1
|
Li Y, Dai Y, Xu J, Zhang J. Transcriptomic analysis of keratoconus in Han Chinese patients: Insights into differential gene expression and ethnic-specific patterns. Exp Eye Res 2024; 248:110118. [PMID: 39395559 DOI: 10.1016/j.exer.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Keratoconus (KC) is a progressive corneal ectatic disorder with a high prevalence among Asians. This study aimed to explore the differential gene expression patterns in Han Chinese patients with KC, focusing on mRNAs and long noncoding RNAs (lncRNAs), to provide insights into the pathogenesis of the disease. Corneal tissues from KC patients and healthy controls were collected, and RNA sequencing was performed to profile mRNA and lncRNA expression. A total of 1973 differentially expressed mRNAs (DEGs) and 386 differentially expressed lncRNAs (DELs) were identified in KC-affected corneas. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant enrichment in pathways related to ECM modulation, PI3K-Akt pathway and calcium signaling pathway. Furthermore, protein-protein interaction (PPI) network highlighted hub genes involved in ECM remodeling and inflammatory responses. Co-expression analysis of lncRNAs and mRNAs further prioritized 13 DELs linked to these hub genes. RT-qPCR validation confirmed the differential expression of select candidates. A meta-analysis integrating seven datasets from diverse ethnic backgrounds was performed and it suggested ethnic-specific differences in gene expression patterns. This study sheds new light on the molecular mechanisms underlying KC in the Han Chinese population, pinpointing potential therapeutic targets. It also emphasizes the critical role of ethnic-specific gene expression patterns in KC research, highlighting a need for tailored approaches in disease management and treatment.
Collapse
Affiliation(s)
- Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
2
|
Wang W, Deng M, Li M, Liu L, Zou J, Qian Y. Exploring Corneal Neovascularization: An Integrated Approach Using Transcriptomics and Proteomics in an Alkali Burn Mouse Model. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38190126 PMCID: PMC10777872 DOI: 10.1167/iovs.65.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Corneal neovascularization (CNV) impairs corneal transparency and visual acuity. The study aims to deepen our understanding of the molecules involved in CNV induced by alkali burns, facilitate a better grasp of CNV mechanisms, and uncover potential therapeutic targets. Methods Eighty-four mice were selected for establishing CNV models via alkali burns. On days 3, 7, and 14 after the burns, corneal observations and histological investigations were conducted. An integrated analysis of RNA sequencing (RNA-seq)-based transcriptomics and label-free quantitative proteomics was performed in both normal and burned corneas. Bioinformatics approaches, encompassing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, were applied to discern differentially expressed genes (DEGs) and crucial signaling pathways. Four potentially CNV-related genes were validated using quantitative real-time PCR (qRT-PCR) and Western blot. Results Significant CNV was observed on the seventh day. Forty-one genes were differentially expressed in neovascularized corneas, with 15 upregulated and 26 downregulated at both mRNA and protein levels. Bioinformatics analysis revealed that these DEGs participated in diverse biological processes, encompassing retinol and retinoic acid metabolism, neutrophil chemotaxis, and actin filament assembly, along with significant enrichment pathways like cytochrome P450, tyrosine, and phenylalanine metabolism. The upregulation of lymphocyte cytosolic protein 1 (LCP1) and cysteine and glycine-rich protein 2 (CSRP2) genes and the downregulation of transglutaminase 2 (TGM2) and transforming growth factor-beta-induced (TGFBI) genes were confirmed. Conclusions We analyzed gene expression differences in mouse corneas 7 days after alkali burns, finding 41 genes with altered expression. The exact role of these genes in CNV is not fully understood, but exploring angiogenesis-related molecules offers potential for CNV treatment or prevention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiyong Qian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Liu H, Zhang X, Tan Q, Ge L, Lu J, Ren C, Bian B, Li Y, Liu Y. A moderate dosage of prostaglandin E2-mediated annexin A1 upregulation promotes alkali-burned corneal repair. iScience 2023; 26:108565. [PMID: 38144456 PMCID: PMC10746505 DOI: 10.1016/j.isci.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/14/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Corneal alkali burn remains a clinical challenge in ocular emergency, necessitating the development of effective therapeutic drugs. Here, we observed the arachidonic acid metabolic disorders of corneas induced by alkali burns and aimed to explore the role of Prostaglandin E2 (PGE2), a critical metabolite of arachidonic acid, in the repair of alkali-burned corneas. We found a moderate dosage of PGE2 promoted the alkali-burned corneal epithelial repair, whereas a high dosage of PGE2 exhibited a contrary effect. This divergent effect is attributed to different dosages of PGE2 regulating ANXA1 expression differently. Mechanically, a high dosage of PGE2 induced higher GATA3 expression, followed by enhanced GATA3 binding to the ANXA1 promoter to inhibit ANXA1 expression. In contrast, a moderate dosage of PGE2 increased CREB1 phosphorylation and reduced GATA3 binding to the ANXA1 promoter, promoting ANXA1 expression. We believe PGE2 and its regulatory target ANXA1 could be potential drugs for alkali-burned corneas.
