1
|
Wang Y, Gao S, Gao S, Li N, Huang H, Liu X, Yao H, Shen X. Pigment epithelium-derived factor exerts neuroprotection in oxygen-induced retinopathy by targeting endoplasmic reticulum stress and oxidative stress. Exp Eye Res 2024; 249:110147. [PMID: 39510404 DOI: 10.1016/j.exer.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress have been involved in the occurrence of neuronal apoptosis in ischemic retinopathy. Pigment epitheliu-derived factor (PEDF) is well known for its multifunctional properties, including neuroprotection, anti-inflammation and antioxidant. However, the association between PEDF and ER stress or oxidative stress in ischemic retinopathy remain incompletely understood. In this study, the concentration of the key factor of ER stress C/EBP homologous protein (CHOP) in aqueous humor (AqH) and vitreous samples of proliferative diabetic retinopathy (PDR) patients were measured by ELISA assays. Oxygen-induced retinopathy (OIR) mice model was established and PEDF intravitreal injections were conducted. Primary bone marrow derived macrophages (BMDMs) were isolated and cultured under hypoxic conditions in vitro. Western blotting, real-time RT-PCR, immunofluorescence, transmission electron microscopy (TEM), TUNEL assays were performed to explore roles of PEDF on ER stress and oxidative stress, as well as subsequently neuronal apoptosis under hypoxic conditions in vivo and in vitro. The results revealed that ER stress and oxidative stress were notably activated under hypoxic conditions. We also observed that hypoxia evoked ultrastructural damage of ER and mitochondrion in the retina. However, PEDF significantly prevented ER stress and oxidative stress, as well as the damage of ultrastructure, resulting in diminution of photoreceptor apoptosis in OIR retinas. These results indicate that PEDF may play its neuroprotection role through inhibiting ER stress and oxidative stress in ischemic retinopathy, which is a novel molecular mechanism of PEDF protecting photoreceptors from ischemic damage, thereby suggesting that PEDF is an effective therapeutic agent for the treatment of neuron damage in ischemic retinal diseases.
Collapse
Affiliation(s)
- Ya'nuo Wang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hanwen Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiping Yao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ophthalmology, Ruijin Hospital, Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Yao X, Li Z, Lei Y, Liu Q, Chen S, Zhang H, Dong X, He K, Guo J, Li MJ, Wang X, Yan H. Single-Cell Multiomics Profiling Reveals Heterogeneity of Müller Cells in the Oxygen-Induced Retinopathy Model. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39504047 PMCID: PMC11547256 DOI: 10.1167/iovs.65.13.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/28/2024] [Indexed: 11/10/2024] Open
Abstract
Purpose Retinal neovascularization poses heightened risks of vision loss and blindness. Despite its clinical significance, the molecular mechanisms underlying the pathogenesis of retinal neovascularization remain elusive. This study utilized single-cell multiomics profiling in an oxygen-induced retinopathy (OIR) model to comprehensively investigate the intricate molecular landscape of retinal neovascularization. Methods Mice were exposed to hyperoxia to induce the OIR model, and retinas were isolated for nucleus isolation. The cellular landscape of the single-nucleus suspensions was extensively characterized through single-cell multiomics sequencing. Single-cell data were integrated with genome-wide association study (GWAS) data to identify correlations between ocular cell types and diabetic retinopathy. Cell communication analysis among cells was conducted to unravel crucial ligand-receptor signals. Trajectory analysis and dynamic characterization of Müller cells were performed, followed by integration with human retinal data for pathway analysis. Results The multiomics dataset revealed six major ocular cell classes, with Müller cells/astrocytes showing significant associations with proliferative diabetic retinopathy (PDR). Cell communication analysis highlighted pathways that are associated with vascular proliferation and neurodevelopment, such as Vegfa-Vegfr2, Igf1-Igf1r, Nrxn3-Nlgn1, and Efna5-Epha4. Trajectory analysis identified a subset of Müller cells expressing genes linked to photoreceptor degeneration. Multiomics data integration further unveiled positively regulated genes in OIR Müller cells/astrocytes associated with axon development and neurotransmitter transmission. Conclusions This study significantly advances our understanding of the intricate cellular and molecular mechanisms underlying retinal neovascularization, emphasizing the pivotal role of Müller cells. The identified pathways provide valuable insights into potential therapeutic targets for PDR, offering promising directions for further research and clinical interventions.
