1
|
Kegyes D, Milea PA, Mazga AI, Tigu AB, Nistor M, Cenariu D, Tomai R, Buruiana S, Einsele H, Daniela Tănase A, Tomuleasa C. Looking ahead to targeting macrophages by CAR T- or NK-cells in blood cancers. Expert Opin Ther Targets 2024; 28:779-787. [PMID: 39235181 DOI: 10.1080/14728222.2024.2400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The bone marrow microenvironment (BME) is critical for healthy hematopoiesis and is often disrupted in hematologic malignancies. Tumor-associated macrophages (TAMs) are a major cell type in the tumor microenvironment (TME) and play a significant role in tumor growth and progression. Targeting TAMs and modulating their polarization is a promising strategy for cancer therapy. AREAS COVERED In this review, we discuss the importance of TME and different multiple possible targets to modulate immunosuppressive TAMs such as: CD123, Sphingosine 1-Phosphate Receptors, CD19/CD1d, CCR4/CCL22, CSF1R (CD115), CD24, CD40, B7 family proteins, MARCO, CD47, CD163, CD204, CD206 and folate receptors. EXPERT OPINION Innovative approaches to combat the immunosuppressive milieu of the tumor microenvironment in hematologic malignancies are of high clinical significance and may lead to increased survival, improved quality of life, and decreased toxicity of cancer therapies. Standard procedures will likely involve a combination of CAR T/NK-cell therapies with other treatments, leading to more comprehensive cancer care.
Collapse
Affiliation(s)
- David Kegyes
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Paul Alexandru Milea
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea-Isabella Mazga
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Tomai
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Hermann Einsele
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany
| | - Alina Daniela Tănase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Ciprian Tomuleasa
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
2
|
Zou D, Xin X, Xu Y, Xu H, Huang L, Xu T. Improving the efficacy of immunotherapy for colorectal cancer: Targeting tumor microenvironment-associated immunosuppressive cells. Heliyon 2024; 10:e36446. [PMID: 39262952 PMCID: PMC11388603 DOI: 10.1016/j.heliyon.2024.e36446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Currently, immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many malignant tumors. As the most common digestive tract malignancy, colorectal cancer (CRC) shows a good response to ICIs only in a small subset of patients with MSI-H/dMMR CRC. In contrast, patients with MSS/pMMR CRC show minimal response to ICIs. The results of the REGONIVO study suggest that targeting the tumor microenvironment (TME) to improve immunotherapy outcomes in MSS/pMMR CRC patients is a feasible strategy. Therefore, this article focuses on exploring the feasibility of targeting the TME to enhance immunotherapy outcomes in CRC, collecting recent basic research on targeting the TME to enhance immunotherapy outcomes in CRC and analyzing ongoing clinical trials to provide a theoretical basis and future research directions for improving immunotherapy outcomes in MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Linyan Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
3
|
Hughes DM, Won T, Talor MV, Kalinoski HM, Jurčová I, Szárszoi O, Stříž I, Čurnová L, Bracamonte-Baran W, Melenovský V, Čiháková D. The protective role of GATA6 + pericardial macrophages in pericardial inflammation. iScience 2024; 27:110244. [PMID: 39040070 PMCID: PMC11260870 DOI: 10.1016/j.isci.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Prior research has suggested that GATA6+ pericardial macrophages may traffic to the myocardium to prevent interstitial fibrosis after myocardial infarction (MI), while subsequent literature claims that they do not. We demonstrate that GATA6+ pericardial macrophages are critical for preventing IL-33 induced pericarditis and attenuate trafficking of inflammatory monocytes and granulocytes to the pericardial cavity after MI. However, absence of GATA6+ macrophages did not affect myocardial inflammation due to MI or coxsackievirus-B3 induced myocarditis, or late-stage cardiac fibrosis and cardiac function post MI. GATA6+ macrophages are significantly less transcriptionally active following stimulation in vitro compared to bone marrow-derived macrophages and do not induce upregulation of inflammatory markers in fibroblasts. This suggests that GATA6+ pericardial macrophages attenuate inflammation through their interactions with surrounding cells. We therefore conclude that GATA6+ pericardial macrophages are critical in modulating pericardial inflammation, but do not play a significant role in controlling myocardial inflammation or fibrosis.
Collapse
Affiliation(s)
- David M. Hughes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monica V. Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah M. Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ivana Jurčová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ondrej Szárszoi
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ilja Stříž
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Lenka Čurnová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Lee HJ, Choi YR, Ko JH, Ryu JS, Oh JY. Defining mesenchymal stem/stromal cell-induced myeloid-derived suppressor cells using single-cell transcriptomics. Mol Ther 2024; 32:1970-1983. [PMID: 38627968 PMCID: PMC11184332 DOI: 10.1016/j.ymthe.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) modulate the immune response through interactions with innate immune cells. We previously demonstrated that MSCs alleviate ocular autoimmune inflammation by directing bone marrow cell differentiation from pro-inflammatory CD11bhiLy6ChiLy6Glo cells into immunosuppressive CD11bmidLy6CmidLy6Glo cells. Herein, we analyzed MSC-induced CD11bmidLy6Cmid cells using single-cell RNA sequencing and compared them with CD11bhiLy6Chi cells. Our investigation revealed seven distinct immune cell types including myeloid-derived suppressor cells (MDSCs) in the CD11bmidLy6Cmid cells, while CD11bhiLy6Chi cells included mostly monocytes/macrophages with a small cluster of neutrophils. These MSC-induced MDSCs highly expressed Retnlg, Cxcl3, Cxcl2, Mmp8, Cd14, and Csf1r as well as Arg1. Comparative analyses of CSF-1RhiCD11bmidLy6Cmid and CSF-1RloCD11bmidLy6Cmid cells demonstrated that the former had a homogeneous monocyte morphology and produced elevated levels of interleukin-10. Functionally, these CSF-1RhiCD11bmidLy6Cmid cells, compared with the CSF-1RloCD11bmidLy6Cmid cells, inhibited CD4+ T cell proliferation and promoted CD4+CD25+Foxp3+ Treg expansion in culture and in a mouse model of experimental autoimmune uveoretinitis. Resistin-like molecule (RELM)-γ encoded by Retnlg, one of the highly upregulated genes in MSC-induced MDSCs, had no direct effects on T cell proliferation, Treg expansion, or splenocyte activation. Together, our study revealed a distinct transcriptional profile of MSC-induced MDSCs and identified CSF-1R as a key cell-surface marker for detection and therapeutic enrichment of MDSCs.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Yoo Rim Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea.
| |
Collapse
|
6
|
Pallarés-Moratalla C, Bergers G. The ins and outs of microglial cells in brain health and disease. Front Immunol 2024; 15:1305087. [PMID: 38665919 PMCID: PMC11043497 DOI: 10.3389/fimmu.2024.1305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.
Collapse
|
7
|
Lv Q, Zhang Y, Gao W, Wang J, Hu Y, Yang H, Xie Y, Lv Y, Zhang H, Wu D, Hu L, Wang J. CSF1R inhibition reprograms tumor-associated macrophages to potentiate anti-PD-1 therapy efficacy against colorectal cancer. Pharmacol Res 2024; 202:107126. [PMID: 38432446 DOI: 10.1016/j.phrs.2024.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
PD-1 blockade therapy has made great breakthroughs in treatment of multiple solid tumors. However, patients with microsatellite-stable (MSS) colorectal cancer (CRC) respond poorly to anti-PD-1 immunotherapy. Although CRC patients with microstatellite instability (MSI) or microsatellite instability-high (MSI-H) can benefit from PD-1 blockade therapy, there are still some problems such as tumor recurrence. Tumor-associated macrophages (TAMs), most abundant immune components in tumor microenvironment (TME), largely limit the therapeutic efficacy of anti-PD-1 against CRC. The CSF1/CSF1R pathway plays a key role in regulating macrophage polarization, and blocking CSF1R signaling transduction may be a potential strategy to effectively reprogram macrophages and remodel TME. Here, we found that increasing expression of CSF1R in macrophages predicted poor prognosis in CRC cohort. Furthermore, we discovered a novel potent CSF1R inhibitor, PXB17, which significantly reprogramed M2 macrophages to M1 phenotype. Mechanically, PXB17 significantly blocked activation of PI3K/AKT/mTORC1 signaling, resulting in inhibition of cholesterol biosynthesis. Results from 3D co-culture system suggested that PXB17-repolarized macrophages could induce infiltration of CD8+ T lymphocytes in tumors and improve the immunosuppressive microenvironment. In vivo, PXB17 significantly halted CRC growth, with a stronger effect than PLX3397. In particular, PXB17 potently enhanced therapeutic activity of PD-1 mAb in CT-26 (MSS) model and prevented tumor recurrence in MC-38 (MSI-H) model by promoting formation of long-term memory immunity. Our study opens a new avenue for CSF1R in tumor innate and adaptive anti-tumor immunomodulatory activity and suggests that PXB17 is a promising immunotherapy molecule for enhancing the efficacy of PD-1 mAb or reducing tumor recurrence of CRC.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yishu Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wen Gao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Juan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yaowen Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongqiong Yang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ying Xie
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yingshan Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Heyuan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Dapeng Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Sharma N, Fan X, Atolagbe OT, Ge Z, Dao KN, Sharma P, Allison JP. ICOS costimulation in combination with CTLA-4 blockade remodels tumor-associated macrophages toward an antitumor phenotype. J Exp Med 2024; 221:e20231263. [PMID: 38517331 PMCID: PMC10959121 DOI: 10.1084/jem.20231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
We have previously demonstrated synergy between ICOS costimulation (IVAX; ICOSL-transduced B16-F10 cellular vaccine) and CTLA-4 blockade in antitumor therapy. In this study, we employed CyTOF and single-cell RNA sequencing and observed significant remodeling of the lymphoid and myeloid compartments in combination therapy. Compared with anti-CTLA-4 monotherapy, the combination therapy enriched Th1 CD4 T cells, effector CD8 T cells, and M1-like antitumor proinflammatory macrophages. These macrophages were critical to the therapeutic efficacy of anti-CTLA-4 combined with IVAX or anti-PD-1. Macrophage depletion with clodronate reduced the tumor-infiltrating effector CD4 and CD8 T cells, impairing their antitumor functions. Furthermore, the recruitment and polarization of M1-like macrophages required IFN-γ. Therefore, in this study, we show that there is a positive feedback loop between intratumoral effector T cells and tumor-associated macrophages (TAMs), in which the IFN-γ produced by the T cells polarizes the TAMs into M1-like phenotype, and the TAMs, in turn, reshape the tumor microenvironment to facilitate T cell infiltration, immune function, and tumor rejection.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaozhou Fan
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly N. Dao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Immunotherapy Platform, James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Suryavanshi P, Bodas D. Knockout cancer by nano-delivered immunotherapy using perfusion-aided scaffold-based tumor-on-a-chip. Nanotheranostics 2024; 8:380-400. [PMID: 38751938 PMCID: PMC11093718 DOI: 10.7150/ntno.87818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 05/18/2024] Open
Abstract
Cancer is a multifactorial disease produced by mutations in the oncogenes and tumor suppressor genes, which result in uncontrolled cell proliferation and resistance to cell death. Cancer progresses due to the escape of altered cells from immune monitoring, which is facilitated by the tumor's mutual interaction with its microenvironment. Understanding the mechanisms involved in immune surveillance evasion and the significance of the tumor microenvironment might thus aid in developing improved therapies. Although in vivo models are commonly utilized, they could be better for time, cost, and ethical concerns. As a result, it is critical to replicate an in vivo model and recreate the cellular and tissue-level functionalities. A 3D cell culture, which gives a 3D architecture similar to that found in vivo, is an appropriate model. Furthermore, numerous cell types can be cocultured, establishing cellular interactions between TME and tumor cells. Moreover, microfluidics perfusion can provide precision flow rates, thus simulating tissue/organ function. Immunotherapy can be used with the perfused 3D cell culture technique to help develop successful therapeutics. Immunotherapy employing nano delivery can target the spot and silence the responsible genes, ensuring treatment effectiveness while minimizing adverse effects. This study focuses on the importance of 3D cell culture in understanding the pathophysiology of 3D tumors and TME, the function of TME in drug resistance, tumor progression, and the development of advanced anticancer therapies for high-throughput drug screening.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| |
Collapse
|
10
|
Sandor LF, Huh JB, Benko P, Hiraga T, Poliska S, Dobo-Nagy C, Simpson JP, Homer NZM, Mahata B, Gyori DS. De novo steroidogenesis in tumor cells drives bone metastasis and osteoclastogenesis. Cell Rep 2024; 43:113936. [PMID: 38489269 PMCID: PMC10995766 DOI: 10.1016/j.celrep.2024.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.
