1
|
Wang C, Li X, Su J, Duan J, Yao Y, Shang Q. Crocetin inhibits choroidal neovascularization in both in vitro and in vivo models. Exp Eye Res 2024; 238:109751. [PMID: 38097101 DOI: 10.1016/j.exer.2023.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Choroidal neovascularization (CNV) is the primary pathogenic process underlying wet age-related macular degeneration, leading to severe vision loss. Despite current anti-vascular endothelial growth factor (VEGF) therapies, several limitations persist. Crocetin, a major bioactive constituent of saffron, exhibits multiple pharmacological activities, yet its role and mechanism in CNV remain unclear. Here, we investigated the potential effects of crocetin on CNV using in vitro and in vivo models. In human umbilical vein endothelial cells, crocetin demonstrated inhibition of VEGF-induced cell proliferation, migration, and tube formation in vitro, as assessed by CCK-8 and EdU assays, transwell and scratch assays, and tube formation analysis. Additionally, crocetin suppressed choroidal sprouting in ex vivo experiments. In the human retinal pigment epithelium (RPE) cell line ARPE-19, crocetin attenuated cobalt chloride-induced hypoxic cell injury, as evidenced by CCK-8 assay. As evaluated by quantitative PCR and Western blot assay, it also reduced hypoxia-induced expression of VEGF and hypoxia-inducible factor 1α (HIF-1α), while enhancing zonula occludens-1 expression. In a laser-induced CNV mouse model, intravitreal administration of crocetin significantly reduced CNV size and suppressed elevated expressions of VEGF, HIF-1α, TNFα, IL-1β, and IL-6. Moreover, crocetin treatment attenuated the elevation of phospho-S6 in laser-induced CNV and hypoxia-induced RPE cells, suggesting its potential anti-angiogenic effects through antagonizing the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Our findings indicate that crocetin may hold promise as an effective drug for the prevention and treatment of CNV.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xuejing Li
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jing Su
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jialiang Duan
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
2
|
Huang XM, Liu Q, Xu ZY, Yang XH, Xiao F, Ouyang PW, Yi WZ, Zhao N, Meng J, Cui YH, Pan HW. Down-regulation of HuR inhibits pathological angiogenesis in oxygen-induced retinopathy. Exp Eye Res 2023; 227:109378. [PMID: 36603796 DOI: 10.1016/j.exer.2022.109378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
HuR (also known as ELAV1), a ubiquitous RNA-binding protein, is implicated in the pathogenesis of diverse diseases via the mechanism of post-transcriptional regulation. Whether it is involved in pathological angiogenesis in oxygen-induced retinopathy is not clear. In this study, we detected HuR expression was increased in the retina of mouse model of oxygen-induced retinopathy (OIR) as well as in vascular endothelial cells exposed to hypoxia. With gain-of-function and loss-of-function studies using adenovirus infection, we found HuR over-expression promoted while HuR knockdown inhibited the migration, proliferation and tube formation of vascular endothelial cells. Moreover, HuR regulated the expression of VEGFA in vascular endothelial cells. We also found the retinal pathological angiogenesis in mouse OIR model was greatly reduced with HuR knockdown using recombinant AAV expressing HuR specific shRNA which was administered by intravitreal injection. The results of this study suggest HuR is involved in pathological angiogenesis via regulating angiogenic behaviors of endothelial cells, providing a potential target for the treatment of retinopathy of prematurity.
Collapse
Affiliation(s)
- Xiao-Mei Huang
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yi Xu
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Hua Yang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fan Xiao
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Na Zhao
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hong-Wei Pan
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
mTOR inhibition as a novel gene therapeutic strategy for diabetic retinopathy. PLoS One 2022; 17:e0269951. [PMID: 35709240 PMCID: PMC9202865 DOI: 10.1371/journal.pone.0269951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to laser photocoagulation, therapeutic interventions for diabetic retinopathy (DR) have heretofore consisted of anti-VEGF drugs, which, besides drawbacks inherent to the treatments themselves, are limited in scope and may not fully address the condition’s complex pathophysiology. This is because DR is a multifactorial condition, meaning a gene therapy focused on a target with broader effects, such as the mechanistic target of rapamycin (mTOR), may prove to be the solution in overcoming these concerns. Having previously demonstrated the potential of a mTOR-inhibiting shRNA packaged in a recombinant adeno-associated virus to address a variety of angiogenic retinal diseases, here we explore the effects of rAAV2-shmTOR-SD in a streptozotocin-induced diabetic mouse model. Delivered via intravitreal injection, the therapeutic efficacy of the virus vector upon early DR processes was examined. rAAV2-shmTOR-SD effectively transduced mouse retinas and therein downregulated mTOR expression, which was elevated in sham-treated and control shRNA-injected (rAAV2-shCon-SD) control groups. mTOR inhibition additionally led to marked reductions in pericyte loss, acellular capillary formation, vascular permeability, and retinal cell layer thinning, processes that contribute to DR progression. Immunohistochemistry showed that rAAV2-shmTOR-SD decreased ganglion cell loss and pathogenic Müller cell activation and proliferation, while also having anti-apoptotic activity, with these effects suggesting the therapeutic virus vector may be neuroprotective. Taken together, these results build upon our previous work to demonstrate the broad ability of rAAV2-shmTOR-SD to address aspects of DR pathophysiology further evidencing its potential as a human gene therapeutic strategy for DR.
