1
|
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma. Front Immunol 2024; 15:1480701. [PMID: 39430767 PMCID: PMC11486717 DOI: 10.3389/fimmu.2024.1480701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) remains a significant difficulty, as there has been no improvement in survival rates over the past fifty years. Hence, exploration and confirmation of new dependable treatment targets and biomarkers is imperative for OSCC therapy. TEAD transcription factors are crucial for integrating and coordinating multiple signaling pathways that are essential for embryonic development, organ formation, and tissue homeostasis. In addition, by attaching to coactivators, TEAD modifies the expression of genes such as Cyr61, Myc, and connective tissue growth factor, hence facilitating tumor progression. Therefore, TEAD is regarded as an effective predictive biomarker due to its significant connection with clinical parameters in several malignant tumors, including OSCC. The efficacy of existing drugs that specifically target TEAD has demonstrated encouraging outcomes, indicating its potential as an optimal target for OSCC treatment. This review provides an overview of current targeted therapy strategies for OSCC by highlighting the transcription mechanism and involvement of TEAD in oncogenic signaling pathways. Finally, the feasibility of utilizing TEAD as an innovative approach to address OSCC and its potential clinical applications were analyzed and discussed.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Medical College of Qingdao Huanghai University, Qingdao, China
| | - Dan Shao
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Gao
- Department of Quality Inspection, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Peng Zhao
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Fanzhi Kong
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Jiawei Deng
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Lianzhu Yang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Sun
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People's Liberation Army of China (PLA), Beijing, China
| |
Collapse
|
2
|
Sayedyahossein S, Huang K, Zhang C, Karimi M, Bahmani M, O’Donnell BL, Wakefield B, Li Z, Johnston D, Leighton SE, Huver MS, Dagnino L, Sacks DB, Penuela S. Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611059. [PMID: 39372769 PMCID: PMC11451602 DOI: 10.1101/2024.09.03.611059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, YAP, TAZ, and Hippo scaffold, IQGAP1, in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels. Notably, our investigations uncovered a previously unrecognized interaction between endogenous PANX1 and the Hippo scaffold protein IQGAP1 in melanoma cells. Moreover, our findings revealed that IQGAP1 exhibits differential expression in melanoma cells and plays a regulatory role in cellular morphology. Functional studies involving PANX1 knockdown provided compelling evidence that PANX1 modulates YAP protein levels and its co-transcriptional activity in both melanoma and breast carcinoma cells. Importantly, our study showcases the potential therapeutic relevance of targeting PANX1, as pharmacological inhibition of PANX1 using selective FDA-approved inhibitors or PANX1 knockdown reduced YAP abundance in melanoma cells. Furthermore, our Clariom™ S analysis unveiled key genes implicated in cell proliferation, such as neuroglin1 (NRG1), β-galactoside binding protein, galectin-3 (LGALS3), that are affected in PANX1-deficient cells. In summary, our investigation delves into the intricate interplay between PANX1 and YAP in the context of invasive melanoma, offering valuable insights into potential therapeutic strategies for effective treatment.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Mehdi Karimi
- Department of Mathematics, Illinois State University, Normal, Illinois, USA, 61790
| | | | - Brooke L. O’Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Stephanie E. Leighton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Matthew S. Huver
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
3
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
4
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Booth L, Roberts JL, Spasojevic I, Baker KC, Poklepovic A, West C, Kirkwood JM, Dent P. GZ17-6.02 kills PDX isolates of uveal melanoma. Oncotarget 2024; 15:328-344. [PMID: 38758815 PMCID: PMC11101052 DOI: 10.18632/oncotarget.28586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ivan Spasojevic
- Department of Medicine, and PK/PD Core Laboratory, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaitlyn C Baker
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cameron West
- Genzada Pharmaceuticals, Hutchinson, KS 67502, USA
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Song M, Zhu L, Zhang L, Ge X, Cao J, Teng Y, Tian R. Combination of Molecule-Targeted Therapy and Photodynamic Therapy Using Nanoformulated Verteporfin for Effective Uveal Melanoma Treatment. Mol Pharm 2024; 21:2340-2350. [PMID: 38546166 DOI: 10.1021/acs.molpharmaceut.3c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.