Collapse
Affiliation(s)
- Luca F Sandor
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Joon B Huh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Peter Benko
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Dobo-Nagy
- Department of Oral Diagnostics, Semmelweis University School of Dentistry, 1088 Budapest, Hungary
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; University of Edinburgh/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge CB21QP Cambridgeshire, UK
| | - David S Gyori
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.
| |
Collapse
|
11
|
Yang S, Wang M, Hua Y, Li J, Zheng H, Cui M, Huang N, Liu Q, Liao Q. Advanced insights on tumor-associated macrophages revealed by single-cell RNA sequencing: The intratumor heterogeneity, functional phenotypes, and cellular interactions. Cancer Lett 2024; 584:216610. [PMID: 38244910 DOI: 10.1016/j.canlet.2024.216610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an emerging technology used for cellular transcriptome analysis. The application of scRNA-seq has led to profoundly advanced oncology research, continuously optimizing novel therapeutic strategies. Intratumor heterogeneity extensively consists of all tumor components, contributing to different tumor behaviors and treatment responses. Tumor-associated macrophages (TAMs), the core immune cells linking innate and adaptive immunity, play significant roles in tumor progression and resistance to therapies. Moreover, dynamic changes occur in TAM phenotypes and functions subject to the regulation of the tumor microenvironment. The heterogeneity of TAMs corresponding to the state of the tumor microenvironment has been comprehensively recognized using scRNA-seq. Herein, we reviewed recent research and summarized variations in TAM phenotypes and functions from a developmental perspective to better understand the significance of TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Huang H, Liang X, Wu W, Yuan T, Chen Z, Wang L, Wu Z, Zhang T, Yang K, Wen K. FOXP3-regulated lncRNA NONHSAT136151 promotes colorectal cancer progression by disrupting QKI interaction with target mRNAs. J Cell Mol Med 2024; 28:e18068. [PMID: 38041531 PMCID: PMC10826441 DOI: 10.1111/jcmm.18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
The role of lncRNAs in the pathogenesis of cancer, including colorectal cancer (CRC), has repeatedly been demonstrated. However, very few lncRNAs have been well annotated functionally. Our study identified a novel lncRNA upregulated in CRC, NONHSAT136151, which was correlated with clinical progression. In functional assays, NONHSAT136151 significantly enhanced CRC cell proliferation, migration and invasion. Mechanistically, NONHSAT136151 interacted with RNA-binding protein (RBP) QKI (Quaking) to interfere with QKI binding to target mRNAs and regulate their expression. As well, FOXP3 may be causally related to the dysregulation of NONHSAT136151 in CRC cells through its transcriptional activity. In conclusion, our findings identified a novel lncRNA regulated by FOXP3 participates in CRC progression through interacting with QKI, indicating a novel lncRNA-RBP interaction mechanism is involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Handong Huang
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaoxiang Liang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Weizheng Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Yuan
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhengquan Chen
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lin Wang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhenyu Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Zhang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kai Yang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kunming Wen
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
13
|
Johnson B. Targeting Myeloid-Derived Suppressor Cell Trafficking as a Novel Immunotherapeutic Approach in Microsatellite Stable Colorectal Cancer. Cancers (Basel) 2023; 15:5484. [PMID: 38001744 PMCID: PMC10670242 DOI: 10.3390/cancers15225484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a unique subset of immune cells that promote an immunosuppressive phenotype due to their impacts on CD8 and regulatory T cell function. The inhibition of MDSC trafficking to the tumor microenvironment (TME) may represent a novel target in microsatellite stable (MSS) colorectal cancer with the potential to reprogram the immune system. Here, we review the rationale of inhibiting myeloid suppressor cell trafficking in treatment-refractory MSS colorectal cancer and circulating tumor DNA (ctDNA) positive settings to determine whether this approach can serve as a backbone for promoting immunotherapy response in this difficult-to-treat disease.
Collapse
Affiliation(s)
- Benny Johnson
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Djureinovic D, Weiss SA, Krykbaeva I, Qu R, Vathiotis I, Moutafi M, Zhang L, Perdigoto AL, Wei W, Anderson G, Damsky W, Hurwitz M, Johnson B, Schoenfeld D, Mahajan A, Hsu F, Miller-Jensen K, Kluger Y, Sznol M, Kaech SM, Bosenberg M, Jilaveanu LB, Kluger HM. A bedside to bench study of anti-PD-1, anti-CD40, and anti-CSF1R indicates that more is not necessarily better. Mol Cancer 2023; 22:182. [PMID: 37964379 PMCID: PMC10644655 DOI: 10.1186/s12943-023-01884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Stimulating inflammatory tumor associated macrophages can overcome resistance to PD-(L)1 blockade. We previously conducted a phase I trial of cabiralizumab (anti-CSF1R), sotigalimab (CD40-agonist) and nivolumab. Our current purpose was to study the activity and cellular effects of this three-drug regimen in anti-PD-1-resistant melanoma. METHODS We employed a Simon's two-stage design and analyzed circulating immune cells from patients treated with this regimen for treatment-related changes. We assessed various dose levels of anti-CSF1R in murine melanoma models and studied the cellular and molecular effects. RESULTS Thirteen patients were enrolled in the first stage. We observed one (7.7%) confirmed and one (7.7%) unconfirmed partial response, 5 patients had stable disease (38.5%) and 6 disease progression (42.6%). We elected not to proceed to the second stage. CyTOF analysis revealed a reduction in non-classical monocytes. Patients with prolonged stable disease or partial response who remained on study for longer had increased markers of antigen presentation after treatment compared to patients whose disease progressed rapidly. In a murine model, higher anti-CSF1R doses resulted in increased tumor growth and worse survival. Using single-cell RNA-sequencing, we identified a suppressive monocyte/macrophage population in murine tumors exposed to higher doses. CONCLUSIONS Higher anti-CSF1R doses are inferior to lower doses in a preclinical model, inducing a suppressive macrophage population, and potentially explaining the disappointing results observed in patients. While it is impossible to directly infer human doses from murine studies, careful intra-species evaluation can provide important insight. Cabiralizumab dose optimization is necessary for this patient population with limited treatment options. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03502330.
