1
|
Sin TN, Tng N, Dragoli J, Ramesh Kumar S, Villafuerte-Trisolini C, Chung SH, Tu L, Le SM, Shim JH, Pepple KL, Ravindran R, Khan IH, Moshiri A, Thomasy SM, Yiu G. Safety and efficacy of CRISPR-mediated genome ablation of VEGFA as a treatment for choroidal neovascularization in nonhuman primate eyes. Mol Ther 2024:S1525-0016(24)00651-8. [PMID: 39342431 DOI: 10.1016/j.ymthe.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
CRISPR-based genome editing enables permanent suppression of angiogenic factors such as vascular endothelial growth factor (VEGF) as a potential treatment for choroidal neovascularization (CNV)-a major cause of blindness in age-related macular degeneration. We previously designed adeno-associated viral (AAV) vectors with S. pyogenes Cas 9 (SpCas9) and guide RNAs (gRNAs) to target conserved sequences in VEGFA across mouse, rhesus macaque, and human, with successful suppression of VEGF and laser-induced CNV in mice. Here, we advanced the platform to nonhuman primates and found that subretinal AAV8-SpCas9 with gRNAs targeting VEGFA may reduce VEGF and CNV severity as compared with SpCas9 without gRNAs. However, all eyes that received AAV8-SpCas9 regardless of gRNA presence developed subfoveal deposits, concentric macular rings, and outer retinal disruption that worsened at higher dose. Immunohistochemistry showed subfoveal accumulation of retinal pigment epithelial cells, collagen, and vimentin, disrupted photoreceptor structure, and retinal glial and microglial activation. Subretinal AAV8-SpCas9 triggered aqueous elevations in CCL2, but minimal systemic humoral or cellular responses against AAV8, SpCas9, or GFP reporter. Our findings suggest that CRISPR-mediated VEGFA ablation in nonhuman primate eyes may suppress VEGF and CNV, but can also lead to unexpected subretinal fibrosis, photoreceptor damage, and retinal inflammation despite minimal systemic immune responses.
Collapse
Affiliation(s)
- Tzu-Ni Sin
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Nicole Tng
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jack Dragoli
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sruthi Ramesh Kumar
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Sook Hyun Chung
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Lien Tu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sophie M Le
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jae Ho Shim
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Resmi Ravindran
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Imran H Khan
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sara M Thomasy
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA; Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Ratra D, Ratra V, Bhatt D, Shakeel A. Diagnostic and Therapeutic Challenges. Retina 2024; 44:1470-1474. [PMID: 39047134 DOI: 10.1097/iae.0000000000004064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/09/2024] [Indexed: 07/27/2024]
|
3
|
Gedtal M, Woodside J, Wright D, Rayman M, Hogg RE. Subscapular skinfold thickness, not other anthropometric and dual-energy X-ray absorptiometry-measured adiposity, is positively associated with the presence of age-related macular degeneration: a cross-sectional study from National Health and Nutrition Examination Survey 2005-2006. BMJ Open Ophthalmol 2024; 9:e001505. [PMID: 39089734 PMCID: PMC11293401 DOI: 10.1136/bmjophth-2023-001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Current literature reveals an association between anthropometric measures of adiposity (AnthM) and age-related macular degeneration (AMD), but few have explored the disease association with imaging methods. This study aimed to explore the relationship between AMD status and dual-energy X-ray absorptiometry measures (DEXAMs) among a representative sample of the US population, and compare the association with AnthM. METHOD Using a representative sample in the National Health and Nutrition Examination Study 2005-2006 (n=1632), DEXAMs across the whole body and waist (ie, android), and relative fat distributions (eg, percentage fat, android-to-total body ratio) were analysed between no AMD (baseline) and any AMD. Bivariate analyses across AMD status were similarly performed for AnthM (ie, body mass index, waist circumference and skinfold thicknesses) and potential confounders (ie, demographics and health-related variables). Significant adiposity measures were analysed using logistic regression, adjusting for confounders. RESULTS The participants in the sample were aged 40-69 years, were majority female (52%) and mainly Caucasian (76.5%). Bivariate analysis revealed having any AMD had positive significant associations with android-to-total fat ratio and subscapular skinfold thickness (SSFT). Other AnthM and DEXAMs were not significant. After adjusting age, gender and prescription of cholesterol-lowering medicine, only SSFT remained significantly associated. CONCLUSION SSFT represents an independent risk factor for AMD presence compared with other AnthM and DEXAMs. SSFT is an established method of measuring fat under the skin (ie, subcutaneous fat). Hence, subcutaneous fat may be more relevant in explaining the adiposity-AMD link due to physiological properties specific to the tissue. Limitations include the restricted age range and low numbers of participants with late AMD.