Collapse
Affiliation(s)
- Xueming Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Li
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yi Lei
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Qiangyun Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Haokun Zhang
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ju Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Shi L, Xu Y, Zhao C, Qu G, Hao M. Liraglutide ameliorates high glucose-induced vascular endothelial injury through TRIB3/NF-κB signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:1046-1057. [PMID: 39039329 DOI: 10.1007/s11626-024-00947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
As one of the most commonly used antidiabetic medications clinically, liraglutide is involved in the protection of vascular endothelium, and whether it can relieve high glucose-induced vascular endothelial damage was unknown. This study aims to address the response of liraglutide (LIRA) on human umbilical vein endothelial cells, as well as to elucidate its possible underlying mechanism. We established a vascular endothelial cell injury model by exposing human umbilical vein endothelial cells (HUVECs) to high glucose, and used LIRA pretreatment before HG treatment to address the endothelial protective effect of LIRA. Our results suggest that LIRA prevented HG-induced HUVEC apoptosis, oxidative stress, inflammasome activation, and pyroptosis. Furthermore, silencing of tribbles homolog 3 (TRIB3) could markedly reduce HG-induced HUVEC apoptosis, ROS level, the expressions of TXNIP, cleaved caspase3, NLRP3, and caspase1, indicating TRIB3 inhibition protected HUVECs against HG-induced vascular endothelial injury. In addition, LIRA restrained NF-κB/IκB-α signaling pathway activation in HUVECs. Thus, LIRA appears to mitigate HG-induced apoptosis, oxidative stress, inflammasome activation, and pyroptosis in HUVECs via regulating the TRIB3/NF-κB/IκB-α signaling pathway. Our study provides new insight into the mechanisms underlying the protective activity of LIRA against the vascular endothelial injury in diabetic vascular complication.
Collapse
Affiliation(s)
- Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yingying Xu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chao Zhao
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Guangjin Qu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
4
|
Degroote RL, Schmalen A, Renner S, Wolf E, Hauck SM, Deeg CA. Diabetic retinopathy from the vitreous proteome perspective: The INS C94Y transgenic pig model study. Proteomics 2024; 24:e2300591. [PMID: 39126128 DOI: 10.1002/pmic.202300591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
INSC94Y transgenic pigs represent a model for mutant insulin gene-induced diabetes of youth, with impaired insulin secretion and beta cell loss, leading to elevated fasting blood glucose levels. A key complication of diabetes mellitus is diabetic retinopathy (DR), characterized by hyperglycemia-induced abnormalities in the retina. Adjacent to the retina lies the vitreous, a gelatinous matrix vital for ocular function. It harbors proteins and signaling molecules, offering insights into vitreous biology and ocular health. Moreover, as a reservoir for secreted molecules, the vitreous illuminates molecular processes within intraocular structures, especially under pathological conditions. To uncover the proteomic profile of porcine vitreous and explore its relevance to DR, we employed discovery proteomics to compare vitreous samples from INSC94Y transgenic pigs and wild-type controls. Our analysis identified 1404 proteins, with 266 showing differential abundance in INSC94Y vitreous. Notably, the abundances of ITGB1, COX2, and GRIFIN were significantly elevated in INSC94Y vitreous. Gene Set Enrichment Analysis unveiled heightened MYC and mTORC1 signaling in INSC94Y vitreous, shedding light on its biological significance in diabetes-associated ocular pathophysiology. These findings deepen our understanding of vitreous involvement in DR and provide valuable insights into potential therapeutic targets. Raw data are accessible via ProteomeXchange (PXD038198).