Collapse
Affiliation(s)
- Dijana Djureinovic
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Sarah A Weiss
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Irina Krykbaeva
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Ioannis Vathiotis
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Myrto Moutafi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Zhang
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Ana L Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Gail Anderson
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Hurwitz
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Barbara Johnson
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - David Schoenfeld
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Amit Mahajan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA, USA
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia B Jilaveanu
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Barnwal A, Gaur V, Sengupta A, Tyagi W, Das S, Bhattacharyya J. Tumor Antigen-Primed Dendritic Cell-Derived Exosome Synergizes with Colony Stimulating Factor-1 Receptor Inhibitor by Modulating the Tumor Microenvironment and Systemic Immunity. ACS Biomater Sci Eng 2023; 9:6409-6424. [PMID: 37870457 DOI: 10.1021/acsbiomaterials.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Dendritic cell-derived exosomes (Dex) have overcome the disadvantages associated with dendritic cell (DC) vaccines, such as cost effectiveness, stability, and sensitivity to the systemic microenvironment. However, in clinical trials, Dex failed to provide satisfactory results because of many reasons, including inadequate maturation of DC as well as the immunosuppressive tumor microenvironment (TME). Hence, culturing DCs in the presence of a maturation cocktail showed an induced expression of MHCs and co-stimulatory molecules. Additionally, targeting the colony stimulating factor-1 (CSF-1)/CSF-1 receptor (CSF-1R) signaling pathway by a CSF-1R inhibitor could deplete tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) which are responsible for immunosuppressive TME. Hence, in this study, mDexTA were isolated from bone marrow-derived DC cultured in the presence of a novel maturation cocktail and tumor antigen. mDexTA showed elevated expression of major histocompatibility complexes (MHCs) and co-stimulatory molecules and was found capable of activating naïve DC and T cells in vitro more efficiently when compared to imDexTA isolated from immature DCs. In addition, PLX-3397, a small molecule inhibitor of CSF-1/CSF-1R, was used in combination to enhance the antitumor efficacy of mDexTA. PLX-3397 showed dose-dependent toxicity against bone marrow-derived macrophages (BMDMs). In the B16-F10 murine melanoma model, we found that the combination treatment delayed tumor growth and improved survival compared to the mice treated with mDexTA alone by enhancing the CD8 T cells infiltration in TME. mDexTA when combined with PLX-3397 modulated the TME by shifting the Th1/Th2 toward a dominant Th1 population and depleting the TAMs and MDSCs. Interestingly, PLX-3397-induced FoxP3 expression was diminished when it was used in combination with mDexTA. Combination treatment also induced favorable systemic antitumor immunity in the spleen and lymph node. In conclusion, our findings provide insights into the synergy between mDexTA-based immunotherapy and PLX-3397 as the combination overcame the disadvantages associated with monotherapy and offer a therapeutic strategy for the treatment of solid tumors including melanoma.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| | - Anindita Sengupta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| | - Witty Tyagi
- National Institute of Immunology, Delhi 110067, India
| | - Sanjeev Das
- National Institute of Immunology, Delhi 110067, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| |
Collapse
|
16
|
Krykbaeva I, Bridges K, Damsky W, Pizzurro GA, Alexander AF, McGeary MK, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss SA, Olino K, Kaech SM, Kluger HM, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunol Res 2023; 11:1332-1350. [PMID: 37478171 DOI: 10.1158/2326-6066.cir-22-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Checkpoint inhibitors have revolutionized cancer treatment, but resistance remains a significant clinical challenge. Myeloid cells within the tumor microenvironment can modulate checkpoint resistance by either supporting or suppressing adaptive immune responses. Using an anti-PD-1-resistant mouse melanoma model, we show that targeting the myeloid compartment via CD40 activation and CSF1R blockade in combination with anti-PD-1 results in complete tumor regression in a majority of mice. This triple therapy combination was primarily CD40 agonist-driven in the first 24 hours after therapy and showed a similar systemic cytokine profile in human patients as was seen in mice. Functional single-cell cytokine secretion profiling of dendritic cells (DC) using a novel microwell assay identified a CCL22+CCL5+ IL12-secreting DC subset as important early-stage effectors of triple therapy. CD4+ and CD8+ T cells are both critical effectors of treatment, and systems analysis of single-cell RNA sequencing data supported a role for DC-secreted IL12 in priming T-cell activation and recruitment. Finally, we showed that treatment with a novel IL12 mRNA therapeutic alone was sufficient to overcome PD-1 resistance and cause tumor regression. Overall, we conclude that combining myeloid-based innate immune activation and enhancement of adaptive immunity is a viable strategy to overcome anti-PD-1 resistance.
Collapse
Affiliation(s)
- Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - William Damsky
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Gabriela A Pizzurro
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Amanda F Alexander
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Viswanathan Muthusamy
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
| | - James Eyles
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Nadia Luheshi
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Noel Turner
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah A Weiss
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kelly Olino
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute of Biological Sciences, La Jolla, California
| | - Harriet M Kluger
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Marcus Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
17
|
Shang L, Zhong Y, Yao Y, Liu C, Wang L, Zhang W, Liu J, Wang X, Sun C. Subverted macrophages in the triple-negative breast cancer ecosystem. Biomed Pharmacother 2023; 166:115414. [PMID: 37660651 DOI: 10.1016/j.biopha.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.
Collapse
Affiliation(s)
- Linxiao Shang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264000, China
| | - Yuting Zhong
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Lu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, Macau 999078, China
| | - Jingyang Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
18
|
Matos AI, Peres C, Carreira B, Moura LIF, Acúrcio RC, Vogel T, Wegener E, Ribeiro F, Afonso MB, Santos FMF, Martínez‐Barriocanal Á, Arango D, Viana AS, Góis PMP, Silva LC, Rodrigues CMP, Graca L, Jordan R, Satchi‐Fainaro R, Florindo HF. Polyoxazoline-Based Nanovaccine Synergizes with Tumor-Associated Macrophage Targeting and Anti-PD-1 Immunotherapy against Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300299. [PMID: 37434063 PMCID: PMC10477894 DOI: 10.1002/advs.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Immune checkpoint blockade reaches remarkable clinical responses. However, even in the most favorable cases, half of these patients do not benefit from these therapies in the long term. It is hypothesized that the activation of host immunity by co-delivering peptide antigens, adjuvants, and regulators of the transforming growth factor (TGF)-β expression using a polyoxazoline (POx)-poly(lactic-co-glycolic) acid (PLGA) nanovaccine, while modulating the tumor-associated macrophages (TAM) function within the tumor microenvironment (TME) and blocking the anti-programmed cell death protein 1 (PD-1) can constitute an alternative approach for cancer immunotherapy. POx-Mannose (Man) nanovaccines generate antigen-specific T-cell responses that control tumor growth to a higher extent than poly(ethylene glycol) (PEG)-Man nanovaccines. This anti-tumor effect induced by the POx-Man nanovaccines is mediated by a CD8+ -T cell-dependent mechanism, in contrast to the PEG-Man nanovaccines. POx-Man nanovaccine combines with pexidartinib, a modulator of the TAM function, restricts the MC38 tumor growth, and synergizes with PD-1 blockade, controlling MC38 and CT26 tumor growth and survival. This data is further validated in the highly aggressive and poorly immunogenic B16F10 melanoma mouse model. Therefore, the synergistic anti-tumor effect induced by the combination of nanovaccines with the inhibition of both TAM- and PD-1-inducing immunosuppression, holds great potential for improving immunotherapy outcomes in solid cancer patients.
Collapse
Affiliation(s)
- Ana I. Matos
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Carina Peres
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Barbara Carreira
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Liane I. F. Moura
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Rita C. Acúrcio
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Theresa Vogel
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Erik Wegener
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Filipa Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Marta B. Afonso
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Fábio M. F. Santos
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Águeda Martínez‐Barriocanal
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d'Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
- Group of Molecular OncologyLleida Biomedical Research Institute (IRBLleida)Lleida25198Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d'Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
- Group of Molecular OncologyLleida Biomedical Research Institute (IRBLleida)Lleida25198Spain
| | - Ana S. Viana
- Centro de Química EstruturalDepartamento de Química e BioquímicaInstitute of Molecular SciencesFaculty of SciencesUniversidade de LisboaLisbon1749‐016Portugal
| | - Pedro M. P. Góis
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Liana C. Silva
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Cecília M. P. Rodrigues
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Luis Graca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Rainer Jordan
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Ronit Satchi‐Fainaro
- Department of Physiology and PharmacologyFaculty of MedicineSagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
| | - Helena F. Florindo
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| |
Collapse
|
19
|
Al-Sudani H, Ni Y, Jones P, Karakilic H, Cui L, Johnson LDS, Rose PG, Olawaiye A, Edwards RP, Uger RA, Lin GHY, Mahdi H. Targeting CD47-SIRPa axis shows potent preclinical anti-tumor activity as monotherapy and synergizes with PARP inhibition. NPJ Precis Oncol 2023; 7:69. [PMID: 37468567 DOI: 10.1038/s41698-023-00418-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
The objective was to correlate CD47 gene expression with resistance to immune checkpoint inhibitors (ICI) in tumor tissue of gynecological cancer (GC). Further, we sought to assess the efficacy of targeting CD47 pathway alone and in combination in pre-clinical ovarian cancer (OC) models. We performed transcriptomic analyses in GC treated with ICI. Signaling pathway enrichment analysis was performed using Ingenuity Pathway Analysis. Immune cell abundance was estimated. CD47 expression was correlated with other pathways, objective response, and progression-free survival (PFS). Anti-tumor efficacy of anti-CD47 therapy alone and in combination was investigated both in-vitro and in-vivo using cell-line derived xenograft (CDX) and patient-derived xenograft (PDX) models. High CD47 expression associated with lower response to ICI and trended toward lower PFS in GC patients. Higher CD47 associated negatively with PDL1 and CTLA4 expression, as well as cytotoxic T-cells and dendritic cells but positively with TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 significantly enhanced macrophage-mediated phagocytosis of OC cells in-vitro and exhibited potent anti-tumor activity in-vivo in OC CDX and PDX models. In-vitro treatment with PARPi increased CD47 expression. Anti-CD47 led to significantly enhanced in-vitro phagocytosis, enhanced STING pathway and synergized in-vivo when combined with PARP inhibitors in BRCA-deficient OC models. This study provides insight on the potential role of CD47 in mediating immunotherapy resistance and its association with higher TGF-β, BRD4 and CXCR4/CXCL12 expression. Anti-CD47 showed potent anti-tumor activity and synergized with PARPi in OC models. These data support clinical development of anti-CD47 therapy with PARPi in OC.
Collapse
Affiliation(s)
- Hussein Al-Sudani
- Internal Medicine Department, Einstein Medical Center Montgomery, Philadelphia, PA, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philip Jones
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Huseyin Karakilic
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Lei Cui
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Lisa D S Johnson
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Peter G Rose
- Section of Gynecologic Oncology, Women's Health Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Alexander Olawaiye
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert P Edwards
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Uger
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Gloria H Y Lin
- Trillium Therapeutics Inc, 2488 Dunwin Dr., Mississauga, ON, L5L 1J9, Canada
| | - Haider Mahdi
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Glasner A, Rose SA, Sharma R, Gudjonson H, Chu T, Green JA, Rampersaud S, Valdez IK, Andretta ES, Dhillon BS, Schizas M, Dikiy S, Mendoza A, Hu W, Wang ZM, Chaudhary O, Xu T, Mazutis L, Rizzuto G, Quintanal-Villalonga A, Manoj P, de Stanchina E, Rudin CM, Pe'er D, Rudensky AY. Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies. Nat Immunol 2023; 24:1020-1035. [PMID: 37127830 PMCID: PMC10232368 DOI: 10.1038/s41590-023-01504-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
While regulatory T (Treg) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct Treg cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral Treg cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual Treg cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings. Factor analysis revealed shared Treg cell-dependent gene programs, foremost, prominent upregulation of VEGF and CCR2 signaling-related genes upon Treg cell deprivation in either setting, as well as in Treg cell-poor versus Treg cell-rich human lung adenocarcinomas. Accordingly, punctual Treg cell depletion combined with short-term VEGF blockade showed markedly improved control of PD-1 blockade-resistant lung adenocarcinoma progression in mice compared to the corresponding monotherapies, highlighting a promising factor-based querying approach to elucidating new rational combination treatments of solid organ cancers.