Collapse
Affiliation(s)
- Hongling Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xue Zhang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiang Tan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jia Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Chunge Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Baishijiao Bian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse 857000, China
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
4
|
Sprogyte L, Park M, Di Girolamo N. Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models. Cells 2023; 12:cells12091294. [PMID: 37174694 PMCID: PMC10177508 DOI: 10.3390/cells12091294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a debilitating ocular surface disease that eventuates from a depleted or dysfunctional limbal epithelial stem cell (LESC) pool, resulting in corneal epithelial failure and blindness. The leading cause of LSCD is a chemical burn, with alkali substances being the most common inciting agents. Characteristic features of alkali-induced LSCD include corneal conjunctivalization, inflammation, neovascularization and fibrosis. Over the past decades, animal models of corneal alkali burn and alkali-induced LSCD have been instrumental in improving our understanding of the pathophysiological mechanisms responsible for disease development. Through these paradigms, important insights have been gained with regards to signaling pathways that drive inflammation, neovascularization and fibrosis, including NF-κB, ERK, p38 MAPK, JNK, STAT3, PI3K/AKT, mTOR and WNT/β-catenin cascades. Nonetheless, the molecular and cellular events that underpin re-epithelialization and those that govern long-term epithelial behavior are poorly understood. This review provides an overview of the current mechanistic insights into the pathophysiology of alkali-induced LSCD. Moreover, we highlight limitations regarding existing animal models and knowledge gaps which, if addressed, would facilitate development of more efficacious therapeutic strategies for patients with alkali-induced LSCD.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Yang Y, Chen M, Zhai Z, Dai Y, Gu H, Zhou X, Hong J. Long Non-coding RNAs Gabarapl2 and Chrnb2 Positively Regulate Inflammatory Signaling in a Mouse Model of Dry Eye. Front Med (Lausanne) 2021; 8:808940. [PMID: 34957168 PMCID: PMC8703135 DOI: 10.3389/fmed.2021.808940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose: To elucidate the expression profile and the potential role of long non-coding ribonucleic acids (RNAs) (lncRNAs) in a dry eye disease (DED) model. Methods: A DED model was established in C57BL/6J mice with 0.2% benzalkonium chloride (BAC) twice a day for 14 days. The differentially expressed lncRNAs were detected by RNA-seq technology (Gene Expression Omnibus, GEO GSE186450) and the aberrantly expressed lncRNAs were further verified by RT-qPCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predicate the related candidate genes and potential pathological pathways. Cells from a human corneal epithelial cell line (HCECs) were cultured under hyperosmolarity. The regulation of inflammatory factors by silencing potential targeted lncRNAs was verified in vitro in HCECs. Results: In our study, a significant increase in corneal fluorescence staining and a reduction in tear production were observed in DED mice at all follow-ups compared with the controls, and the differences were increasing over time. In total, 2,649 upregulated and 704 downregulated lncRNAs were identified in DED mice. We selected six aberrantly expressed and most abundant lncRNAs and performed RT-qPCR using the samples for RNA-seq. Chrnb2, Gabarapl2, and Usp31 were thereby confirmed as the most significantly altered lncRNAs. Pathway analysis revealed that the neuroactive ligand–receptor interaction signaling pathway was the most enriched, followed by the calcium signaling pathway and cytokine–cytokine receptor interaction. Following treatment of Gabarapl2 siRNA and Chrnb2 siRNA, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were significantly downregulated in the HCECs. Conclusion: Our study suggests that Chrnb2 and Gabarapl2 may be involved in the inflammation response by regulating TNF-α, IL-1β, and IL-6 in DED. These candidate lncRNAs may be both potential biomarkers and therapeutic targets for DED.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Minjie Chen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Zimeng Zhai
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Chen X, Hu J. Long Noncoding RNA 3632454L22Rik Contributes to Corneal Epithelial Wound Healing by Sponging miR-181a-5p in Diabetic Mice. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 34787641 PMCID: PMC8606839 DOI: 10.1167/iovs.62.14.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose This work explores the abnormal expression of long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and messenger RNAs (mRNAs) in diabetic corneal epithelial cells (CECs) and constructs an associated competitive endogenous RNA (ceRNA) network. Moreover, we revealed that Rik may exert advantageous effects on diabetic corneal epithelial wound closure by sponging miR-181a-5p. Methods We obtained the profiles of differentially expressed lncRNAs (DELs) of CECs of type 1 diabetic versus control corneas by microarray and summarized the differentially expressed miRNAs (DEmiRs) and differentially expressed genes (DEGs) data by published literature. Subsequently, the ceRNA network was constructed using bioinformatics analyses. The levels of lncRNA ENSMUST00000153610/3632454L22Rik (Rik) and miR-181a-5p were verified. The localization of Rik was identified with fluorescence in situ hybridization (FISH), and dual-luciferase assays proved the targeted relationship between Rik and miR-181a-5p. Furthermore, we validated the functional impact of Rik in vitro. Results Overall, 111 upregulated and 117 downregulated DELs were detected in diabetic versus control CECs. The level of Rik located in both the cytoplasm and the nucleus was clearly downregulated, whereas miR-181a-5p was upregulated in vitro and in vivo in the diabetic group versus the control group. Rik can act as a ceRNA to bind to miR-181a-5p, thus promoting diabetic corneal epithelial wound healing in vitro. Conclusions This work investigated the expression profile of DELs and constructed ceRNA networks of diabetic CECs for the first time. Furthermore, we revealed that Rik may positively impact diabetic corneal epithelial wound healing by sponging miR-181a-5p, providing a novel potential therapeutic target of diabetic keratopathy (DK).
Collapse
Affiliation(s)
- Xiaxue Chen
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|