Collapse
|
4
|
Curcio CA, Kar D, Owsley C, Sloan KR, Ach T. Age-Related Macular Degeneration, a Mathematically Tractable Disease. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38466281 PMCID: PMC10916886 DOI: 10.1167/iovs.65.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Kramer RH. Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders. Annu Rev Vis Sci 2023; 9:131-153. [PMID: 37713276 DOI: 10.1146/annurev-vision-112122-020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, USA;
| |
Collapse
|
6
|
Sazhnyev Y, Sin TN, Ma A, Chang E, Huynh L, Roszak K, Park S, Choy K, Farsiu S, Moshiri A, Thomasy SM, Yiu G. Choroidal Changes in Rhesus Macaques in Aging and Age-Related Drusen. Invest Ophthalmol Vis Sci 2023; 64:44. [PMID: 37773500 PMCID: PMC10547013 DOI: 10.1167/iovs.64.12.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023] Open
Abstract
Purpose Choroidal vascular changes occur with normal aging and age-related macular degeneration (AMD). Here, we evaluate choroidal thickness and vascularity in aged rhesus macaques to better understand the choroid's role in this nonhuman primate model of AMD. Methods We analyzed optical coherence tomography (OCT) images of 244 eyes from 122 rhesus macaques (aged 4-32 years) to measure choroidal thickness (CT) and choroidal vascularity index (CVI). Drusen number, size, and volume were measured by semiautomated annotation and segmentation of OCT images. We performed regression analyses to determine any association of CT or CVI with age, sex, and axial length and to determine if the presence and volume of soft drusen impacted these choroidal parameters. Results In rhesus macaques, subfoveal CT decreased with age at 3.2 µm/y (R2 = 0.481, P < 0.001), while CVI decreased at 0.66% per year (R2 = 0.257, P < 0.001). Eyes with soft drusen exhibited thicker choroid (179.9 ± 17.5 µm vs. 162.0 ± 27.9 µm, P < 0.001) and higher CVI (0.612 ± 0.051 vs. 0.577 ± 0.093, P = 0.005) than age-matched control animals. Neither CT or CVI appeared to be associated with drusen number, size, or volume in this cohort. However, some drusen in macaques were associated with underlying choroidal vessel enlargement resembling pachydrusen in human patients with AMD. Conclusions Changes in the choroidal vasculature in rhesus macaques resemble choroidal changes in human aging, but eyes with drusen exhibit choroidal thickening, increased vascularity, and phenotypic characteristics of pachydrusen observed in some patients with AMD.
Collapse
Affiliation(s)
- Yevgeniy Sazhnyev
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
- Department of Ophthalmology, California Northstate University, College of Medicine, Elk Grove, California, United States
| | - Tzu-Ni Sin
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Anthony Ma
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
- Department of Ophthalmology, California Northstate University, College of Medicine, Elk Grove, California, United States
| | - Ellie Chang
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Leon Huynh
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Karolina Roszak
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Sangwan Park
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Kevin Choy
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Sara M. Thomasy
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| |
Collapse
|
7
|
Ujiie N, Norden PR, Fang R, Beckmann L, Cai Z, Kweon J, Liu T, Tan C, Kuhn MS, Stamer WD, Aoto K, Quaggin SE, Zhang HF, Kume T. Differential roles of FOXC2 in the trabecular meshwork and Schlemm's canal in glaucomatous pathology. Life Sci Alliance 2023; 6:e202201721. [PMID: 37414529 PMCID: PMC10326420 DOI: 10.26508/lsa.202201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Impaired development and maintenance of Schlemm's canal (SC) are associated with perturbed aqueous humor outflow and intraocular pressure. The angiopoietin (ANGPT)/TIE2 signaling pathway regulates SC development and maintenance, whereas the molecular mechanisms of crosstalk between SC and the neural crest (NC)-derived neighboring tissue, the trabecular meshwork (TM), are poorly understood. Here, we show NC-specific forkhead box (Fox)c2 deletion in mice results in impaired SC morphogenesis, loss of SC identity, and elevated intraocular pressure. Visible-light optical coherence tomography analysis further demonstrated functional impairment of the SC in response to changes in intraocular pressure in NC-Foxc2 -/- mice, suggesting altered TM biomechanics. Single-cell RNA-sequencing analysis identified that this phenotype is predominately characterized by transcriptional changes associated with extracellular matrix organization and stiffness in TM cell clusters, including increased matrix metalloproteinase expression, which can cleave the TIE2 ectodomain to produce soluble TIE2. Moreover, endothelial-specific Foxc2 deletion impaired SC morphogenesis because of reduced TIE2 expression, which was rescued by deleting the TIE2 phosphatase VE-PTP. Thus, Foxc2 is critical in maintaining SC identity and morphogenesis via TM-SC crosstalk.
Collapse
Affiliation(s)
- Naoto Ujiie
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pieter R Norden
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Junghun Kweon
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ting Liu
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Megan S Kuhn
- Duke Eye Center, Duke University, Durham, NC, USA
| | | | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Salpeter EM, Moshiri A, Ferneding M, Motta MJ, Park S, Skouritakis C, Thomasy SM. Chromatic Pupillometry as a Putative Screening Tool for Heritable Retinal Disease in Rhesus Macaques. Transl Vis Sci Technol 2023; 12:13. [PMID: 38752621 PMCID: PMC10289275 DOI: 10.1167/tvst.12.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/22/2023] [Indexed: 05/19/2024] Open
Abstract
Purpose Non-human primates (NHPs) are useful models for human retinal disease. Chromatic pupillometry has been proposed as a noninvasive method of identifying inherited retinal diseases (IRDs) in humans; however, standard protocols employ time-consuming dark adaptation. We utilized shortened and standard dark-adaptation protocols to compare pupillary light reflex characteristics following chromatic stimulation in rhesus macaques with achromatopsia to wild-type (WT) controls with normal retinal function. Methods Nine rhesus macaques homozygous for the p.R656Q mutation (PDE6C HOMs) and nine WT controls were evaluated using chromatic pupillometry following 1-minute versus standard 20-minute dark adaptations. The following outcomes were measured and compared between groups: pupil constriction latency, peak constriction, pupil constriction time, and constriction velocity. Results Pupil constriction latency was significantly longer in PDE6C HOMs with red-light (P = 0.0002) and blue-light (P = 0.04) stimulation versus WT controls. Peak constriction was significantly less in PDE6C HOMs with all light stimulation compared to WT controls (P < 0.0001). Pupil constriction time was significantly shorter in PDE6C HOMs versus WT controls with red-light (P = 0.04) and white-light (P = 0.003) stimulation. Pupil constriction velocity was significantly slower in PDE6C HOMs versus WT controls with red-light (P < 0.0001), blue-light (P < 0.0001), and white-light (P = 0.0002) stimulation. Dark adaptation time only significantly affected peak (P = 0.008) and time of pupil constriction (P = 0.02) following blue-light stimulation. Conclusions Chromatic pupillometry following 1- and 20-minute dark adaptation is an effective tool for screening NHPs for achromatopsia. Translational Relevance Rapid identification of NHPs with IRDs will provide animal research models to advance research and treatment of achromatopia in humans.