Collapse
Affiliation(s)
- Ariella Glasner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Rose
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herman Gudjonson
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesse A Green
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sham Rampersaud
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Izabella K Valdez
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emma S Andretta
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bahawar S Dhillon
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michail Schizas
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stanislav Dikiy
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alejandra Mendoza
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Hu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhong-Min Wang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Gabrielle Rizzuto
- Human Oncology & Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology & Laboratory Medicine, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, New York, NY, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Alexander Y Rudensky
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
22
|
Shen Y, Chen JX, Li M, Xiang Z, Wu J, Wang YJ. Role of tumor-associated macrophages in common digestive system malignant tumors. World J Gastrointest Oncol 2023; 15:596-616. [PMID: 37123058 PMCID: PMC10134211 DOI: 10.4251/wjgo.v15.i4.596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Many digestive system malignant tumors are characterized by high incidence and mortality rate. Increasing evidence has revealed that the tumor microenvironment (TME) is involved in cancer initiation and tumor progression. Tumor-associated macrophages (TAMs) are a predominant constituent of the TME, and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer. TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype. The latter especially are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and resistance to therapy. TAMs are of importance in the occurrence, development, diagnosis, prognosis, and treatment of common digestive system malignant tumors. In this review, we summarize the role of TAMs in common digestive system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How TAMs promote the development of tumors, and how they act as potential therapeutic targets and their clinical applications are also described.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Jia-Xi Chen
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Yi-Jin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
23
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Cheruku S, Rao V, Pandey R, Rao Chamallamudi M, Velayutham R, Kumar N. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. Int Immunopharmacol 2023; 116:109569. [PMID: 36773572 DOI: 10.1016/j.intimp.2022.109569] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 02/11/2023]
Abstract
Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.
Collapse
Affiliation(s)
- SriPragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
25
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
26
|
Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol 2023; 23:106-120. [PMID: 35697799 DOI: 10.1038/s41577-022-00737-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The Immunotherapy Platform, The University of Texas MD Anderson Cancer, Center, Houston, TX, USA.
| |
Collapse
|
27
|
Alshaebi F, Safi M, Algabri YA, Al-Azab M, Aldanakh A, Alradhi M, Reem A, Zhang C. Interleukin-34 and immune checkpoint inhibitors: Unified weapons against cancer. Front Oncol 2023; 13:1099696. [PMID: 36798830 PMCID: PMC9927403 DOI: 10.3389/fonc.2023.1099696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Interleukin-34 (IL-34) is a cytokine that is involved in the regulation of immune cells, including macrophages, in the tumor microenvironment (TME). Macrophages are a type of immune cell that can be found in large numbers within the TME and have been shown to have a role in the suppression of immune responses in cancer. This mmune suppression can contribute to cancer development and tumors' ability to evade the immune system. Immune checkpoint inhibitors (ICIs) are a type of cancer treatment that target proteins on immune cells that act as "checkpoints," regulating the activity of the immune system. Examples of these proteins include programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). ICIs work by blocking the activity of these proteins, allowing the immune system to mount a stronger response against cancer cells. The combination of IL-34 inhibition with ICIs has been proposed as a potential treatment option for cancer due to the role of IL-34 in the TME and its potential involvement in resistance to ICIs. Inhibiting the activity of IL-34 or targeting its signaling pathways may help to overcome resistance to ICIs and improve the effectiveness of these therapies. This review summarizes the current state of knowledge concerning the involvement of IL-34-mediated regulation of TME and the promotion of ICI resistance. Besides, this work may shed light on whether targeting IL-34 might be exploited as a potential treatment option for cancer patients in the future. However, further research is needed to fully understand the mechanisms underlying the role of IL-34 in TME and to determine the safety and efficacy of this approach in cancer patients.
Collapse
Affiliation(s)
- Fadhl Alshaebi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China
| | - Mohammed Safi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| | - Yousif A. Algabri
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Alradhi
- Department of Urology, The Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Alariqi Reem
- Faculty of Medicine and Health Sciences, Amran University, Amran, Yemen
| | - Caiqing Zhang
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| |
Collapse
|
28
|
Gu GJ, Chung H, Park JY, Yoo R, Im HJ, Choi H, Lee YS, Seok SH. Mannosylated-serum albumin nanoparticle imaging to monitor tumor-associated macrophages under anti-PD1 treatment. J Nanobiotechnology 2023; 21:31. [PMID: 36707872 PMCID: PMC9881286 DOI: 10.1186/s12951-023-01791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors such as anti-programmed cell death protein 1 (PD1) block tumor growth by reinvigorating the immune system; however, determining their efficacy only by the changes in tumor size may prove inaccurate. As the immune cells including macrophages in the tumor microenvironment (TME) are associated with the response to anti-PD1 therapy, tumor-associated macrophages (TAMs) imaging using nanoparticles can noninvasively provide the immune enrichment status of TME. Herein, the mannosylated-serum albumin (MSA) nanoparticle was labeled with radioactive isotope 68Ga to target the mannose receptors on macrophages for noninvasive monitoring of the TME according to anti-PD1 therapy. RESULTS B16F10-Luc and MC38-Luc tumor-bearing mice were treated with anti-PD1, and the response to anti-PD1 was determined by the tumor volume. According to the flow cytometry, the responders to anti-PD1 showed an increased proportion of TAMs, as well as lymphocytes, and the most enriched immune cell population in the TME was also TAMs. For noninvasive imaging of TAMs as a surrogate of immune cell augmentation in the TME via anti-PD1, we acquired [68Ga] Ga-MSA positron emission tomography. According to the imaging study, an increased number of TAMs in responders at the early phase of anti-PD1 treatment was observed in both B16F10-Luc and MC38-Luc tumor-bearing mice models. CONCLUSION As representative immune cells in the TME, non-invasive imaging of TAMs using MSA nanoparticles can reflect the immune cell enrichment status in the TME closely associated with the response to anti-PD1. As non-invasive imaging using MSA nanoparticles, this approach shows a potential to monitor and evaluate anti-tumor response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Gyo Jeong Gu
- grid.31501.360000 0004 0470 5905Macrophage Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Chung
- grid.31501.360000 0004 0470 5905Macrophage Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji Yong Park
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ranji Yoo
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.412484.f0000 0001 0302 820X Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyung-Jun Im
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Radiation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Radiation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyeok Seok
- grid.31501.360000 0004 0470 5905Macrophage Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24032020. [PMID: 36768342 PMCID: PMC9917056 DOI: 10.3390/ijms24032020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Primary CNS neoplasms are responsible for considerable mortality and morbidity, and many therapies directed at primary brain tumors have proven unsuccessful despite their success in preclinical studies. Recently, the tumor immune microenvironment has emerged as a critical aspect of primary CNS neoplasms that may affect their malignancy, prognosis, and response to therapy across patients and tumor grades. This review covers the tumor microenvironment of various primary CNS neoplasms, with a focus on glioblastoma and meningioma. Additionally, current therapeutic strategies based on elements of the tumor microenvironment, including checkpoint inhibitor therapy and immunotherapeutic vaccines, are discussed.
Collapse
|
30
|
Wang Z, Zhou H, Xu J, Wang J, Niu T. Safety and efficacy of dual PI3K-δ, γ inhibitor, duvelisib in patients with relapsed or refractory lymphoid neoplasms: A systematic review and meta-analysis of prospective clinical trials. Front Immunol 2023; 13:1070660. [PMID: 36685572 PMCID: PMC9845779 DOI: 10.3389/fimmu.2022.1070660] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Background Duvelisib is the first FDA-approved oral dual inhibitor of phosphatidylinositol-3-kinase PI3K-delta (PI3K-δ) and PI3K-gamma (PI3K-γ). Although many clinical studies support the efficacy of duvelisib, the safety of duvelisib remains with great attention. This systematic review and meta-analysis aimed to evaluate the safety and efficacy of duvelisib in treating different relapsed or refractory (RR) lymphoid neoplasm types. Methods We searched prospective clinical trials from PUBMED, EMBASE, Cochrane Library, and ClinicalTrials.gov. For efficacy analysis, Overall response rate (ORR), complete response rate (CR), partial response rate (PR), rate of stable disease (SDR), rate of progressive disease (PDR), median progression-free survival (mPFS), 12-/24-month PFS, and 12-month overall survival (OS) were assessed. For safety analysis, the incidences of any grade and grade ≥3 adverse events (AEs), serious AEs, and treatment-related discontinuation and death were evaluated. Subgroup analysis based on the disease type was performed. Results We included 11 studies and 683 patients, including 305 chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), 187 B-cell indolent non-Hodgkin lymphoma (iNHL), 39 B-cell aggressive non-Hodgkin lymphoma (aNHL), and 152 T-cell non-Hodgkin lymphoma (T-NHL) patients. The pooled ORR in CLL/SLL, iNHL, aNHL and T-NHL was 70%, 70%, 28% and 47%, respectively. Additionally, the pooled ORR in CLL/SLL patients with or without TP53 mutation/17p-deletion (62% vs. 74%, p=0.45) and in follicular lymphoma (FL) or other iNHL (69% vs. 57%, p=0.38) had no significant differences. Mantle cell lymphoma (MCL) patients had higher pooled ORR than other aNHL (68% vs. 17%, p=0.04). Angioimmunoblastic TCL (AITL) patients had higher pooled ORR than other PTCL patients (67% vs. 42%, p=0.01). The pooled incidence of any grade, grade ≥3, serious AEs, treatment-related discontinuation and death was 99%, 79%, 63%, 33% and 3%, respectively. The most frequent any-grade AEs were diarrhea (47%), ALT/AST increase (39%), and neutropenia (38%). The most frequent grade ≥3 AEs were neutropenia (25%), ALT/AST increased (16%), diarrhea (12%), and anemia (12%). Conclusion Generally, duvelisib could offer favorable efficacy in patients with RR CLL/SLL, iNHL, MCL, and AITL. Risk and severity in duvelisib treatment may be mitigated through proper identification and management.
