract surgery and analyzed with global metabolomics. We included 40 patients with glaucoma (32 with POAG, 8 with NTG) and 37 control subjects in a discovery study. VIP analysis revealed five metabolites that were elevated and three metabolites that were reduced in the glaucoma patients. The identified metabolomic profile had an area under the receiver operating characteristic curve of 0.953. Among eight selected metabolites, the glutathione level was significantly decreased in association with visual field defects. Moreover, in a validation study to confirm the reproducibility of our findings, the glutathione level was reduced in NTG and POAG patients compared with a cataract control group. Our findings demonstrate that aqueous humor profiling can help to diagnose glaucoma and that various aqueous humor metabolites are correlated with clinical parameters in glaucoma patients. In addition, glutathione is clearly reduced in the aqueous humor of glaucoma patients with both IOP-dependent and IOP-independent disease subtypes. These findings indicate that antioxidant agents in the aqueous humor reflect glaucomatous optic nerve damage and that excessive oxidative stress may be involved in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Amane Fujioka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Qiwei Feng
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
7
|
Tawarayama H, Umeki K, Inoue-Yanagimachi M, Takahashi N, Hasegawa H, Himori N, Tsuda S, Kunikata H, Akaike T, Nakazawa T. Glutathione trisulfide prevents lipopolysaccharide-induced retinal inflammation via inhibition of proinflammatory cytokine production in glial cells. Sci Rep 2023; 13:11513. [PMID: 37460786 DOI: 10.1038/s41598-023-38696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
We aimed to investigate the impact of glutathione trisulfide (GSSSG) on lipopolysaccharide (LPS)-induced inflammation in retinal glia. Inflammatory responses in mouse-derived glial cells and Wistar rat retinas were stimulated with administration of LPS. Cell survival and proinflammatory cytokine production were examined using the Calcein-AM assay, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Retinal microglia were visualized with immunohistochemistry for Iba1. Administration of LPS (10 µg/mL) or GSSSG (less than 100 µM) did not affect survival of cultured primary Müller cells and established microglial cells (BV-2). RT-qPCR and ELISA indicated that GSSSG inhibited LPS-induced gene upregulation and protein secretion of proinflammatory cytokines in these glial cells and rat retinas. GSSSG inhibited LPS-induced activation of TGF-β-activated kinase 1 (TAK1), which is an upstream kinase of NF-κB, in BV-2 cells. Finally, in vivo experiments indicated that intravitreal administration of GSSSG but not its relative glutathione disulfide (GSSG) inhibited LPS (500 ng)-induced accumulation of Iba1-immunopositive microglia in rat retinas. Taken together, GSSSG has the potential to prevent pathogenesis of inflammation-associated ocular diseases by inhibiting proinflammatory cytokine expression in retinal glial cells.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kota Umeki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Naoki Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hirokazu Hasegawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8579, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
8
|
Monné Rodríguez JM, Frisk AL, Kreutzer R, Lemarchand T, Lezmi S, Saravanan C, Stierstorfer B, Thuilliez C, Vezzali E, Wieczorek G, Yun SW, Schaudien D. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of In Situ Hybridization Techniques for Drug Research and Development. Toxicol Pathol 2023; 51:92-111. [PMID: 37449403 PMCID: PMC10467011 DOI: 10.1177/01926233231178282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
9
|
Yuan XL, Chen SL, Xu Y, Yao Y, Liang JJ, Zhuang X, Hald ES, Ng TK. Green tea extract enhances retinal ganglion cell survival and axonal regeneration in rats with optic nerve injury. J Nutr Biochem 2023; 117:109333. [PMID: 36965783 DOI: 10.1016/j.jnutbio.2023.109333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Current clinical treatments have not yet effectively cured progressive retinal ganglion cell (RGC) death and axonal degeneration after optic nerve (ON) injury. We previously demonstrated green tea extract (GTE) can reduce RGC death in rats after ischemic injury. Here, we aim to determine the prophylactic and therapeutic effects and mechanisms of GTE on RGC survival and axonal regeneration in rats with ON injury. GTE (275 or 550 mg/kg) was administered intragastrically for 7 d before or 14 d post-ON crush surgery in adult Fischer 344 rats. Rats with pre- or post-operative treatment of 275 mg/kg GTE showed significantly higher numbers of RGCs and regenerated axons post-ON injury with improved pupillary light reflex as compared to saline-treated rats. Akt and Erk p42/44 activation was higher in the retina of rats given 275 mg/kg GTE pre-surgery, whereas Stat3 activation was higher in those with 275 mg/kg GTE post-operation. Less activated microglia were observed in rats with pre-treatment of 275 or 550 mg/kg GTE. RNA sequencing analysis identified the downregulation of inflammation, apoptosis, and microglia activation genes in the retina of rats with pre- or post-treatment with 275 mg/kg GTE as compared to the saline-treated rats. In summary, this study revealed the prophylactic and therapeutic treatment effects of GTE on RGC survival and axonal regeneration in rats with ON injury, indicating a potential alternative treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Eric S Hald