Collapse
Affiliation(s)
- Elyse M. Salpeter
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| | - Michelle Ferneding
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Monica J. Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Chrisoula Skouritakis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Ophthalmology and Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
9
|
Sin TN, Kim S, Li Y, Wang J, Chen R, Chung SH, Kim S, Casanova MI, Park S, Smit-McBride Z, Sun N, Pomerantz O, Roberts JA, Guan B, Hufnagel RB, Moshiri A, Thomasy SM, Sieving PA, Yiu G. A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36689233 PMCID: PMC9896856 DOI: 10.1167/iovs.64.1.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Purpose Foveoschisis involves the pathologic splitting of retinal layers at the fovea, which may occur congenitally in X-linked retinoschisis (XLRS) or as an acquired complication of myopia. XLRS is attributed to functional loss of the retinal adhesion protein retinoschisin 1 (RS1), but the pathophysiology of myopic foveoschisis is unclear due to the lack of animal models. Here, we characterized a novel nonhuman primate model of myopic foveoschisis through clinical examination and multimodal imaging followed by morphologic, cellular, and transcriptional profiling of retinal tissues and genetic analysis. Methods We identified a rhesus macaque with behavioral and anatomic features of myopic foveoschisis, and monitored disease progression over 14 months by fundus photography, fluorescein angiography, and optical coherence tomography (OCT). After necropsy, we evaluated anatomic and cellular changes by immunohistochemistry and transcriptomic changes using single-nuclei RNA-sequencing (snRNA-seq). Finally, we performed Sanger and whole exome sequencing with focus on the RS1 gene. Results Affected eyes demonstrated posterior hyaloid traction and progressive splitting of the outer plexiform layer on OCT. Immunohistochemistry showed increased GFAP expression in Müller glia and loss of ramified Iba-1+ microglia, suggesting macro- and microglial activation with minimal photoreceptor alterations. SnRNA-seq revealed gene expression changes predominantly in cones and retinal ganglion cells involving chromatin modification, suggestive of cellular stress at the fovea. No defects in the RS1 gene or its expression were detected. Conclusions This nonhuman primate model of foveoschisis reveals insights into how acquired myopic traction leads to phenotypically similar morphologic and cellular changes as congenital XLRS without alterations in RS1.
Collapse
Affiliation(s)
- Tzu-Ni Sin
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Sangbae Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Jun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Sook Hyun Chung
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Soohyun Kim
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, California, United States
| | - M. Isabel Casanova
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, California, United States
| | - Sangwan Park
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, California, United States
| | - Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Ning Sun
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Ori Pomerantz
- California National Primate Research Center, Davis, California, United States
| | - Jeffrey A. Roberts
- California National Primate Research Center, Davis, California, United States
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Sara M. Thomasy
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, California, United States
| | - Paul A. Sieving
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| |
Collapse
|
10
|
Chen L, Yang P, Curcio CA. Visualizing lipid behind the retina in aging and age-related macular degeneration, via indocyanine green angiography (ASHS-LIA). Eye (Lond) 2022; 36:1735-1746. [PMID: 35314773 PMCID: PMC9391351 DOI: 10.1038/s41433-022-02016-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Age-related macular degeneration (AMD) causes legal blindness in older adults worldwide. Soft drusen are the most extensively documented intraocular risk factor for progression to advanced AMD. A long-standing paradox in AMD pathophysiology has been the vulnerability of Asian populations to polypoidal choroidal vasculopathy (PCV) in the presence of relatively few drusen. Age-related scattered hypofluorescent spots on late phase indocyanine green angiography (ASHS-LIA) was recently proposed as precursors of PCV. Herein, we offer a resolution to the paradox by reviewing evidence that ASHS-LIA indicates the diffuse form of lipoprotein-related lipids accumulating in Bruch's membrane (BrM) throughout adulthood. Deposition of these lipids leads to soft drusen and basal linear deposit (BLinD), a thin layer of soft drusen material in AMD; Pre-BLinD is the precursor. This evidence includes: 1. Both ASHS-LIA and pre-BLinD/BLinD accumulate in older adults and start under the macula; 2. ASHS-LIA shares hypofluorescence with soft drusen, known to be physically continuous with pre-BLinD/BLinD. 3. Model system studies illuminated a mechanism for indocyanine green uptake by retinal pigment epithelium. 4. Neither ASHS-LIA nor pre-BLinD/ BLinD are visible by multimodal imaging anchored on current optical coherence tomography, as confirmed with direct clinicopathologic correlation. To contextualize ASHS-LIA, we also summarize angiographic characteristics of different drusen subtypes in AMD. As possible precursors for PCV, lipid accumulation in forms beyond soft drusen may contribute to the pathogenesis of this prevalent disease in Asia. ASHS-LIA also might help identify patients at risk for progression, of value to clinical trials for therapies targeting early or intermediate AMD.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