Collapse
|
31
|
Che J, Yu S. Ecological niches for colorectal cancer stem cell survival and thrival. Front Oncol 2023; 13:1135364. [PMID: 37124519 PMCID: PMC10134776 DOI: 10.3389/fonc.2023.1135364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
To date, colorectal cancer is still ranking top three cancer types severely threatening lives. According to cancer stem cell hypothesis, malignant colorectal lumps are cultivated by a set of abnormal epithelial cells with stem cell-like characteristics. These vicious stem cells are derived from intestinal epithelial stem cells or transformed by terminally differentiated epithelial cells when they accumulate an array of transforming genomic alterations. Colorectal cancer stem cells, whatever cell-of-origin, give rise to all morphologically and functionally heterogenous tumor daughter cells, conferring them with overwhelming resilience to intrinsic and extrinsic stresses. On the other hand, colorectal cancer stem cells and their daughter cells continuously participate in constructing ecological niches for their survival and thrival by communicating with adjacent stromal cells and circulating immune guardians. In this review, we first provide an overview of the normal cell-of-origin populations contributing to colorectal cancer stem cell reservoirs and the niche architecture which cancer stem cells depend on at early stage. Then we survey recent advances on how these aberrant niches are fostered by cancer stem cells and their neighbors. We also discuss recent research on how niche microenvironment affects colorectal cancer stem cell behaviors such as plasticity, metabolism, escape of immune surveillance as well as resistance to clinical therapies, therefore endowing them with competitive advantages compared to their normal partners. In the end, we explore therapeutic strategies available to target malignant stem cells.
Collapse
Affiliation(s)
- Jiayun Che
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shiyan Yu,
| |
Collapse
|
32
|
Zhang W, Jiang X, Zou Y, Yuan L, Wang X. Pexidartinib synergize PD-1 antibody through inhibiting treg infiltration by reducing TAM-derived CCL22 in lung adenocarcinoma. Front Pharmacol 2023; 14:1092767. [PMID: 36969873 PMCID: PMC10030616 DOI: 10.3389/fphar.2023.1092767] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
There is a crosstalk between Tumor-associated macrophages (TAM) and tumor-infiltrating T cells in tumor environment. TAM could inhibit the activity of cytotoxic T cells; TAM could also regulate the composition of T cells in tumor immune environment. The combination therapy for TAM and tumor infiltrated T cells has been widely noticed, but the crosstalk between TAM and tumor infiltrated T cells remains unclear in the process of combination therapy. We treated lung adenocarcinoma tumor models with pexidartinib, which targets macrophage colony stimulating factor receptor (M-CSFR) and c-kit tyrosine kinase, to inhibited TAM. Pexidartinib inhibited the ratio of macrophages in the tumor and also altered macrophage polarization. In addition to reprogram TAM, pexidartinib also changed the composition of tumor-invasive T cells. After pexidartinib treatment, the total number of T cells, CD8+ T cells and Treg cells were all decreased, the ratio of CD8+T/Treg increased significantly. According to the analysis of cytokines and chemokines during the treatment of pexidartinib, CCL22, as a chemokine for Treg recruitment, significantly decreased after the treatment of pexidartinib. Base on the above observation, the combination of pexidartinib and PD-1 antibody were used in the treatment of lung adenocarcinoma subcutaneous tumor model, the combination therapy has significantly improved the efficacy of tumor treatment compared with the monotherapy. Meanwhile, compared with pexidartinib monotherapy, the combination treatment further switches the polarization status of tumor-associated macrophages. In summary, our results showed that the combination of pexidartinib and PD-1 antibody showed a synergy and significantly improved the anti-tumor efficacy, through pexidartinib increasing CD8T/Treg ratio by reducing TAM-derived CCL22.
Collapse
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xi Jiang
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Youcheng Zou
- Emergency Department, Shenzhen Longgang Central Hospital, Shenzhen, China
| | - Lihua Yuan
- Department of Pediatric Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Lihua Yuan, ; Xiaobo Wang,
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Lihua Yuan, ; Xiaobo Wang,
| |
Collapse
|
33
|
Zhu M, Bai L, Liu X, Peng S, Xie Y, Bai H, Yu H, Wang X, Yuan P, Ma R, Lin J, Wu L, Huang M, Li Y, Luo Y. Silence of a dependence receptor CSF1R in colorectal cancer cells activates tumor-associated macrophages. J Immunother Cancer 2022; 10:jitc-2022-005610. [PMID: 36600555 PMCID: PMC9730427 DOI: 10.1136/jitc-2022-005610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colony-stimulating factor 1 receptor (CSF1R), a classic tyrosine kinase receptor, has been identified as a proto-oncogene in multiple cancers. The CSF1/CSF1R axis is essential for the survival and differentiation of M2-phenotype tumor-associated macrophages (M2 TAMs). However, we found here that the CSF1R expression was abnormally down-regulated in colorectal cancer (CRC), and its biological functions and underlying mechanisms have become elusive in CRC progression. METHODS The expression of class III receptor tyrosine kinases in CRC and normal intestinal mucosa was accessed using The Cancer Genome Atlas and Gene Expression Omnibus datasets and was further validated by our tested cohort. CSF1R was reconstructed in CRC cells to identify its biological functions in vitro and in vivo. We compared CSF1R expression and methylation differences between CRC cells and macrophages. Furthermore, a co-culture system was used to mimic a competitive mechanism between CSF1R-overexpressed CRC cells and M2-like macrophages. We utilized a CSF1R inhibitor PLX3397 to ablate M2 TAMs and evaluated its efficacy on CRC treatment in animal models. RESULTS We found here that the CSF1R is silenced in CRC, and the reintroduced expression of the receptor in CRC cells can be cleaved by caspases and constrain tumor growth in vitro and in vivo, functioning as a tumor suppressor gene. We further identified CSF1R as a novel dependence receptor, which has the potential to act as either a tumor suppressor gene or an oncogene, depending on its activated state. In CRC tumors, CSF1R expression is enriched in TAMs, and its expression is associated with poor prognosis in patients ith CRC. In a co-culture system, CRC cells expressing CSF1R compete with M2-like macrophages for CSF1R ligands, resulting in a decrease in CSF1R activation and cell proliferation in macrophages. Blocking CSF1R by PLX3397 could deplete M2 TAMs and augments CD8+ T cell infiltration, effectively inhibiting tumor growth and metastasis and improving responses to chemotherapy and immunotherapy. CONCLUSION Our findings revealed that CSF1R is a novel identified dependence receptor silenced in CRC. The silence abalienates its ligands to stimulate CSF1R expressed on M2 TAMs, which is an appealing therapeutic target for M2 TAM depletion and CRC treatment.
Collapse
Affiliation(s)
- Mingxuan Zhu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangliang Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxia Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoyong Peng
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yumo Xie
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Bai
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Yuan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Ma
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinxin Lin
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Meijin Huang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingjie Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Shi T, Zhang Y, Wang Y, Song X, Wang H, Zhou X, Liang K, Luo Y, Che K, Wang X, Pan Y, Liu F, Yang J, Liu Q, Yu L, Liu B, Wei J. DKK1 Promotes Tumor Immune Evasion and Impedes Anti-PD-1 Treatment by Inducing Immunosuppressive Macrophages in Gastric Cancer. Cancer Immunol Res 2022; 10:1506-1524. [PMID: 36206576 DOI: 10.1158/2326-6066.cir-22-0218] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/16/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
Abstract
Tumor-associated macrophages (TAM) have key functions in promoting a suppressive tumor immune microenvironment (TIME) and immune evasion, which largely limit treatment effects of immune-checkpoint inhibitors (ICI) in different cancers, including gastric cancer. Dickkopf-1 (DKK1) is associated with tumor progression and has been shown to negatively regulate antitumor immunity, but the impact of DKK1 on the TIME remains incompletely understood. Here, we found that tumoral DKK1 expression is closely associated with worse survival and a suppressive TIME in gastric cancer patients. Results from in vitro coculture assays suggested that DKK1 induces macrophages to become immunosuppressive, thereby inhibiting antitumor responses of CD8+ T cells and natural killer (NK) cells. In vivo DKK1 blockade in syngeneic gastric cancer mouse models reprogramed TAMs to restore the immune activity in the TIME and triggered significant tumor regression. DKK1 blockade also directly reduced the growth of human gastric cancer tumors with high DKK1 expression in a xenograft model. Mechanistically, DKK1 interacted with cytoskeleton-associated protein 4 (CKAP4) on the macrophage surface and activated downstream PI3K-AKT signaling, which contributed to immune suppression. TAM reprogramming by DKK1 blockade also augmented the efficacy of programmed cell death protein-1 (PD-1) blockade in gastric cancer models. Therefore, our study provides novel insights into the role of DKK1 on tumor-intrinsic, innate, and adaptive antitumor immunity modulation and suggests that DKK1 is a promising immunotherapeutic target for enhanced PD-1 blockade therapy in gastric cancer.
Collapse
Affiliation(s)
- Tao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yipeng Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyu Zhou
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kaijie Liang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Keying Che
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yunfeng Pan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- Pathology Department, Affiliated Drum Tower Hospital to Medical School of Nanjing University, Nanjing, China
| | - Ju Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Cancer Institute of Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Lauder SN, Smart K, Bart VMT, Pires A, Scott J, Milutinovic S, Godkin A, Vanhaesebroeck B, Gallimore A. Treg-driven tumour control by PI3Kδ inhibition limits myeloid-derived suppressor cell expansion. Br J Cancer 2022; 127:1595-1602. [PMID: 35986086 PMCID: PMC9596434 DOI: 10.1038/s41416-022-01917-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that blocking the PI3Kδ signalling enzyme (by administering a small molecule inhibitor, PI-3065) can potently improve the anti-tumour T-cell response through direct inhibition of Tregs. This treatment also has a negative impact on MDSC numbers but the primary mechanism driving this effect has remained unclear. METHODS The 4T1 breast cancer mouse model was used in combination with PI-3065 to gain insights into the effect of PI3Kδ inhibition on MDSCs. RESULTS PI-3065 treatment resulted in a concomitant reduction in MDSC expansion and tumour size. However, targeting Tregs independent of PI-3065 was also associated with reduced tumour volume and MDSC numbers. Surgical removal of tumours resulted in a rapid and significant decline in MDSC numbers, whilst ex vivo studies using cells from PI-3065-treated mice demonstrated no direct effect of the inhibitor on MDSC activity. CONCLUSIONS Our data suggest that MDSCs are not inhibited directly by PI-3065 treatment but that their reduced recruitment and immunosuppression within the tumour microenvironment is an indirect consequence of PI3Kδ-inhibition-driven tumour control. This indicates that PI3Kδ inhibition drives tumour immunity by breaking down multiple immunosuppressive pathways through both direct mechanisms (on Treg) and indirect mechanisms, secondary to tumour control (on MDSCs).