Collapse
Affiliation(s)
- Meijiao Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lei Zhu
- Department of Surgery and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Lumeng Zhang
- Department of Surgery and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jinfeng Cao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yong Teng
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Rui Tian
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
7
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
8
|
Aravamudhan A, Dieffenbach PB, Choi KM, Link PA, Meridew JA, Haak AJ, Fredenburgh LE, Tschumperlin DJ. Non-canonical IKB kinases regulate YAP/TAZ and pathological vascular remodeling behaviors in pulmonary artery smooth muscle cells. Physiol Rep 2024; 12:e15999. [PMID: 38610069 PMCID: PMC11014870 DOI: 10.14814/phy2.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Paul B. Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Patrick A. Link
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Andrew J. Haak
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
9
|
Xu L, Liu K, Wang F, Su Y. Cuproptosis and its application in different cancers: an overview. Mol Cell Biochem 2023; 478:2683-2693. [PMID: 36914880 DOI: 10.1007/s11010-023-04693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Heavy metal ions are essential micronutrients for human health. They are also indispensable to maintaining health and regular operation of organs. Increasing or decreasing these metal ions will lead to cell death, such as ferroptosis. Tsvetkov et al. have recently proposed a novel cell death method called "Cuproptosis". Many researchers have linked this form of death to the diagnosis, prognosis, microenvironment infiltration, and prediction of immunotherapeutic efficacy of various tumors to better understand these tumors. Similarly, with the proposal of this mechanism, the killing effect of copper ionophores on cancer cells has come to our attention again. We introduced the mechanism of cuproptosis in detail and described the establishment of the corresponding prognostic model and risk score for uveal melanoma through cuproptosis. In addition, we describe the current progress in the study of cancer in other organs through cuproptosis and summarize the treatment of tumours by copper ionophore and its future research direction. With further research, the concept of cuproptosis may help us understand cancer and guide its clinical treatment.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
11
|
Glinkina KA, Teunisse AF, Gelmi MC, de Vries J, Jager MJ, Jochemsen AG. Combined Mcl-1 and YAP1/TAZ inhibition for treatment of metastatic uveal melanoma. Melanoma Res 2023; 33:345-356. [PMID: 37467061 PMCID: PMC10470438 DOI: 10.1097/cmr.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023]
Abstract
Uveal melanoma is the most common intraocular tumor in adults, representing approximately 5% of all melanoma cases. Up to 50% of uveal melanoma patients develop metastases that are resistant to most of the commonly used antineoplastic treatments. Virtually all uveal melanoma tumors harbor activating mutations in GNAQ or GNA11 , encoding Gαq and Gα11, respectively. Constant activity of these proteins causes deregulation of multiple downstream signaling pathways including PKC, MAPK and YAP1/TAZ. While the importance of YAP1 signaling for the proliferation of uveal melanoma has recently been demonstrated, much less is known about the paralog of YAP1 transcriptional coactivator, named TAZ; however, similar to YAP1, TAZ is expected to be a therapeutic target in uveal melanoma. We performed a small-scale drug screen to discover a compound synergistically inhibiting uveal melanoma proliferation/survival in combination with YAP1/TAZ inhibition. We found that the combination of genetic depletion of YAP1/TAZ together with Mcl-1 inhibition demonstrates a synergistic inhibitory effect on the viability of uveal melanoma cell lines. Similarly, indirect attenuation of the YAP1/TAZ signaling pathway with an inhibitor of the mevalonate pathway, that is, the geranyl-geranyl transferase inhibitor GGTI-298, synergizes with Mcl-1 inhibition. This combination could be potentially used as a treatment for metastatic uveal melanoma.
Collapse
Affiliation(s)
| | | | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
12
|
Correa VSMC, Efstathiou NE, Ntentakis DP, Yu Z, Narimatsu T, Gragoudas E, Kim IK, Vavvas DG. The NLRP3 inflammasome - interleukin 1β axis in uveal melanoma. FEBS Open Bio 2023; 13:545-555. [PMID: 36707938 PMCID: PMC9989921 DOI: 10.1002/2211-5463.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular cancer in the adult population. Recent studies suggested that the NLRP3 inflammasome could be a therapeutic target for cutaneous melanoma (CM), but the role of NLRP3 in UM remains unknown. Here, we analyzed the NLRP3-IL-1β axis in 5 UM and 4 CM cell lines. Expression of NLRP3 mRNA in UM and CM was low, and expression in UM was lower than in CM (P < 0.001). NLRP3 protein levels were below detection limit for all cell lines. UM exhibited lower baseline IL-1β secretion than CM, especially when compared to the Hs294t cell line (P < 0.05). Bioinformatic analysis of human tumor samples showed that UM has significantly lower expression of NLRP3 and IL-1β compared with CM. In conclusion, our work shows evidence of extremely low NLRP3 expression and IL-1β secretion by melanoma cells and highlight differences between CM and UM.