11
|
Maloca PM, Freichel C, Hänsli C, Valmaggia P, Müller PL, Zweifel S, Seeger C, Inglin N, Scholl HPN, Denk N. Cynomolgus monkey's choroid reference database derived from hybrid deep learning optical coherence tomography segmentation. Sci Rep 2022; 12:13276. [PMID: 35918392 PMCID: PMC9346135 DOI: 10.1038/s41598-022-17699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cynomolgus monkeys exhibit human-like features, such as a fovea, so they are often used in non-clinical research. Nevertheless, little is known about the natural variation of the choroidal thickness in relation to origin and sex. A combination of deep learning and a deterministic computer vision algorithm was applied for automatic segmentation of foveolar optical coherence tomography images in cynomolgus monkeys. The main evaluation parameters were choroidal thickness and surface area directed from the deepest point on OCT images within the fovea, marked as the nulla with regard to sex and origin. Reference choroid landmarks were set underneath the nulla and at 500 µm intervals laterally up to a distance of 2000 µm nasally and temporally, complemented by a sub-analysis of the central bouquet of cones. 203 animals contributed 374 eyes for a reference choroid database. The overall average central choroidal thickness was 193 µm with a coefficient of variation of 7.8%, and the overall mean surface area of the central bouquet temporally was 19,335 µm2 and nasally was 19,283 µm2. The choroidal thickness of the fovea appears relatively homogeneous between the sexes and the studied origins. However, considerable natural variation has been observed, which needs to be appreciated.
Collapse
Affiliation(s)
- Peter M Maloca
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland. .,Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland. .,Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
| | - Christian Freichel
- Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche, Innovation Center Basel, 4070, Basel, Switzerland
| | - Christof Hänsli
- Berner Augenklinik Am Lindenhofspital and University of Bern, Bern, Switzerland
| | - Philippe Valmaggia
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
| | - Philipp L Müller
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.,Department of Ophthalmology, University of Bonn, Bonn, Germany.,Makulazentrum Augsburg, Fachärzte Augenheilkunde, Augsburg, Germany
| | - Sandrine Zweifel
- University Hospital Zurich, Frauenklinikstrasse 24, 8091, Zurich, Switzerland.,University of Zurich, Rämistrasse 71, 8006, Zürich, Switzerland
| | - Christine Seeger
- Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche, Innovation Center Basel, 4070, Basel, Switzerland
| | - Nadja Inglin
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.,Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland
| | - Nora Denk
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.,Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche, Innovation Center Basel, 4070, Basel, Switzerland
| |
Collapse
|
12
|
Toulouie S, Chang S, Pan J, Snyder K, Yiu G. Relationship of Retinal Vessel Caliber with Age-Related Macular Degeneration. J Ophthalmol 2022; 2022:8210599. [PMID: 35957743 PMCID: PMC9357695 DOI: 10.1155/2022/8210599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose Evaluate the relationship between retinal vascular caliber and age-related macular degeneration (AMD) severity or progression. Methods A retrospective secondary analysis of 1172 fundus photographs and clinical data from the prospective Age-Related Eye Disease Study (AREDS). Central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and arteriole-to-venule ratio (AVR) were measured using the Parr-Hubbard-Knudtson formula. Univariate and multivariate regressions were used to determine the association of CRAE, CRVE, and AVR with age, sex, smoking status, presence of cilioretinal artery, and AMD severity at baseline and 5 years using the 9-step AMD severity score. Results Only CRAE and CRVE were higher in men (P < 0.001), current smokers (P < 0.001), and the eyes with a cilioretinal artery (P=0.009 - 0.043). AMD severity was greater in older patients (P=0.001), current smokers (P=0.012), the eyes without a cilioretinal artery (P=0.001), and lower AVR (P=0.034) on multivariate regression but was not influenced by CRAE or CRVE (P=0.240 - 0.500). Choroidal neovascularization (CNV) presence was associated with older age (P=0.003) and absence of a cilioretinal artery (P=0.009), while central geographic atrophy (CGA) was associated with narrower CRAE (P=0.002) and possibly AVR (P=0.046). None of the retinal vessel parameters were predictive of AMD severity score or new onset of CNV or CGA at 5 years. Conclusion A lower arteriole-to-venule ratio may be associated with AMD severity, with narrower arterioles seen in the eyes with geographic atrophy, suggesting a role of the retinal vasculature in AMD pathophysiology. This trial is registered with ClinicalTrials.gov Identifier: NCT00000145.