Collapse
Affiliation(s)
- Sarah N Lauder
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK.
| | - Kathryn Smart
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK
| | - Valentina M T Bart
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK
| | - Ana Pires
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK
| | - Jake Scott
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK
| | - Stefan Milutinovic
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK
| | - Andrew Godkin
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Awen Gallimore
- Division of Infection and Immunity, Cardiff University School of Medicine, SIURI, Cardiff, CF14 4XN, UK
| |
Collapse
|
36
|
Chen H, Cresswell GM, Libring S, Ayers MG, Miao J, Zhang ZY, Solorio L, Ratliff TL, Wendt MK. Tumor Cell-Autonomous SHP2 Contributes to Immune Suppression in Metastatic Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:1104-1118. [PMID: 36969745 PMCID: PMC10035406 DOI: 10.1158/2767-9764.crc-22-0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
SH2 containing protein tyrosine phosphatase-2 (SHP2) is recognized as a druggable oncogenic phosphatase that is expressed in both tumor cells and immune cells. How tumor cell-autonomous SHP2 contributes to an immunosuppressive tumor microenvironment (TME) and therapeutic failure of immune checkpoint blockades in metastatic breast cancer (MBC) is not fully understood. Herein, we utilized systemic SHP2 inhibition and inducible genetic depletion of SHP2 to investigate immune reprogramming during SHP2 targeting. Pharmacologic inhibition of SHP2 sensitized MBC cells growing in the lung to α-programmed death ligand 1 (α-PD-L1) antibody treatment via relieving T-cell exhaustion induced by checkpoint blockade. Tumor cell-specific depletion of SHP2 similarly reduced pulmonary metastasis and also relieved exhaustion markers on CD8+ and CD4+ cells. Both systemic SHP2 inhibition and tumor cell-autonomous SHP2 depletion reduced tumor-infiltrated CD4+ T cells and M2-polarized tumor-associated macrophages. Analysis of TCGA datasets revealed that phosphorylation of SHP2 is important for immune-cell infiltration, T-cell activation and antigen presentation. To investigate this mechanistically, we conducted in vitro T-cell killing assays, which demonstrated that pretreatment of tumor cells with FGF2 and PDGF reduced the cytotoxicity of CD8+ T cells in a SHP2-dependent manner. Both growth factor receptor signaling and three-dimensional culture conditions transcriptionally induced PD-L1 via SHP2. Finally, SHP2 inhibition reduced MAPK signaling and enhanced STAT1 signaling, preventing growth factor-mediated suppression of MHC class I. Overall, our findings support the conclusion that tumor cell-autonomous SHP2 is a key signaling node utilized by MBC cells to engage immune-suppressive mechanisms in response to diverse signaling inputs from TME. Significance Findings present inhibition of SHP2 as a therapeutic option to limit breast cancer metastasis by promoting antitumor immunity.
Collapse
Affiliation(s)
- Hao Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Gregory M. Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Sarah Libring
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Mitchell G. Ayers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Luis Solorio
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
37
|
Regulatory T Cells in Pancreatic Cancer: Of Mice and Men. Cancers (Basel) 2022; 14:cancers14194582. [PMID: 36230505 PMCID: PMC9559359 DOI: 10.3390/cancers14194582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Regulatory T cells (Treg) are a major immunosuppressive cell subset in the pancreatic tumor microenvironment. Tregs influence tumor growth by acting either directly on cancer cells or via the inhibition of effector immune cells. Treg cells form a partially redundant network with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) that confer robustness to tumor immunosuppression and resistance to immunotherapy. The results obtained in preclinical studies, whereupon Treg depletion, MDSCs concomitantly decreased in early tumors whereas an inverse association was seen in advanced PCa, urge a comprehensive analysis of the immunosuppressive profile of PCa throughout tumorigenesis. One relevant context to analyse these compensatory mechanisms may be patients with locally advanced PCa undergoing neoadjuvant therapy (neoTx). In order to understand these dynamics and to uncover stage-specific actional strategies involving Tregs, pre-clinical models that allow the administration of neoTx to different stages of PCa may be a very useful platform. Abstract Regulatory T cells (Treg) are one of the major immunosuppressive cell subsets in the pancreatic tumor microenvironment. Tregs influence tumor growth by acting either directly on cancer cells or via the inhibition of effector immune cells. Treg cells mechanisms form a partially redundant network with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) that confer robustness to tumor immunosuppression and resistance to immunotherapy. The results obtained in preclinical studies where after Treg depletion, MDSCs concomitantly decreased in early tumors whereas an inverse association was seen in advanced PCa, urge a comprehensive analysis of the immunosuppressive profile of PCa throughout tumorigenesis. One relevant context to analyse these complex compensatory mechanisms may be the tumors of patients who underwent neoTx. Here, we observed a parallel decrease in the numbers of both intratumoral Tregs and MDSC after neoTx even in locally advanced PCa. NeoTx also led to decreased amounts of αSMA+ myofibroblastic cancer-associated fibroblasts (myCAF) and increased proportions of CD8+ cytotoxic T lymphocytes in the tumor. In order to understand these dynamics and to uncover stage-specific actional strategies involving Tregs, pre-clinical models that allow the administration of neoTx to different stages of PCa may be a very useful platform.
Collapse
|
38
|
Belli C, Antonarelli G, Repetto M, Boscolo Bielo L, Crimini E, Curigliano G. Targeting Cellular Components of the Tumor Microenvironment in Solid Malignancies. Cancers (Basel) 2022; 14:4278. [PMID: 36077813 PMCID: PMC9454727 DOI: 10.3390/cancers14174278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cancers are composed of transformed cells, characterized by aberrant growth and invasiveness, in close relationship with non-transformed healthy cells and stromal tissue. The latter two comprise the so-called tumor microenvironment (TME), which plays a key role in tumorigenesis, cancer progression, metastatic seeding, and therapy resistance. In these regards, cancer-TME interactions are complex and dynamic, with malignant cells actively imposing an immune-suppressive and tumor-promoting state on surrounding, non-transformed, cells. Immune cells (both lymphoid and myeloid) can be recruited from the circulation and/or bone marrow by means of chemotactic signals, and their functionality is hijacked upon arrival at tumor sites. Molecular characterization of tumor-TME interactions led to the introduction of novel anti-cancer therapies targeting specific components of the TME, such as immune checkpoint blockers (ICB) (i.e., anti-programmed death 1, anti-PD1; anti-Cytotoxic T-Lymphocyte Antigen 4, anti-CTLA4). However, ICB resistance often develops and, despite the introduction of newer technologies able to study the TME at the single-cell level, a detailed understanding of all tumor-TME connections is still largely lacking. In this work, we highlight the main cellular and extracellular components of the TME, discuss their dynamics and functionality, and provide an outlook on the most relevant clinical data obtained with novel TME-targeting agents, with a focus on T lymphocytes, macrophages, and cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Matteo Repetto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| |
Collapse
|
39
|
Achkova DY, Beatson RE, Maher J. CAR T-Cell Targeting of Macrophage Colony-Stimulating Factor Receptor. Cells 2022; 11:cells11142190. [PMID: 35883636 PMCID: PMC9323367 DOI: 10.3390/cells11142190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
Macrophage colony-stimulating factor receptor (M-CSFR) is found in cells of the mononuclear phagocyte lineage and is aberrantly expressed in a range of tumours, in addition to tumour-associated macrophages. Consequently, a variety of cancer therapies directed against M-CSFR are under development. We set out to engineer chimeric antigen receptors (CARs) that employ the natural ligands of this receptor, namely M-CSF or interleukin (IL)-34, to achieve specificity for M-CSFR-expressing target cells. Both M-CSF and IL-34 bind to overlapping regions of M-CSFR, although affinity of IL-34 is significantly greater than that of M-CSF. Matched second- and third-generation CARs targeted using M-CSF or IL-34 were expressed in human T-cells using the SFG retroviral vector. We found that both M-CSF- and IL-34-containing CARs enable T-cells to mediate selective destruction of tumour cells that express enforced or endogenous M-CSFR, accompanied by production of both IL-2 and interferon (IFN)-γ. Although they contain an additional co-stimulatory module, third-generation CARs did not outperform second-generation CARs. M-CSF-containing CARs mediated enhanced cytokine production and cytolytic activity compared to IL-34-containing CARs. These data demonstrate the feasibility of targeting M-CSFR using ligand-based CARs and raise the possibility that the low picomolar affinity of IL-34 for M-CSFR is detrimental to CAR function.
Collapse
Affiliation(s)
- Daniela Yordanova Achkova
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
| | - Richard Esmond Beatson
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
| | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
- Correspondence: ; Tel.: +44-(0)207188-1468
| |
Collapse
|
40
|
Wodziński D, Wosiak A, Pietrzak J, Świechowski R, Kordek R, Balcerczak E. Assessment of the TGFB1 gene expression and methylation status of the promoter region in patients with colorectal cancer. Sci Rep 2022; 12:11488. [PMID: 35798776 PMCID: PMC9263105 DOI: 10.1038/s41598-022-15599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the expression of the TGFB1 gene encoding the TGF-β1 cytokine in 64 patients, and then to compare it with clinico-pathological features. The study also investigated whether the regulation of the gene expression is caused by methylation of the promoter region between - 235 and + 22 nucleotide from the start of transcription. The dependence of the relative level of the TGFB1 gene expression on the clinical advancement according to the TNM classifications was shown. Additionally, the individual grades of the T and M features of the TNM classification differed in the relative transcript levels of the TGFB1 gene. Moreover, the higher relative expression level of the studied gene was associated with a lack of vascular invasion by cancer cells and presence of lymphocytes in the neoplastic tissue. The obtained results may indicate a possible impact of the gene on the process of carcinogenesis in colorectal cancer and reduction of its expression level may be one of the factors contributing to progression of the disease.