Collapse
Affiliation(s)
- Victor S. M. C. Correa
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Nikolaos E. Efstathiou
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Dimitrios P. Ntentakis
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Zhen Yu
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Toshio Narimatsu
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Evangelos Gragoudas
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Ivana K. Kim
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| | - Demetrios G. Vavvas
- Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
13
|
Cerivastatin Synergizes with Trametinib and Enhances Its Efficacy in the Therapy of Uveal Melanoma. Cancers (Basel) 2023; 15:cancers15030886. [PMID: 36765842 PMCID: PMC9913575 DOI: 10.3390/cancers15030886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Metastatic uveal melanoma (MUM) is a highly aggressive, therapy-resistant disease. Driver mutations in Gα-proteins GNAQ and GNA11 activate MAP-kinase and YAP/TAZ pathways of oncogenic signalling. MAP-kinase and MEK-inhibitors do not significantly block MUM progression, likely due to persisting YAP/TAZ signalling. Statins inhibit YAP/TAZ activation by blocking the mevalonate pathway, geranyl-geranylation, and subcellular localisation of the Rho-GTPase. We investigated drugs that affect the YAP/TAZ pathway, valproic acid, verteporfin and statins, in combination with MEK-inhibitor trametinib. METHODS We established IC50 values of the individual drugs and monitored the effects of their combinations in terms of proliferation. We selected trametinib and cerivastatin for evaluation of cell cycle and apoptosis. Synergism was detected using isobologram and Chou-Talalay analyses. The most synergistic combination was tested in vivo. RESULTS Synergistic concentrations of trametinib and cerivastatin induced a massive arrest of proliferation and cell cycle and enhanced apoptosis, particularly in the monosomic, BAP1-mutated UPMM3 cell line. The combined treatment reduced ERK and AKT phosphorylation, increased the inactive, cytoplasmatic form of YAP and significantly impaired the growth of UM cells with monosomy of chromosome 3 in NSG mice. CONCLUSION Statins can potentiate the efficacy of MEK inhibitors in the therapy of UM.
Collapse
|
14
|
Aumiller JL, Wedegaertner PB. Disruption of the interaction between mutationally activated Gα q and Gβγ attenuates aberrant signaling. J Biol Chem 2023; 299:102880. [PMID: 36626984 PMCID: PMC9926304 DOI: 10.1016/j.jbc.2023.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Heterotrimeric G protein stimulation via G protein-coupled receptors promotes downstream proliferative signaling. Mutations can occur in Gα proteins which prevent GTP hydrolysis; this allows the G proteins to signal independently of G protein-coupled receptors and can result in various cancers, such as uveal melanoma (UM). Most UM cases harbor Q209L, Q209P, or R183C mutations in Gαq/11 proteins, rendering the proteins constitutively active (CA). Although it is generally thought that active, GTP-bound Gα subunits are dissociated from and signal independently of Gβγ, accumulating evidence indicates that some CA Gα mutants, such as Gαq/11, retain binding to Gβγ, and this interaction is necessary for signaling. Here, we demonstrate that disrupting the interaction between Gβγ and Gαq is sufficient to inhibit aberrant signaling driven by CA Gαq. Introduction of the I25A point mutation in the N-terminal α helical domain of CA Gαq to inhibit Gβγ binding, overexpression of the G protein Gαo to sequester Gβγ, and siRNA depletion of Gβ subunits inhibited or abolished CA Gαq signaling to the MAPK and YAP pathways. Moreover, in HEK 293 cells and in UM cell lines, we show that Gαq-Q209P and Gαq-R183C are more sensitive to the loss of Gβγ interaction than Gαq-Q209L. Our study challenges the idea that CA Gαq/11 signals independently of Gβγ and demonstrates differential sensitivity between the Gαq-Q209L, Gαq-Q209P, and Gαq-R183C mutants.