Collapse
Affiliation(s)
- Sara Toulouie
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Sean Chang
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Julia Pan
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Kiersten Snyder
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
13
|
Keeling E, Lynn SA, Koh YM, Scott JA, Kendall A, Gatherer M, Page A, Cagampang FR, Lotery AJ, Ratnayaka JA. A High Fat "Western-style" Diet Induces AMD-Like Features in Wildtype Mice. Mol Nutr Food Res 2022; 66:e2100823. [PMID: 35306732 PMCID: PMC9287010 DOI: 10.1002/mnfr.202100823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/01/2022] [Indexed: 12/20/2022]
Abstract
Scope The intake of a “Western‐style” diet rich in fats is linked with developing retinopathies including age‐related macular degeneration (AMD). Wildtype mice are given a high fat diet (HFD) to determine how unhealthy foods can bring about retinal degeneration. Methods and results Following weaning, female C57BL/6 mice are maintained on standard chow (7% kcal fat, n = 29) or a HFD (45% kcal fat, n = 27) for 12 months. Animals were sacrificed following electroretinography (ERG) and their eyes analyzed by histology, confocal immunofluorescence, and transmission electron microscopy. HFD mice become obese, but showed normal retinal function compared to chow‐fed controls. However, diminished β3tubulin labeling of retinal cross‐sections indicated fewer/damaged neuronal processes in the inner plexiform layer. AMD‐linked proteins clusterin and TIMP3 accumulated in the retinal pigment epithelium (RPE) and Bruch's membrane (BrM). Neutral lipids also deposited in the outer retinae of HFD mice. Ultrastructural analysis revealed disorganized photoreceptor outer segments, collapsed/misaligned RPE microvilli, vacuoles, convoluted basolateral RPE infolds and BrM changes. Basal laminar‐like deposits were also present alongside abnormal choroidal endothelial cells. Conclusions We show that prolonged exposure to an unhealthy “Western‐style” diet alone can recapitulate early‐intermediate AMD‐like features in wildtype mice, highlighting the importance of diet and nutrition in the etiology of sight‐loss.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Yen Min Koh
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Jenny A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Aaron Kendall
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Maureen Gatherer
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton, SO16 6YD, UK
| | - Felino R Cagampang
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK.,Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
14
|
Zhang X, Li M, Li B, Liao N, Wei Z, Gao J, Sun Y, Chen J, Rao J, Wen F. Ageing fundus degenerations of Macaca fascicularis on multi-modal imaging and histopathology: Similarities and differences compared to human. Exp Eye Res 2022; 220:109126. [PMID: 35618041 DOI: 10.1016/j.exer.2022.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/04/2022]
Abstract
To characterize the ageing fundus degenerations in Macaca fascicularis, we used multimodal imaging including color fundus photograph, spectral domain optical coherence tomography, fundus autofluorescence, fundus fluorescence angiography, and indocyanine green angiography (ICGA) to survey and track fundus changes of 84 Macaca fascicularis, ranging from 5 to 24 years old over 2 years, and followed by hematoxylin-eosin (HE) and immunofluorescence (IF) staining. The Macaca fascicularis in our cohort showed ageing characteristics different from human, including the more common yellow dot maculopathy, the unique appearance of patchy hyperautoflurescence, and the absence of subretinal drusenoid deposit, basal laminar deposit, geographic atrophy or choroidal neovascularization. Same with human, hard drusen, soft drusen, atherosclerosis, tessellated retina, staining of vessels in peripheral choroid on late-phase ICGA, and peripheral hard drusen were detected. HE and IF staining suggested the patchy hyperautoflurescence to be drusenoid deposits. BMI were significantly higher in the Macaca fascicularis with yellow dot maculopathy and hard drusen, compared to the ones without (p < 0.05). Our study reveals fundus degenerations that develop with ageing in the nonhuman primate of Macaca fascicularis. Their differences and similarities compared to human worth notice by future translational research in degenerative fundus diseases, especially age-related macular degeneration.
Collapse
Affiliation(s)
- Xiongze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Miaoling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bihai Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Nanying Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhiyuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiangmei Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yunxiao Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianhuan Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
15
|
Wu A, Lu R, Lee E. Tissue engineering in age-related macular degeneration: a mini-review. J Biol Eng 2022; 16:11. [PMID: 35578246 PMCID: PMC9109377 DOI: 10.1186/s13036-022-00291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula, leading to severe visual loss in the elderly population. There are two types of AMD: non-exudative ('dry') AMD and exudative ('wet') AMD. Non-exudative AMD is characterized by drusen formation and macular atrophy, while the blood vessels are not leaky. Exudative AMD is a more advanced form of the disease, featured with abnormal blood vessel growth and vascular leakage. Even though anti-angiogenic therapies have been effective in treating wet AMD by normalizing blood vessels, there is no treatment available to prevent or treat dry AMD. Currently, the mechanisms of drusen formation and macular atrophy in the dry AMD are poorly understood, in part because the currently available in vivo models of AMD could not decouple and isolate the complex biological and biophysical factors in the macular region for a detailed mechanism study, including the complement system, angiogenesis factors, extracellular matrix, etc. In the present review article, we describe the biological background of AMD and the key cells and structures in AMD, including retinal epithelium, photoreceptor, Bruch's membrane, and choriocapillaris. We also discuss pre-clinical animal models of AMD and in vivo tissue-engineered approaches, including cell suspension injection and organoid-derived cell sheet transplantation. We also discuss in vitro tissue-engineered models for AMD research. Specifically, we evaluate and compare currently available two- and three-dimensional AMD tissue-engineered models that mimic key anatomical players in AMD progression, including pathophysiological characteristics in Bruch's membrane, photoreceptor, and choriocapillaris. Finally, we discuss the limitation of current AMD models and future directions.