Collapse
Affiliation(s)
- Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Adrian Schmalen
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Hu Z, Wang X, Hu Q, Chen X. Exploring the protective effects of herbal monomers against diabetic retinopathy based on the regulation of autophagy and apoptosis: A review. Medicine (Baltimore) 2023; 102:e35541. [PMID: 37904448 PMCID: PMC10615407 DOI: 10.1097/md.0000000000035541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Diabetic retinopathy (DR) has become one of the top 3 blinding eye diseases in the world. In spite of recent therapeutic breakthroughs, it is not yet possible to cure DR through pharmacotherapy. Cell death is thought to play a key role in the pathogenesis of DR. Moderate modulation of cellular autophagy and inhibition of apoptosis have been identified as effective targets for the treatment of DR. Numerous phytochemicals have emerged as potential new drugs for the treatment of DR. We collected basic DR research on herbal monomers through keywords such as autophagy and apoptosis, and conducted a systematic search for relevant research articles published in the PubMed database. This review provides the effects and reports of herbal monomers on various DR cellular and animal models in vivo and in vitro in the available literature, and emphasizes the importance of cellular autophagy and apoptosis as current DR therapeutic targets. Based on our review, we believe that herbal monomers that modulate autophagy and inhibit apoptosis may be potentially effective candidates for the development of new drugs in the treatment of DR. It provides a strategy for further development and application of herbal medicines for DR treatment.
Collapse
Affiliation(s)
- Zhuoyu Hu
- Department of ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xuan Wang
- Graduate School of Hunan University of Chinese Medicine, Changsha, Changsha, People’s Republic of China
| | - Qi Hu
- Department of ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xiangdong Chen
- Department of ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
6
|
Mirza I, Haloul M, Hassan C, Masrur M, Mostafa A, Bianco FM, Ali MM, Minshall RD, Mahmoud AM. Adiposomes from Obese-Diabetic Individuals Promote Endothelial Dysfunction and Loss of Surface Caveolae. Cells 2023; 12:2453. [PMID: 37887297 PMCID: PMC10605845 DOI: 10.3390/cells12202453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Glycosphingolipids (GSLs) are products of lipid glycosylation that have been implicated in the development of cardiovascular diseases. In diabetes, the adipocyte microenvironment is characterized by hyperglycemia and inflammation, resulting in high levels of GSLs. Therefore, we sought to assess the GSL content in extracellular vesicles derived from the adipose tissues (adiposomes) of obese-diabetic (OB-T2D) subjects and their impact on endothelial cell function. To this end, endothelial cells were exposed to adiposomes isolated from OB-T2D versus healthy subjects. Cells were assessed for caveolar integrity and related signaling, such as Src-kinase and caveolin-1 (cav-1) phosphorylation, and functional pathways, such as endothelial nitric oxide synthase (eNOS) activity. Compared with adiposomes from healthy subjects, OB-T2D adiposomes had higher levels of GSLs, especially LacCer and GM3; they promoted cav-1 phosphorylation coupled to an obvious loss of endothelial surface caveolae and induced eNOS-uncoupling, peroxynitrite generation, and cav-1 nitrosylation. These effects were abolished by Src kinase inhibition and were not observed in GSL-depleted adiposomes. At the functional levels, OB-T2D adiposomes reduced nitric oxide production, shear response, and albumin intake in endothelial cells and impaired flow-induced dilation in healthy arterioles. In conclusion, OB-T2D adiposomes carried a detrimental GSL cargo that disturbed endothelial caveolae and the associated signaling.