Collapse
|
15
|
Lapadula D, Lam B, Terai M, Sugase T, Tanaka R, Farias E, Kadamb R, Lopez-Anton M, Heine CC, Modasia B, Aguirre-Ghiso JA, Aplin AE, Sato T, Benovic JL. IGF1R Inhibition Enhances the Therapeutic Effects of Gq/11 Inhibition in Metastatic Uveal Melanoma Progression. Mol Cancer Ther 2023; 22:63-74. [PMID: 36223548 PMCID: PMC9812929 DOI: 10.1158/1535-7163.mct-22-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 10/06/2022] [Indexed: 02/03/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults, and up to 50% of patients develop metastatic disease, which remains uncurable. Because patients with metastatic UM have an average survival of less than 1 year after diagnosis, there is an urgent need to develop new treatment strategies. Although activating mutations in Gαq or Gα11 proteins are major drivers of pathogenesis, the therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating UM, possibly due to alternative signaling pathways and/or resistance mechanisms. Activation of the insulin-like growth factor 1 (IGF1) signaling pathway promotes cell growth, metastasis, and drug resistance in many types of cancers, including UM, where expression of the IGF1 receptor (IGF1R) correlates with a poor prognosis. In this article, we show that direct inhibition of Gαq/11 by the cyclic depsipeptide YM-254890 in combination with inhibition of IGF1R by linsitinib cooperatively inhibits downstream signaling and proliferation of UM cells. We further demonstrate that a 2-week combination treatment of 0.3 to 0.4 mg/kg of YM-254890 administered by intraperitoneal injection and 25 to 40 mg/kg linsitinib administered by oral gavage effectively inhibits the growth of metastatic UM tumors in immunodeficient NOD scid gamma (NSG) mice and identifies the IGF1 pathway as a potential resistance mechanism in response to Gαq/11 inhibition in UM. These data suggest that the combination of Gαq/11 and IGF1R inhibition provides a promising therapeutic strategy to treat metastatic UM.
Collapse
Affiliation(s)
- Dominic Lapadula
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Bao Lam
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Mizue Terai
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takahito Sugase
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryota Tanaka
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Eduardo Farias
- Icahn School of Medicine at Mount, New York, NY, United States
| | - Rama Kadamb
- Albert Einstein College of Medicine, Bronx, NewYork, United States
| | | | - Christian C Heine
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | | | | | - Andrew E Aplin
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takami Sato
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Jeffrey L Benovic
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
16
|
Wei AZ, Maniar AB, Carvajal RD. New targeted and epigenetic therapeutic strategies for the treatment of uveal melanoma. Cancer Gene Ther 2022; 29:1819-1826. [PMID: 35236928 DOI: 10.1038/s41417-022-00443-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Uveal melanoma (UM) is a rare, genetically bland ocular malignancy with excellent local treatment options, but no disease-specific therapies are approved for use in the metastatic setting by the Food and Drug Administration. Metastatic UM (mUM) confers a prognosis of ~15 months. Unlike cutaneous melanoma, UM is poorly responsive to checkpoint inhibitors and cytotoxic chemotherapy highlighting the importance of clarifying vulnerable disease-specific mechanisms, such as cell cycle or metabolic pathways necessary for tumor growth and survival. The elucidation of signaling pathways downstream of the frequently mutated GNA GTPase such as PKC/MAPK/ERK/MEK, PI3K/AKT, and YAP-Hippo have offered potential targets. Potentially druggable epigenetic targets due to BAP1-mutated UM have also been identified, including proteins involved with histone deacetylation and DNA splicing. This review describes the preclinical rationale for the development of targeted therapies and current strategies currently being studied in clinical trials or will be in the near future.
Collapse
Affiliation(s)
- Alexander Z Wei
- Columbia University Irving Medical Center, New York, New York, USA
| | - Ashray B Maniar
- Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
17
|
Li Y, Yang J, Zhang Q, Xu S, Sun W, Ge S, Xu X, Jager MJ, Jia R, Zhang J, Fan X. Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene 2022; 41:3539-3553. [PMID: 35697803 DOI: 10.1038/s41388-022-02364-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/10/2023]
Abstract
Unlike cutaneous melanoma, uveal melanoma (UM) is characterized by mutations in GNAQ and GNA11 and remains a fatal disease because there is essentially no effective targeted therapy or immunotherapy available. We report the discovery of the copper ionophore elesclomol as a GNAQ/11-specific UM inhibitor. Elesclomol was identified in a differential cytotoxicity screen of an in-house tool compound library, and its in vivo pharmacological efficacy was further confirmed in zebrafish and mouse UM models. Mechanistically, elesclomol transports copper to mitochondria and produces a large amount of reactive oxygen species (ROS) as Cu(II) is reduced to Cu(I) in GNAQ/11-mutant UM cells, which selectively activates LATS1 kinase in the Hippo signaling pathway and consequently promotes YAP phosphorylation and inhibits its nuclear accumulation. The inactivation of YAP downregulates the expression of SNAI2, which in turn suppresses the migration of UM cells. These findings were cross validated by our clinical observation that YAP activation was found specifically in UM samples with a GNAQ/11 mutation. Furthermore, addition of binimetinib, a MEK inhibitor, to elesclomol increased its synthetic lethality to GNAQ/11-mutant UM cells, thereby overriding drug resistance. This effect was confirmed in an orthotopic xenograft model and in a patient-derived xenograft model of UM. These studies reveal a novel mechanistic basis for repurposing elesclomol by showing that copper homeostasis is a GNAQ/11-specific vulnerability in UM. Elesclomol may provide a new therapeutic path for selectively targeting malignant GNAQ/11-mutant UM.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Wei Sun
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jianming Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
18
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
19
|
Lapadula D, Benovic JL. Targeting Oncogenic Gα q/11 in Uveal Melanoma. Cancers (Basel) 2021; 13:6195. [PMID: 34944815 PMCID: PMC8699590 DOI: 10.3390/cancers13246195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.