Collapse
Affiliation(s)
- Andres Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Ann S. Bowers College of Computing and Information Science, Cornell University, Ithaca, NY, 14853, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Wu Z, Fletcher EL, Kumar H, Greferath U, Guymer RH. Reticular pseudodrusen: A critical phenotype in age-related macular degeneration. Prog Retin Eye Res 2021; 88:101017. [PMID: 34752916 DOI: 10.1016/j.preteyeres.2021.101017] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Reticular pseudodrusen (RPD), or subretinal drusenoid deposits (SDD), refer to distinct lesions that occur in the subretinal space. Over the past three decades, their presence in association with age-related macular degeneration (AMD) has become increasingly recognized, especially as RPD have become more easily distinguished with newer clinical imaging modalities. There is also an increasing appreciation that RPD appear to be a critical AMD phenotype, where understanding their pathogenesis will provide further insights into the processes driving vision loss in AMD. However, key barriers to understanding the current evidence related to the independent impact of RPD include the heterogeneity in defining their presence, and failure to account for the confounding impact of the concurrent presence and severity of AMD pathology. This review thus critically discusses the current evidence on the prevalence and clinical significance of RPD and proposes a clinical imaging definition of RPD that will help move the field forward in gathering further key knowledge about this critical phenotype. It also proposes a putative mechanism for RPD formation and how they may drive progression to vision loss in AMD, through examining current evidence and presenting novel findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
17
|
Liu YV, Konar G, Aziz K, Tun SBB, Hua CHE, Tan B, Tian J, Luu CD, Barathi VA, Singh MS. Localized Structural and Functional Deficits in a Nonhuman Primate Model of Outer Retinal Atrophy. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34643661 PMCID: PMC8525844 DOI: 10.1167/iovs.62.13.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Cell-based therapy development for geographic atrophy (GA) in age-related macular degeneration (AMD) is hampered by the paucity of models of localized photoreceptor and retinal pigment epithelium (RPE) degeneration. We aimed to characterize the structural and functional deficits in a laser-induced nonhuman primate model, including an analysis of the choroid. Methods Macular laser photocoagulation was applied in four macaques. Fundus photography, optical coherence tomography (OCT), dye angiography, and OCT-angiography were conducted over 4.5 months, with histological correlation. Longitudinal changes in spatially resolved macular dysfunction were measured using multifocal electroretinography (MFERG). Results Lesion features, depending on laser settings, included photoreceptor layer degeneration, inner retinal sparing, skip lesions, RPE elevation, and neovascularization. The intralesional choroid was degenerated. The normalized mean MFERG amplitude within lesions was consistently lower than control regions (0.94 ± 0.35 vs. 1.10 ± 0.27, P = 0.032 at month 1, 0.67 ± 0.22 vs. 0.83 ± 0.15, P = 0.0002 at month 2, and 0.97 ± 0.31 vs. 1.20 ± 0.21, P < 0.0001 at month 3.5). The intertest variation of mean MFERG amplitudes in rings 1 to 5 ranged from 13.0% to 26.0% in normal eyes. Conclusions Laser application in this model caused localized outer retinal, RPE, and choriocapillaris loss. Localized dysfunction was apparent by MFERG in the first month after lesion induction. Correlative structure-function testing may be useful for research on the functional effects of stem cell-based therapy for GA. MFERG amplitude data should be interpreted in the context of relatively high intertest variability of the rings that correspond to the central macula. Sustained choroidal insufficiency may limit long-term subretinal graft viability in this model.
Collapse
Affiliation(s)
- Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gregory Konar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kanza Aziz
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Candice Ho Ee Hua
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Jing Tian
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Victoria, Australia
| | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,Academic Clinical Program in Ophthalmology, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
18
|
Lin KH, Tran T, Kim S, Park S, Chen J, Stout JT, Chen R, Rogers J, Yiu G, Thomasy S, Moshiri A. Age-related changes in the rhesus macaque eye. Exp Eye Res 2021; 212:108754. [PMID: 34506802 PMCID: PMC8785649 DOI: 10.1016/j.exer.2021.108754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess age-related changes in the rhesus macaque eye and evaluate them to corresponding human age-related eye disease. METHODS Data from eye exams and imaging tests including intraocular pressure (IOP), lens thickness, axial length, and retinal optical coherence tomography (OCT) images were evaluated from 142 individuals and statistically analyzed for age-related changes. Quantitative autofluorescence (qAF) was measured as was the presence of macular lesions as related to age. RESULTS Ages of the 142 rhesus macaques ranged from 0.7 to 29 years (mean = 16.4 years, stdev = 7.5 years). Anterior segment measurements such as IOP, lens thickness, and axial length were acquired. Advanced retinal imaging in the form of optical coherence tomography and qAF were obtained. Quantitative assessments were made and variations by age groups were analyzed to compare with established age-related changes in human eyes. Quantitative analysis of data revealed age-related increase in intraocular pressure (0.165 mm Hg per increase in year of age), ocular biometry (lens thickness 7.2 μm per increase in year of age; and axial length 52.8 μm per increase in year of age), and presence of macular lesions. Age-related changes in thicknesses of retinal layers on OCT were observed and quantified, showing decreased thickness of the retinal ganglion cell layer and inner nuclear layer, and increased thickness of photoreceptor outer segment and choroidal layers. Age was correlated with increased qAF by 1.021 autofluorescence units per increase in year of age. CONCLUSIONS The rhesus macaque has age-related ocular changes similar to humans. IOP increases with age while retinal ganglion cell layer thickness decreases. Macular lesions develop in some aged animals. Our findings support the concept that rhesus macaques may be useful for the study of important age-related diseases such as glaucoma, macular diseases, and cone disorders, and for development of therapies for these diseases.