Collapse
Affiliation(s)
- Imaduddin Mirza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Mohamed Haloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Chandra Hassan
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mario Masrur
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Amro Mostafa
- Departments of Anesthesiology and Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Francesco M. Bianco
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mohamed M. Ali
- School of Business and Non-Profit Management, North Park University, Chicago, IL 60625, USA;
| | - Richard D. Minshall
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Ouyang J, Zhou L, Wang Q. Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1234824. [PMID: 37772084 PMCID: PMC10525335 DOI: 10.3389/fendo.2023.1234824] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Yu X, Teng Q, Bao K, Chudhary M, Qi H, Zhou W, Che H, Liu J, Ren X, Kong L. Thioredoxin 1 overexpression attenuated diabetes-induced endoplasmic reticulum stress in Müller cells via apoptosis signal-regulating kinase 1. J Cell Biochem 2023; 124:421-433. [PMID: 36780445 DOI: 10.1002/jcb.30378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
As one of the common and serious chronic complications of diabetes mellitus (DM), the related mechanism of diabetic retinopathy (DR) has not been fully understood. Müller cell reactive gliosis is one of the early pathophysiological features of DR. Therefore, exploring the manner to reduce diabetes-induced Müller cell damage is essential to delay DR. Thioredoxin 1 (Trx1), one of the ubiquitous redox enzymes, plays a vital role in redox homeostasis via protein-protein interactions, including apoptosis signal-regulating kinase 1 (ASK1). Previous studies have shown that upregulation of Trx by some drugs can attenuate endoplasmic reticulum stress (ERS) in DR, but the related mechanism was unclear. In this study, we used DM mouse and high glucose (HG)-cultured human Müller cells as models to clarify the effect of Trx1 on ERS and the underlying mechanism. The data showed that the diabetes-induced Müller cell damage was increased significantly. Moreover, the expression of ERS and reactive gliosis was also upregulated in diabetes in vivo and in vitro. However, it was reversed after Trx1 overexpression. Besides, ERS-related protein expression, reactive gliosis, and apoptosis were decreased after transfection with ASK1 small-interfering RNA in stable Trx1 overexpression Müller cells after HG treatment. Taken together, Trx1 could protect Müller cells from diabetes-induced damage, and the underlying mechanism was related to inhibited ERS via ASK1.
Collapse
Affiliation(s)
- Xuebin Yu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qiufeng Teng
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Kaimin Bao
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Maryam Chudhary
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hui Qi
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Wenying Zhou
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hongxin Che
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Junli Liu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
- Henan Key Laboratory of Neural Regeneration, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
9
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis. Int J Mol Sci 2022; 23:11663. [PMID: 36232962 PMCID: PMC9570222 DOI: 10.3390/ijms231911663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Alexander M. Markin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Elena R. Andreeva
- Laboratory of Cell Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | | |
Collapse
|
10
|
Wu K, Zhou K, Zhao M, Xiang L, Mei T, Xu W, Shang B, Liu X, Lai Y, Lin M, Luo J, Zhao L. TCF7L2 promotes ER stress signaling in diabetic retinopathy. Exp Eye Res 2022; 221:109142. [PMID: 35691375 DOI: 10.1016/j.exer.2022.109142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common blindness in working-age adults. Transcription factor 7 like 2 (TCF7L2) is a susceptibility gene of DR, however, its roles in the pathogenesis of DR are still largely unknown. In this study, we found that TCF7L2 was mainly located in the cell nucleus of retinal ganglion cell layer (GCL) and inner nuclear layer (INL), while it was not expressed in the cell nucleus of retinal outer nuclear layer (ONL). Expression of TCF7L2 was significantly elevated in the retinas of db/db diabetic mice and oxygen-induced retinopathy (OIR) mice. Also, in Ad-hTCF7L2 treated hiPSCs-derived retinal progenitor cells (RPCs), activating transcription factor 6 (ATF6)-related endoplasmic reticulum (ER) stress signaling was remarkably activated. Moreover, knockdown of TCF7L2 significantly inhibited ATF6-related ER stress signaling. Furthermore, the data of endothelial permeability assay showed that RPCs pretreated with Ad-hTCF7L2 lead to enhanced monolayer permeability of human umbilical vein endothelial cells (HUVECs), and knockdown of TCF7L2 or ATF6 in RPCs could alleviate the monolayer permeability of HUVECs. Thus, our results showed that TCF7L2 could trigger ATF6-related ER stress signaling and promote vein endothelial cell permeability, which will provide important insight into the role of TCF7L2 in the pathogenesis of DR and contribute to designing potential therapies.
Collapse
Affiliation(s)
- Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kesi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lijun Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|