Collapse
Affiliation(s)
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
20
|
Jiu X, Liu Y, Wen J. Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the MALAT1/yes-associated protein signaling pathway. Oncol Lett 2021; 22:597. [PMID: 34188699 PMCID: PMC8228376 DOI: 10.3892/ol.2021.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Uveal melanoma (UM) is the most common ocular malignancy and has no effective clinical treatment. Therefore, novel drugs to suppress UM tumor progression are urgently required. The present study aimed to clarify the underlying mechanism of the inhibitory effects of artesunate on UM. By using plasmid transfection and detecting apoptotic level, the present study identified artesunate as a potential candidate for UM treatment. Compared with those in the vehicle (DMSO)-treated control cells, artesunate enhanced the apoptotic rate and increased lactate dehydrogenase release, reactive oxygen species and IL1b and IL18 levels in C918 cells. Overexpression of yes-associated protein (YAP) or metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in C918 cells reversed the effects of artesunate and reduced the apoptotic rate compared with those observed in cells transfected with the negative control plasmid. Notably, verteporfin enhanced the effects of artesunate on C918 cells by increasing the apoptotic rate, indicating that combined therapy was more effective compared with treatment with artesunate alone. In conclusion, the results of the present study demonstrated that artesunate elevated the apoptotic rate and suppressed C918 cell viability by regulating the MALAT1/YAP signaling pathway, and these effects were enhanced by supplementation with verteporfin. These results suggested that artesunate may exert an inhibitory effect on C918 cells and that the MALAT1/YAP signaling may serve important role in mediating these effects, providing evidence of its potential for treating UM in the clinic.
Collapse
Affiliation(s)
- Xudong Jiu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China
| | - Jin Wen
- Department of Ophthalmology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
21
|
Brouwer NJ, Verdijk RM, Heegaard S, Marinkovic M, Esmaeli B, Jager MJ. Conjunctival melanoma: New insights in tumour genetics and immunology, leading to new therapeutic options. Prog Retin Eye Res 2021; 86:100971. [PMID: 34015548 DOI: 10.1016/j.preteyeres.2021.100971] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Recent developments in oncology have led to a better molecular and cellular understanding of cancer, and the introduction of novel therapies. Conjunctival melanoma (CoM) is a rare but potentially devastating disease. A better understanding of CoM, leading to the development of novel therapies, is urgently needed. CoM is characterized by mutations that have also been identified in cutaneous melanoma, e.g. in BRAF, NRAS and TERT. These mutations are distinct from the mutations found in uveal melanoma (UM), affecting genes such as GNAQ, GNA11, and BAP1. Targeted therapies that are successful in cutaneous melanoma may therefore be useful in CoM. A recent breakthrough in the treatment of patients with metastatic cutaneous melanoma was the development of immunotherapy. While immunotherapy is currently sparsely effective in intraocular tumours such as UM, the similarities between CoM and cutaneous melanoma (including in their immunological tumour micro environment) provide hope for the application of immunotherapy in CoM, and preliminary clinical data are indeed emerging to support this use. This review aims to provide a comprehensive overview of the current knowledge regarding CoM, with a focus on the genetic and immunologic understanding. We elaborate on the distinct position of CoM in contrast to other types of melanoma, and explain how new insights in the pathophysiology of this disease guide the development of new, personalized, treatments.
Collapse
Affiliation(s)
- Niels J Brouwer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert M Verdijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Leiden University Medica Center, Leiden, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Eye Pathology Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bita Esmaeli
- Department of Plastic Surgery, Orbital Oncology and Ophthalmic Plastic Surgery, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|