Collapse
Affiliation(s)
- Kira H Lin
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, 1 Garrod Drive, Davis, CA, 95695, USA
| | - Tu Tran
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Jiajia Chen
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Chen
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Sara Thomasy
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA; Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
19
|
Sura AA, Chen L, Messinger JD, Swain TA, McGwin G, Freund KB, Curcio CA. Measuring the Contributions of Basal Laminar Deposit and Bruch's Membrane in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33186466 PMCID: PMC7671869 DOI: 10.1167/iovs.61.13.19] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Basal laminar deposit (BLamD) is a consistent finding in age-related macular degeneration (AMD). We quantified BLamD thickness, appearance, and topography in eyes of aged donors with and without AMD and evaluated its relationship to other components of the retinal pigment epithelium-basal lamina/Bruch's membrane (RPE-BL-BrM) complex. Methods Donor eyes (n = 132) were classified as normal (n = 54), early to intermediate AMD (n = 24), geographic atrophy (GA; n = 13), and neovascular AMD (NV; n = 41). In high-resolution histology, we assessed RPE, BLamD, and BrM thicknesses and phenotypes at 3309 predefined locations in the central (foveal and perifovea) and superior (perifoveal) sections. Pre-mortem optical coherence tomography (OCT) imaging of a 90-year-old woman was compared to postmortem histopathology. Results In non-atrophic areas of AMD eyes, the RPE-BLamD is thick (normal = 13.7 µm, early-intermediate = 16.8 µm, GA = 17.4 µm, NV = 18.7 µm), because the BLamD is thick (normal = 0.3 µm, early-intermediate = 5.5 µm, GA = 4.1 µm, NV = 5.3 µm). RPE layer thickness is similar across these stages. Disease-associated variants of BLamD (thick, late, basal mounds) cluster subfoveally. A thick BLamD is visible on OCT as a hyporeflective split in the RPE-BL-BrM complex. BrM is thin (3.5 µm) in NV (normal = 4.2 µm, early to intermediate = 4.4 µm, and GA = 4.2 µm). Conclusions The RPE-BL-BrM complex is thick in AMD, driven by the accumulation and expansion of BLamD rather than expansion of either three-layer BrM, RPE-BL, or RPE. BLamD is clinically appreciable by OCT in some patients as a non-neovascular "split RPE-BL-BrM complex" or "double-layer sign." BLamD may contribute toward the formation and progression of high-risk drusen yet also exhibit protective properties.
Collapse
Affiliation(s)
- Amol A Sura
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, NYU Langone School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
20
|
Tran TM, Kim S, Lin KH, Chung SH, Park S, Sazhnyev Y, Wang Y, Cunefare D, Farsiu S, Thomasy SM, Moshiri A, Yiu G. Quantitative Fundus Autofluorescence in Rhesus Macaques in Aging and Age-Related Drusen. Invest Ophthalmol Vis Sci 2021; 61:16. [PMID: 32663290 PMCID: PMC7425688 DOI: 10.1167/iovs.61.8.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To employ quantitative fundus autofluorescence (qAF) imaging in rhesus macaques to noninvasively assess retinal pigment epithelial (RPE) lipofuscin in nonhuman primates (NHPs) as a model of aging and age-related macular degeneration (AMD). Methods The qAF imaging was performed on eyes of 26 rhesus macaques (mean age 18.8 ± 8.2 years, range 4–27 years) with normal-appearing fundus or with age-related soft drusen using a confocal scanning laser ophthalmoscope with 488 nm excitation and an internal fluorescence reference. Eyes with soft drusen also underwent spectral-domain optical coherence tomography imaging to measure drusen volume and height of individual drusen lesions. The qAF levels were measured from the perifoveal annular ring (quantitative autofluorescence 8 [qAF8]) using the Delori grid, as well as focally over individual drusen lesions in this region. The association between qAF levels and age, sex, and drusen presence and volume were determined using multivariable regression analysis. Results Mean qAF levels increased with age (P < 0.001) and were higher in females (P = 0.047). Eyes with soft drusen exhibited reduced mean qAF compared with age-matched normal eyes (P = 0.003), with greater drusen volume showing a trend toward decreased qAF levels. However, qAF levels are focally increased over most individual drusen (P < 0.001), with larger drusen appearing more hyperautofluorescent (R2 = 0.391, P < 0.001). Conclusions In rhesus macaques, qAF levels are increased with age and female sex, but decreased in eyes with soft drusen, similar to human AMD. However, drusen lesions appear hyperautofluorescent unlike those in humans, suggesting similarities and differences in RPE lipofuscin between humans and NHPs that may provide insight into drusen biogenesis and AMD pathogenesis.