Collapse
Affiliation(s)
- Damian Wodziński
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland.
| | - Agnieszka Wosiak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Jacek Pietrzak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Rafał Świechowski
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Cathedral of Oncology, Medical University of Lodz, Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
41
|
Monteleone G, Maresca C, Colella M, Pacifico T, Congiu D, Troncone E, Marafini I. Targeting IL-34/MCSF-1R Axis in Colon Cancer. Front Immunol 2022; 13:917955. [PMID: 35837402 PMCID: PMC9273844 DOI: 10.3389/fimmu.2022.917955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common neoplasias in the Western world and it is still one of the most deadly cancers worldwide mainly due to the fact that metastatic CRC is not responsive to current pharmacologic treatment. Identification of pathways that sustain CRC cell behaviour could help develop effective therapeutic compounds. A large body of evidence indicates that colon carcinogenesis is a dynamic process in which multiple cell types present in the tumor microenvironment either stimulate or suppress CRC cell growth, survival, and diffusion mainly via the production of cytokines. Interleukin-34 (IL-34), a cytokine initially known for its ability to regulate monocyte/macrophage survival and function, is highly produced in human CRC by both cancer cells and non-tumoral cells. IL-34 function is mainly mediated by interaction with the macrophage colony-stimulating factor-1 receptor (MCSF-1R), which is also over-expressed by CRC cells as well as by tumour-associated macrophages (TAMs) and cancer-associated fibroblasts. IL-34-driven MCSF-1R activation triggers several pro-tumoral functions in the colon. In this article, we review the current understanding of the involvement of IL-34 and its receptor in CRC, with particular attention to the available evidence about the IL-34/MCSF-1R axis-mediated regulation of TAMs and the role of IL-34 and MCSF-1R in promoting cancer resistance to chemotherapy and immunotherapy
Collapse
|
42
|
Denis M, Grasselly C, Choffour PA, Wierinckx A, Mathe D, Chettab K, Tourette A, Talhi N, Bourguignon A, Birzele F, Kress E, Jordheim LP, Klein C, Matera EL, Dumontet C. IN VIVO SYNGENEIC TUMOR MODELS WITH ACQUIRED RESISTANCE TO ANTI-PD-1/PD-L1 THERAPIES. Cancer Immunol Res 2022; 10:1013-1027. [PMID: 35679518 DOI: 10.1158/2326-6066.cir-21-0802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Antibodies targeting PD-1 and PD-L1 have produced durable responses in a subset of cancer patients. However, a majority of these patients will ultimately relapse due to acquired resistance. To explore the underlying mechanisms of this secondary resistance, we developed five syngeneic murine tumor variants with acquired resistance to anti-PD-1 and/or PD-L1 antibodies in vivo. Resistant in vivo models were obtained by serial treatment/reimplantation cycles of the MC38 colorectal, MB49 and MBT2 bladder, TyrNras melanoma and RENCA kidney models. Tumor immune infiltrates were characterized for wild type and resistant tumors using spectral cytometry and their molecular alterations analyzed using RNA-seq analyses. Alterations in the tumor immune microenvironment were strongly heterogeneous amongst resistant models, involving select lymphoid and/or myeloid subpopulations. Molecular alterations in resistant models included previously identified pathways as well as novel candidate genes found to be deregulated in several resistant models. Among these, Serpinf1, coding for Pigment Epithelial Derived Factor was further explored in the MC38 and the MBT2 models. Overexpression of Serpinf1 induced resistance to anti-PD-1 antibodies in the MC38 model, whereas knock-down of Serpinf1 sensitized this model as well as the primarily resistant MBT2 model. Serpinf1 overexpression was associated with increased production of free fatty acids and reduced activation of CD8+ cells, while orlistat, a compound that reduces the production of free fatty acids, reversed resistance to anti-PD-1 therapy. Our results suggest that a panel of syngeneic resistant models constitutes a useful tool to model the heterogeneity of resistance mechanisms encountered in the clinic.
Collapse
Affiliation(s)
- Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Chloé Grasselly
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, France
| | | | - Anne Wierinckx
- INSERM U1052, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | | - Kamel Chettab
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang Q, Bergholz JS, Ding L, Lin Z, Kabraji SK, Hughes ME, He X, Xie S, Jiang T, Wang W, Zoeller JJ, Kim HJ, Roberts TM, Konstantinopoulos PA, Matulonis UA, Dillon DA, Winer EP, Lin NU, Zhao JJ. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun 2022; 13:3022. [PMID: 35641483 PMCID: PMC9156717 DOI: 10.1038/s41467-022-30568-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
PARP inhibitors (PARPi) have drastically changed the treatment landscape of advanced ovarian tumors with BRCA mutations. However, the impact of this class of inhibitors in patients with advanced BRCA-mutant breast cancer is relatively modest. Using a syngeneic genetically-engineered mouse model of breast tumor driven by Brca1 deficiency, we show that tumor-associated macrophages (TAMs) blunt PARPi efficacy both in vivo and in vitro. Mechanistically, BRCA1-deficient breast tumor cells induce pro-tumor polarization of TAMs, which in turn suppress PARPi-elicited DNA damage in tumor cells, leading to reduced production of dsDNA fragments and synthetic lethality, hence impairing STING-dependent anti-tumor immunity. STING agonists reprogram M2-like pro-tumor macrophages into an M1-like anti-tumor state in a macrophage STING-dependent manner. Systemic administration of a STING agonist breaches multiple layers of tumor cell-mediated suppression of immune cells, and synergizes with PARPi to suppress tumor growth. The therapeutic benefits of this combination require host STING and are mediated by a type I IFN response and CD8+ T cells, but do not rely on tumor cell-intrinsic STING. Our data illustrate the importance of targeting innate immune suppression to facilitate PARPi-mediated engagement of anti-tumor immunity in breast cancer.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liya Ding
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ziying Lin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sheheryar K Kabraji
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Melissa E Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiadi He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Weihua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason J Zoeller
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Larroquette M, Guegan JP, Besse B, Cousin S, Brunet M, Le Moulec S, Le Loarer F, Rey C, Soria JC, Barlesi F, Bessede A, Scoazec JY, Soubeyran I, Italiano A. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies. J Immunother Cancer 2022; 10:jitc-2021-003890. [PMID: 35618288 PMCID: PMC9125754 DOI: 10.1136/jitc-2021-003890] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) having immunosuppressive properties are one of the most abundant immune cells in the tumor microenvironment (TME). Preclinical studies have highlighted the potential role of TAMs in resistance to immune checkpoint blockers (ICBs). Here, we investigated the predictive value of TAM infiltration in patients with non-small cell lung cancer (NSCLC) treated with ICBs and characterized their transcriptomic profiles. METHODS Tumor samples were collected from 152 patients with NSCLC before ICB treatment onset. After immunohistochemical staining and image analysis, the correlation between CD163+ cell infiltration and survival was analyzed. Spatial transcriptomic analyses were performed using the NanoString GeoMx Immune Pathways assay to compare the gene expression profile of tumors with high or low levels of CD163+ cell infiltration and to identify determinants of response to ICBs in tumors with high CD163+ infiltration. RESULTS Low intratumoral CD163+ cell infiltration was associated with longer progression-free survival (PFS; HR 0.61, 95% CI 0.40 to 0.94, p=0.023) and overall survival (OS; HR 0.48, 95% CI 0.28 to 0.80, p=0.004) under ICB treatment. Spatial transcriptomic profiles of 16 tumors revealed the upregulation of ITGAM, CD27, and CCL5 in tumors with high CD163+ cell infiltration. Moreover, in tumors with high macrophage infiltration, the upregulation of genes associated with the interferon-γ signaling pathway and the M1 phenotype was associated with better responses under immunotherapy. Surprisingly, we found also a significantly higher expression of CSF1R in the tumors of responders. Analysis of three independent data sets confirmed that high CSF1R expression was associated with an increased durable clinical benefit rate (47% vs 6%, p=0.004), PFS (median 10.89 months vs 1.67 months, p=0.001), and OS (median 23.11 months vs 2.66 months, p<0.001) under ICB treatment. CONCLUSIONS Enrichment of TAMs in the TME of NSCLC is associated with resistance to immunotherapy regardless of the programmed death ligand 1 status and is driven by upregulation of CD27, ITGAM, and CCL5 gene expression within the tumor compartment. Our transcriptomic analyses identify new potential targets to alter TAM recruitment/polarization and highlight the complexity of the CSF1R pathway, which may not be a suitable target to improve ICB efficacy.
Collapse
Affiliation(s)
- Mathieu Larroquette
- Department of Medecine, Institut Bergonié, Bordeaux, France
- Faculty of Medecine, University of Bordeaux, Bordeaux, France
| | | | - Benjamin Besse
- Department of Medecine, Gustave Roussy, Villejuif, France
| | - Sophie Cousin
- Department of Medecine, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medecine, Institut Bergonié, Bordeaux, France
- Faculty of Medecine, University of Bordeaux, Bordeaux, France
| | | | | | | | | | | | | | | | | | - Antoine Italiano
- Department of Medecine, Institut Bergonié, Bordeaux, France
- Faculty of Medecine, University of Bordeaux, Bordeaux, France
- DITEP, Gustave Roussy, Villejuif, France
| |
Collapse
|
45
|
Duong L, Pixley FJ, Nelson DJ, Jackaman C. Aging Leads to Increased Monocytes and Macrophages With Altered CSF-1 Receptor Expression and Earlier Tumor-Associated Macrophage Expansion in Murine Mesothelioma. FRONTIERS IN AGING 2022; 3:848925. [PMID: 35821822 PMCID: PMC9261395 DOI: 10.3389/fragi.2022.848925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022]
Abstract
Increased cancer incidence occurs with the emergence of immunosenescence, highlighting the indispensability of the immune system in preventing cancer and its dysregulation with aging. Tumor-associated macrophages (TAMs) are often present in high numbers and are associated with poor clinical outcomes in solid cancers, including mesothelioma. Monocytes and macrophages from the bone marrow and spleen can respond to tumor-derived factors, such as CSF-1, and initiation of the CSF-1R signaling cascade results in their proliferation, differentiation, and migration to the tumor. Age-related changes occur in monocytes and macrophages in terms of numbers and function, which in turn can impact tumor initiation and progression. Whether this is due to changes in CSF-1R expression with aging is currently unknown and was investigated in this study. We examined monocytes and macrophages in the bone marrow and spleen during healthy aging in young (3–4 months) and elderly (20–24 months) female C57BL/6J mice. Additionally, changes to these tissues and in TAMs were examined during AE17 mesothelioma tumor growth. Healthy aging resulted in an expansion of Ly6Chigh monocytes and macrophages in the bone marrow and spleen. CSF-1R expression levels were reduced in elderly splenic macrophages only, suggesting differences in CSF-1R signaling between both cell type and tissue site. In tumor-bearing mice, Ly6Chigh monocytes increased with tumor growth in the spleen in the elderly and increased intracellular CSF-1R expression occurred in bone marrow Ly6Chigh monocytes in elderly mice bearing large tumors. Age-related changes to bone marrow and splenic Ly6Chigh monocytes were reflected in the tumor, where we observed increased Ly6Chigh TAMs earlier and expansion of Ly6Clow TAMs later during AE17 tumor growth in the elderly compared to young mice. F4/80high TAMs increased with tumor growth in both young and elderly mice and were the largest subset of TAMs in the tumor. Together, this suggests there may be a faster transition of Ly6Chigh towards F4/80high TAMs with aging. Amongst TAM subsets, expression of CSF-1R was lowest in F4/80high TAMs, however Ly6Clow TAMs had higher intracellular CSF-1R expression. This suggests downstream CSF-1R signaling may vary between macrophage subsets, which can have implications towards CSF-1R blockade therapies targeting macrophages in cancer.