- Department of Biomedical Engineering, Shantou University, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Tawarayama H, Hirata Y, Uchida K, Himori N, Uesato S, Nakazawa T. Isozyme-specific histone deacetylase 1/2 inhibitor K560 attenuates oxidative stress-induced retinal cell death. Neurosci Lett 2023; 793:136978. [PMID: 36435210 DOI: 10.1016/j.neulet.2022.136978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/23/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Oxidative stress-induced damage is an underlying mechanism in the pathogenesis of age-related retinal diseases. Here, we examined the effects of K560, a potential candidate drug for the treatment of these diseases, on oxidative stress-induced retinal cell death. K560 is a novel isozyme-specific inhibitor of histone deacetylase 1 and 2 (HDAC1/2). Histone acetylation in retinal lysates and dissociated retinal cells was detected with a western blot analysis and cell-based enzyme-linked immunosorbent assay (ELISA), respectively. The viability of mouse retinal cells was measured with an alamarBlue assay. We used immunohistochemistry for RNA binding protein with multiple splicing (RBPMS) to visualize the retinal ganglion cells (RGCs) of mice. An ELISA analysis indicated that histone acetylation was enhanced in dissociated mouse retinal cells treated with K560. The cell viability assay indicated that K560 attenuated both exogenous hydrogen peroxide-induced and endogenous oxidative stress-induced cell death in dissociated retinal cells. Western blot analysis indicated that intravitreal K560 administration enhanced the acetylation of histones H3 and H4 in mouse retinal lysates. To examine the effect of K560 on oxidative stress-induced RGC death, we performed whole-mount immunohistochemistry for RBPMS on retinas dissected from eyes treated with K560 or vehicle on day one, and K560 or vehicle and NMDA on day two. Quantification of RBPMS-immunopositive cells indicated that K560 attenuated NMDA-induced RGC death. Taken together, our findings suggest that administration of a HDAC1/2-specific inhibitor K560 may be effective in the treatment of oxidative stress-mediated retinal degeneration and have less cytotoxicity than other known HDAC inhibitors, which are known to target a wide range of HDAC family members.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Yoshiyuki Hirata
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shinichi Uesato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
11
|
Inoue-Yanagimachi M, Himori N, Uchida K, Tawarayama H, Sato K, Yamamoto M, Namekata K, Harada T, Nakazawa T. Changes in glial cells and neurotrophic factors due to rotenone-induced oxidative stress in Nrf2 knockout mice. Exp Eye Res 2023; 226:109314. [PMID: 36400285 DOI: 10.1016/j.exer.2022.109314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is one of the most common causes of blindness worldwide. It is thought to be a multifactorial disease with underlying mechanisms that include mitochondrial dysfunction and oxidative stress. Here, we used NF-E2 related factor 2 (Nrf2) knockout (KO) mice, which are vulnerable to oxidative stress, to examine a neuroprotective effect against oxidative stress due to rotenone, a mitochondrial complex I inhibitor. Wild-type (WT) and Nrf2 KO mice received an oral solution of rotenone for 30 days. We then extracted the retinas and performed immunohistochemistry and quantitative RT-PCR. We also prepared a primary Müller cell culture of samples from each mouse, added 30 μM rotenone, and then measured cell viability, cytotoxicity and CellRox absorbance. We also examined gene expression. We found a significant increase in the number of 8-OHdG-positive retinal ganglion cells (RGCs) after rotenone administration in both the WT and Nrf2 KO mice. There was no difference in the number of RNA-binding protein with multiple splicing (RBPMS)-positive RGCs in the WT and Nrf2 KO mice, but Nrf2 KO mice that were given rotenone had significantly less retinal gene expression of RBPMS than Nrf2 KO mice given a control. Moreover, there was significantly higher mRNA gene expression of vimentin and glial fibrillary acidic protein (GFAP) in Nrf2 KO mice that received rotenone than WT mice that received rotenone. A statistical analysis of the in vitro experiment showed that cell viability was lower, cytotoxicity was higher, and oxidative stress was higher in the Müller cells of the Nrf2 KO mice than the WT mice. Finally, brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) were significantly higher in the Müller cells of the Nrf2 KO mice than the WT mice. These findings suggest that in Nrf2 KO mice under oxidative stress caused by rotenone, temporary neurotrophic factors are secreted from the Müller cells, conferring neuroprotection in these cells.