Collapse
|
21
|
Chung SH, Sin TN, Ngo T, Yiu G. CRISPR Technology for Ocular Angiogenesis. Front Genome Ed 2020; 2:594984. [PMID: 34713223 PMCID: PMC8525361 DOI: 10.3389/fgeed.2020.594984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Among genome engineering tools, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based approaches have been widely adopted for translational studies due to their robustness, precision, and ease of use. When delivered to diseased tissues with a viral vector such as adeno-associated virus, direct genome editing can be efficiently achieved in vivo to treat different ophthalmic conditions. While CRISPR has been actively explored as a strategy for treating inherited retinal diseases, with the first human trial recently initiated, its applications for complex, multifactorial conditions such as ocular angiogenesis has been relatively limited. Currently, neovascular retinal diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration, which together constitute the majority of blindness in developed countries, are managed with frequent and costly injections of anti-vascular endothelial growth factor (anti-VEGF) agents that are short-lived and burdensome for patients. By contrast, CRISPR technology has the potential to suppress angiogenesis permanently, with the added benefit of targeting intracellular signals or regulatory elements, cell-specific delivery, and multiplexing to disrupt different pro-angiogenic factors simultaneously. However, the prospect of permanently suppressing physiologic pathways, the unpredictability of gene editing efficacy, and concerns for off-target effects have limited enthusiasm for these approaches. Here, we review the evolution of gene therapy and advances in adapting CRISPR platforms to suppress retinal angiogenesis. We discuss different Cas9 orthologs, delivery strategies, and different genomic targets including VEGF, VEGF receptor, and HIF-1α, as well as the advantages and disadvantages of genome editing vs. conventional gene therapies for multifactorial disease processes as compared to inherited monogenic retinal disorders. Lastly, we describe barriers that must be overcome to enable effective adoption of CRISPR-based strategies for the management of ocular angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
22
|
Yiu G, Thomasy SM, Casanova MI, Rusakevich A, Keesler RI, Watanabe J, Usachenko J, Singapuri A, Ball EE, Bliss-Moreau E, Guo W, Webster H, Singh T, Permar S, Ardeshir A, Coffey LL, Van Rompay KK. Evolution of ocular defects in infant macaques following in utero Zika virus infection. JCI Insight 2020; 5:143947. [PMID: 33180748 PMCID: PMC7819741 DOI: 10.1172/jci.insight.143947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 12/28/2022] Open
Abstract
Congenital Zika syndrome (CZS) is associated with microcephaly and various neurological, musculoskeletal, and ocular abnormalities, but the long-term pathogenesis and postnatal progression of ocular defects in infants are not well characterized. Rhesus macaques are superior to rodents as models of CZS because they are natural hosts of the virus and share similar immune and ocular characteristics, including blood–retinal barrier characteristics and the unique presence of a macula. Using a previously described model of CZS, we infected pregnant rhesus macaques with Zika virus (ZIKV) during the late first trimester and characterized postnatal ocular development and evolution of ocular defects in 2 infant macaques over 2 years. We found that one of them exhibited colobomatous chorioretinal atrophic lesions with macular and vascular dragging as well as retinal thinning caused by loss of retinal ganglion neuron and photoreceptor layers. Despite these congenital ocular malformations, axial elongation and retinal development in these infants progressed at normal rates compared with healthy animals. The ZIKV-exposed infants displayed a rapid loss of ZIKV-specific antibodies, suggesting the absence of viral replication after birth, and did not show any behavioral or neurological defects postnatally. Our findings suggest that ZIKV infection during early pregnancy can impact fetal retinal development and cause congenital ocular anomalies but does not appear to affect postnatal ocular growth.
Collapse
Affiliation(s)
- Glenn Yiu
- Department of Ophthalmology & Vision Science, School of Medicine, and
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - M Isabel Casanova
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | | | | | | | - Jodie Usachenko
- California National Primate Research Center, Davis, California, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| | - Erin E Ball
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| | - Eliza Bliss-Moreau
- California National Primate Research Center, Davis, California, USA.,Department of Psychology, University of California, Davis, Davis, California, USA
| | - Wendi Guo
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Helen Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Tulika Singh
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Amir Ardeshir
- California National Primate Research Center, Davis, California, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| | - Koen Ka Van Rompay
- California National Primate Research Center, Davis, California, USA.,Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, and
| |
Collapse
|
23
|
Lee AY, Lee CS, Blazes MS, Owen JP, Bagdasarova Y, Wu Y, Spaide T, Yanagihara RT, Kihara Y, Clark ME, Kwon M, Owsley C, Curcio CA. Exploring a Structural Basis for Delayed Rod-Mediated Dark Adaptation in Age-Related Macular Degeneration Via Deep Learning. Transl Vis Sci Technol 2020; 9:62. [PMID: 33344065 PMCID: PMC7745629 DOI: 10.1167/tvst.9.2.62] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose Delayed rod-mediated dark adaptation (RMDA) is a functional biomarker for incipient age-related macular degeneration (AMD). We used anatomically restricted spectral domain optical coherence tomography (SD-OCT) imaging data to localize de novo imaging features associated with and to test hypotheses about delayed RMDA. Methods Rod intercept time (RIT) was measured in participants with and without AMD at 5 degrees from the fovea, and macular SD-OCT images were obtained. A deep learning model was trained with anatomically restricted information using a single representative B-scan through the fovea of each eye. Mean-occlusion masking was utilized to isolate the relevant imaging features. Results The model identified hyporeflective outer retinal bands on macular SD-OCT associated with delayed RMDA. The validation mean standard error (MSE) registered to the foveal B-scan localized the lowest error to 0.5 mm temporal to the fovea center, within an overall low-error region across the rod-free zone and adjoining parafovea. Mean absolute error (MAE) on the test set was 4.71 minutes (8.8% of the dynamic range). Conclusions We report a novel framework for imaging biomarker discovery using deep learning and demonstrate its ability to identify and localize a previously undescribed biomarker in retinal imaging. The hyporeflective outer retinal bands in central macula on SD-OCT demonstrate a structural basis for dysfunctional rod vision that correlates to published histopathologic findings. Translational Relevance This agnostic approach to anatomic biomarker discovery strengthens the rationale for RMDA as an outcome measure in early AMD clinical trials, and also expands the utility of deep learning beyond automated diagnosis to fundamental discovery.
Collapse
Affiliation(s)
- Aaron Y Lee
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Cecilia S Lee
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Marian S Blazes
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Julia P Owen
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yelena Bagdasarova
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yue Wu
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Theodore Spaide
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ryan T Yanagihara
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yuka Kihara
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|