Collapse
Affiliation(s)
- Lelinh Duong
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Fiona J. Pixley
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Delia J. Nelson
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Medical School, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- *Correspondence: Connie Jackaman,
| |
Collapse
|
46
|
Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C. Role of macrophages in tumor progression and therapy (Review). Int J Oncol 2022; 60:57. [PMID: 35362544 PMCID: PMC8997338 DOI: 10.3892/ijo.2022.5347] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The number and phenotype of macrophages are closely related to tumor growth and prognosis. Macrophages are recruited to (and polarized at) the tumor site thereby promoting tumor growth, stimulating tumor angiogenesis, facilitating tumor cell migration, and creating a favorable environment for subsequent colonization by (and survival of) tumor cells. These phenomena contribute to the formation of an immunosuppressive tumor microenvironment (TME) and therefore speed up tumor cell proliferation and metastasis and reduce the efficacy of antitumor factors and therapies. The ability of macrophages to remodel the TME through interactions with other cells and corresponding changes in their number, activity, and phenotype during conventional therapies, as well as the association between these changes and drug resistance, make tumor-associated macrophages a new target for antitumor therapies. In this review, advantages and limitations of the existing antitumor strategies targeting macrophages in Traditional Chinese and Western medicine were analyzed, starting with the effect of macrophages on tumors and their interactions with other cells and then the role of macrophages in conventional treatments was explored. Possible directions of future developments in this field from an all-around multitarget standpoint were also examined.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
47
|
Kosti CN, Vaitsi PC, Pappas AG, Iliopoulou MP, Psarra KK, Magkouta SF, Kalomenidis IT. CSF1/CSF1R signaling mediates malignant pleural effusion formation. JCI Insight 2022; 7:155300. [PMID: 35315360 PMCID: PMC8986064 DOI: 10.1172/jci.insight.155300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Malignant pleural effusion (MPE) is an incurable common manifestation of many malignancies. Its formation is orchestrated by complex interactions among tumor cells, inflammatory cells, and the vasculature. Tumor-associated macrophages present the dominant inflammatory population of MPE, and M2 macrophage numbers account for dismal prognosis. M2 polarization is known to be triggered by CSF1/CSF1 receptor (CSF1R) signaling. We hypothesized that CSF1R+ M2 macrophages favor MPE formation and could be therapeutically targeted to limit MPE. We generated mice with CSF1R-deficient macrophages and induced lung and colon adenocarcinoma–associated MPE. We also examined the therapeutic potential of a clinically relevant CSF1R inhibitor (BLZ945) in lung and colon adenocarcinoma–induced experimental MPE. We showed that CSF1R+ macrophages promoted pleural fluid accumulation by enhancing vascular permeability, destabilizing tumor vessels, and favoring immune suppression. We also showed that CSF1R inhibition limited MPE in vivo by reducing vascular permeability and neoangiogenesis and impeding tumor progression. This was because apart from macrophages, CSF1R signals in cancer-associated fibroblasts leading to macrophage inflammatory protein 2 secretion triggered the manifestation of suppressive and angiogenic properties in macrophages upon CXCR2 paracrine activation. Pharmacological targeting of the CSF1/CSF1R axis can therefore be a vital strategy for limiting MPE.
Collapse
Affiliation(s)
- Chrysavgi N Kosti
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Photene C Vaitsi
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos G Pappas
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianthi P Iliopoulou
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katherina K Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Sophia F Magkouta
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis T Kalomenidis
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Prasad M, Zorea J, Jagadeeshan S, Shnerb AB, Mathukkada S, Bouaoud J, Michon L, Novoplansky O, Badarni M, Cohen L, Yegodayev KM, Tzadok S, Rotblat B, Brezina L, Mock A, Karabajakian A, Fayette J, Cohen I, Cooks T, Allon I, Dimitstein O, Joshua B, Kong D, Voronov E, Scaltriti M, Carmi Y, Conde-Lopez C, Hess J, Kurth I, Morris LGT, Saintigny P, Elkabets M. MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer. J Immunother Cancer 2022; 10:jitc-2021-003917. [PMID: 35292516 PMCID: PMC8928405 DOI: 10.1136/jitc-2021-003917] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/05/2022] Open
Abstract
Background Although the mitogen-activated protein kinases (MAPK) pathway is hyperactive in head and neck cancer (HNC), inhibition of MEK1/2 in HNC patients has not shown clinically meaningful activity. Therefore, we aimed to characterize the effect of MEK1/2 inhibition on the tumor microenvironment (TME) of MAPK-driven HNC, elucidate tumor-host interaction mechanisms facilitating immune escape on treatment, and apply rationale-based therapy combination immunotherapy and MEK1/2 inhibitor to induce tumor clearance. Methods Mouse syngeneic tumors and xenografts experiments were used to analyze tumor growth in vivo. Single-cell cytometry by time of flight, flow cytometry, and tissue stainings were used to profile the TME in response to trametinib (MEK1/2 inhibitor). Co-culture of myeloid-derived suppressor cells (MDSC) with CD8+ T cells was used to measure immune suppression. Overexpression of colony-stimulating factor-1 (CSF-1) in tumor cells was used to show the effect of tumor-derived CSF-1 on sensitivity to trametinib and anti-programmed death- 1 (αPD-1) in mice. In HNC patients, the ratio between CSF-1 and CD8A was measured to test the association with clinical benefit to αPD-1 and αPD-L1 treatment. Results Using preclinical HNC models, we demonstrated that treatment with trametinib delays HNC initiation and progression by reducing tumor cell proliferation and enhancing the antitumor immunity of CD8+ T cells. Activation of CD8+ T cells by supplementation with αPD-1 antibody eliminated tumors and induced an immune memory in the cured mice. Mechanistically, an early response to trametinib treatment sensitized tumors to αPD-1-supplementation by attenuating the expression of tumor-derived CSF-1, which reduced the abundance of two CSF-1R+CD11c+ MDSC populations in the TME. In contrast, prolonged treatment with trametinib abolished the antitumor activity of αPD-1, because tumor cells undergoing the epithelial to mesenchymal transition in response to trametinib restored CSF-1 expression and recreated an immune-suppressive TME. Conclusion Our findings provide the rationale for testing the trametinib/αPD-1 combination in HNC and highlight the importance of sensitizing tumors to αPD-1 by using MEK1/2 to interfere with the tumor–host interaction. Moreover, we describe the concept that treatment of cancer with a targeted therapy transiently induces an immune-active microenvironment, and supplementation of immunotherapy during this time further activates the antitumor machinery to cause tumor elimination.
Collapse
Affiliation(s)
- Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital B Shnerb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sooraj Mathukkada
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jebrane Bouaoud
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France
| | - Lucas Michon
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France
| | - Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia M Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sapir Tzadok
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Libor Brezina
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andreas Mock
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Translational Medical Oncology, NCT Heidelberg, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Andy Karabajakian
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Jérôme Fayette
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Irit Allon
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel
| | - Orr Dimitstein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Benzion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otorhinolaryngology and Head & Neck Surgery, Barzilai Medical Center, Ashkelon, Israel
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Yaron Carmi
- Department of Pathology, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Conde-Lopez
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Kurth
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pierre Saintigny
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
49
|
Lee J, Kim D, Min B. Tissue Resident Foxp3+ Regulatory T Cells: Sentinels and Saboteurs in Health and Disease. Front Immunol 2022; 13:865593. [PMID: 35359918 PMCID: PMC8963273 DOI: 10.3389/fimmu.2022.865593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells are a CD4 T cell subset with unique immune regulatory function that are indispensable in immunity and tolerance. Their indisputable importance has been investigated in numerous disease settings and experimental models. Despite the extensive efforts in determining the cellular and molecular mechanisms operating their functions, our understanding their biology especially in vivo remains limited. There is emerging evidence that Treg cells resident in the non-lymphoid tissues play a central role in regulating tissue homeostasis, inflammation, and repair. Furthermore, tissue-specific properties of those Treg cells that allow them to express tissue specific functions have been explored. In this review, we will discuss the potential mechanisms and key cellular/molecular factors responsible for the homeostasis and functions of tissue resident Treg cells under steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dongkyun Kim
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Booki Min
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Booki Min,
| |
Collapse
|
50
|
Wu D, Liu X, Mu J, Yang J, Wu F, Zhou H. Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules 2022; 12:biom12030392. [PMID: 35327584 PMCID: PMC8945446 DOI: 10.3390/biom12030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor proliferation, invasion, angiogenesis, stemness, therapeutic resistance, and immune tolerance in a protein-dependent manner. Therefore, the traditional target paradigms are often insufficient to exterminate tumor cells. These pro-tumoral functions are mediated by the subsets of macrophages that exhibit canonical protein markers, while simultaneously having unique transcriptional features, which makes the proteins expressed on TAMs promising targets during anti-tumor therapy. Herein, TAM-associated protein-dependent target strategies were developed with the aim of either reducing the numbers of TAMs or inhibiting the pro-tumoral functions of TAMs. Furthermore, the recent advances in TAMs associated with tumor metabolism and immunity were extensively exploited to repolarize these TAMs to become anti-tumor elements and reverse the immunosuppressive tumor microenvironment. In this review, we systematically summarize these current studies to fully illustrate the TAM-associated protein targets and their inhibitors, and we highlight the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-tumor therapy.
Collapse
Affiliation(s)
- Deyang Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| |
Collapse
|