Collapse
Affiliation(s)
- Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan; Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
12
|
Bai X, Dong Q, Zhao L, Yao Y, Wang B. microRNA-106b-containing extracellular vesicles affect autophagy of neurons by regulating CDKN2B in Parkinson's disease. Neurosci Lett 2021; 760:136094. [PMID: 34216715 DOI: 10.1016/j.neulet.2021.136094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, and autophagy dysfunction is involved in the pathogenesis of PD. Mesenchymal stem cells (MSC)-derived extracellular vesicles (EVs) have been established as an attractive therapeutic tool, since they can serve as biological nanoparticles with beneficial effects in PD. Herein, the study aimed to investigate the effects of EVs derived microRNA (miR)-106b on autophagy of neurons in PD. Following the development of a mouse model of PD, we conducted behavior test, TUNEL assay and HE staining to verify the success of modeling. Afterward, MSC-derived EVs were extracted and identified. In hippocampal tissues and neurons of PD mice, miR-106b was poorly expressed, while CDKN2B was highly expressed. miR-106b shuttled by MSC-derived EVs increased neuronal survival, autophagy, LC3II/LC3I ratio and Bcl-2 protein expression, while inhibited neuronal apoptosis and Bax expression in PD mice. It was also confirmed that CDKN2B is a downstream target of miR-106b. Overexpression of CDKN2B reversed the protective effects of miR-106b-containing EVs on neurons in mice with PD. Collectively, miR-106b-containing EVs alleviate neuronal apoptosis and enhance neuronal autophagy in PD by downregulating CDKN2B.
Collapse
Affiliation(s)
- Xue Bai
- Department Five of Neurology, Cangzhou Central Hospital, Cangzhou 061000, Hebei, PR China.
| | - Qiaoyun Dong
- Department Five of Neurology, Cangzhou Central Hospital, Cangzhou 061000, Hebei, PR China
| | - Li Zhao
- Department Five of Neurology, Cangzhou Central Hospital, Cangzhou 061000, Hebei, PR China
| | - Yan Yao
- Department Five of Neurology, Cangzhou Central Hospital, Cangzhou 061000, Hebei, PR China
| | - Bo Wang
- Department Five of Neurology, Cangzhou Central Hospital, Cangzhou 061000, Hebei, PR China
| |
Collapse
|
13
|
Tawarayama H, Inoue-Yanagimachi M, Himori N, Nakazawa T. Glial cells modulate retinal cell survival in rotenone-induced neural degeneration. Sci Rep 2021; 11:11159. [PMID: 34045544 PMCID: PMC8159960 DOI: 10.1038/s41598-021-90604-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Administration of the mitochondrial complex I inhibitor rotenone provides an excellent model to study the pathomechanism of oxidative stress-related neural degeneration diseases. In this study, we examined the glial roles in retinal cell survival and degeneration under the rotenone-induced oxidative stress condition. Mouse-derived Müller, microglial (BV-2), and dissociated retinal cells were used for in vitro experiments. Gene expression levels and cell viability were determined using quantitative reverse transcription-polymerase chain reaction and the alamarBlue assay, respectively. Conditioned media were prepared by stimulating glial cells with rotenone. Retinal ganglion cells (RGCs) and inner nuclear layer (INL) were visualized on rat retinal sections by immunohistochemistry and eosin/hematoxylin, respectively. Rotenone dose-dependently induced glial cell death. Treatment with rotenone or rotenone-stimulated glial cell-conditioned media altered gene expression of growth factors and inflammatory cytokines in glial cells. The viability of dissociated retinal cells significantly increased upon culturing in media conditioned with rotenone-stimulated or Müller cell-conditioned media-stimulated BV-2 cells. Furthermore, intravitreal neurotrophin-5 administration prevented the rotenone-induced reduction of RGC number and INL thickness in rats. Thus, glial cells exerted both positive and negative effects on retinal cell survival in rotenone-induced neural degeneration via altered expression of growth factors, especially upregulation of microglia-derived Ntf5, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan. .,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
14
|
Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proc Natl Acad Sci U S A 2020; 117:33597-33607. [PMID: 33318207 PMCID: PMC7777023 DOI: 10.1073/pnas.2004683117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Axonal injury plays a major role in many neurodegenerative diseases. The dual leucine zipper kinase (DLK) signaling pathway is a key regulator of axonal injury-induced neuronal cell death; however, DLK also has an important role in promoting axonal outgrowth. Therefore, inhibiting DLK as a therapeutic approach for neurodegenerative diseases is limited to a neuroprotective outcome without axon regeneration, prohibiting restoration of function. In fact, there are currently no strategies that provide long-term neuroprotection and axonal regeneration after injury. Here, we identified the germinal cell kinase four (GCK-IV) family of kinases as targets to maximize neuroprotection while promoting axon regeneration, making it an attractive therapeutic approach for a subset of neurodegenerative diseases. Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.
Collapse
|