Collapse
|
4
|
Song Y, Zhou Z, Liu H, Du R, Zhou Y, Zhu S, Chen S. Tortuosity of branch retinal artery is more associated with the genesis and progress of diabetic retinopathy. Front Endocrinol (Lausanne) 2022; 13:972339. [PMID: 36277715 PMCID: PMC9582450 DOI: 10.3389/fendo.2022.972339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the potential of using the tortuosity of branch retinal artery as a more promising indicator for early detection and accurate assessment of diabetic retinopathy (DR). DESIGN AND METHOD The diagnoses, consisting of whether DR or not as well as DR severity, were given by ophthalmologists upon the assessment of those fundus images from 495 diabetic patients. Meanwhile, benefiting from those good contrast and high optical resolution fundus images taken by confocal scanning laser ophthalmoscope, the branch arteries, branch veins, main arteries and main veins in retina can be segmented independently, and the tortuosity values of them were further extracted to investigate their potential correlations with DR genesis and progress based on one-way ANOVA test. RESULTS For both two comparisons, i.e., between non-DR group and DR group as well as among groups with different DR severity levels, larger tortuosity increments were always observed in retinal arteries and the increments in branch retinal vessels were even larger. Furthermore, it was newly found that branch arterial tortuosity was significantly associated with both DR genesis (p=0.030) and DR progress (p<0.001). CONCLUSION Based on this cohort study of 495 diabetic patients without DR and with different DR severity, the branch arterial tortuosity has been found to be more closely associated with DR genesis as well as DR progress. Therefore, the branch arterial tortuosity is expected to be a more direct and specific indicator for early detection of DR as well as accurate assessment of DR severity, which can further guide timely and rational management of DR to prevent from visual impairment or even blindness resulting from DR.
Collapse
Affiliation(s)
- Yunfeng Song
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Zheng Zhou
- School of Innovation and Entrepreneurship, Liaoning Institute of Science and Technology, Benxi, China
| | - Henan Liu
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Runyu Du
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yaoyao Zhou
- School of Innovation and Entrepreneurship, Liaoning Institute of Science and Technology, Benxi, China
| | - Shanshan Zhu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, China
- *Correspondence: Shanshan Zhu, ; Shuo Chen,
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- *Correspondence: Shanshan Zhu, ; Shuo Chen,
| |
Collapse
|
5
|
Cha S, Seo WI, Woo HN, Kim HJ, Lee SHS, Kim J, Choi JS, Park K, Lee JY, Lee BJ, Lee H. AAV expressing an mTOR-inhibiting siRNA exhibits therapeutic potential in retinal vascular disorders by preserving endothelial integrity. FEBS Open Bio 2021; 12:71-81. [PMID: 34431239 PMCID: PMC8727948 DOI: 10.1002/2211-5463.13281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/18/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Expanding on previous demonstrations of the therapeutic effects of adeno‐associated virus (AAV) carrying small‐hairpin RNA (shRNA) in downregulating the mechanistic target of rapamycin (mTOR) in in vivo retinal vascular disorders, vascular endothelial growth factor (VEGF)‐stimulated endothelial cells were treated with AAV2‐shmTOR to examine the role of mTOR inhibition in retinal angiogenesis. AAV2‐shmTOR exposure significantly reduced mTOR expression in human umbilical vein endothelial cells (HUVECs) and decreased downstream signaling cascades of mTOR complex 1 (mTORC1) and mTORC2 under VEGF treatment. Moreover, the angiogenic potential of VEGF was significantly inhibited by AAV2‐shmTOR, which preserved endothelial integrity by maintaining tight junctions between HUVECs. These data thus support previous in vivo studies and provide evidence that AAV2‐shmTOR induces therapeutic effects by inhibiting the neovascularization of endothelial cells.
Collapse
Affiliation(s)
- Seho Cha
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Won-Il Seo
- Department of Veterinary Medicine: College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ha-Na Woo
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul, Korea.,Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Steven Hyun Seung Lee
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea.,Department of Microbiology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Keerang Park
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Jun Lee
- Department of Veterinary Medicine: College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Heuiran Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Koponen S, Kokki E, Kinnunen K, Ylä-Herttuala S. Viral-Vector-Delivered Anti-Angiogenic Therapies to the Eye. Pharmaceutics 2021; 13:pharmaceutics13020219. [PMID: 33562561 PMCID: PMC7915489 DOI: 10.3390/pharmaceutics13020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pathological vessel growth harms vision and may finally lead to vision loss. Anti-angiogenic gene therapy with viral vectors for ocular neovascularization has shown great promise in preclinical studies. Most of the studies have been conducted with different adeno-associated serotype vectors. In addition, adeno- and lentivirus vectors have been used. Therapy has been targeted towards blocking vascular endothelial growth factors or other pro-angiogenic factors. Clinical trials of intraocular gene therapy for neovascularization have shown the treatment to be safe without severe adverse events or systemic effects. Nevertheless, clinical studies have not proceeded further than Phase 2 trials.
Collapse
Affiliation(s)
- Sanna Koponen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
| | - Emmi Kokki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
| | - Kati Kinnunen
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
- Gene Therapy Unit, Kuopio University Hospital, 70211 Kuopio, Finland
- Correspondence: ; Tel./Fax: +358-403-552-075
| |
Collapse
|