1
|
Asare Y, Simsekyilmaz S, Köhncke J, Shagdarsuren G, Staudt M, Noels H, Klos A, Fischer JC, Bernhagen J, Zernecke A, Liehn EA, Shagdarsuren E. Cardiac Repair after Myocardial Infarction is Controlled by a Complement C5a Receptor 1-Driven Signaling Cascade. Thromb Haemost 2024. [PMID: 39366416 DOI: 10.1055/a-2434-4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Affiliation(s)
- Yaw Asare
- Institute for Stroke and Dementia Research, Ludwig Maximilian University, University Hospital, Munich, Germany
| | - Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Janine Köhncke
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Gansuvd Shagdarsuren
- Department of Nephrology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mareike Staudt
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research, Ludwig Maximilian University, University Hospital, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Elisa A Liehn
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- National Heart Center Singapore, Singapore
- "Victor Babes" National Institute for Pathology, Bucharest, Romania
| | - Erdenechimeg Shagdarsuren
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
5
|
Oravecz-Wilson K, Lauder E, Taylor A, Maneix L, Van Nostrand JL, Sun Y, Li L, Zhao D, Liu C, Reddy P. Autophagy differentially regulates tissue tolerance of distinct target organs in graft-versus-host disease models. J Clin Invest 2024; 134:e167369. [PMID: 38426503 PMCID: PMC10904048 DOI: 10.1172/jci167369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-intrinsic mechanisms that regulate severity of systemic pathogenic immune-mediated diseases, such as acute graft-versus-host disease (GVHD), remain poorly understood. Following allogeneic hematopoietic stem cell transplantation, autophagy, a cellular stress protective response, is induced in host nonhematopoietic cells. To systematically address the role of autophagy in various host nonhematopoietic tissues, both specific classical target organs of acute GVHD (intestines, liver, and skin) and organs conventionally not known to be targets of GVHD (kidneys and heart), we generated mice with organ-specific knockout of autophagy related 5 (ATG5) to specifically and exclusively inhibit autophagy in the specific organs. When compared with wild-type recipients, animals that lacked ATG5 in the gastrointestinal tract or liver showed significantly greater tissue injury and mortality, while autophagy deficiency in the skin, kidneys, or heart did not affect mortality. Treatment with the systemic autophagy inducer sirolimus only partially mitigated GVHD mortality in intestine-specific autophagy-deficient hosts. Deficiency of autophagy increased MHC class I on the target intestinal epithelial cells, resulting in greater susceptibility to damage by alloreactive T cells. Thus, autophagy is a critical cell-intrinsic protective response that promotes tissue tolerance and regulates GVHD severity.
Collapse
Affiliation(s)
- Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Lauder
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | | | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yaping Sun
- Dan L. Duncan Comprehensive Cancer Center and
| | - Lu Li
- Dan L. Duncan Comprehensive Cancer Center and
| | | | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| |
Collapse
|
6
|
Chu L, Bi C, Wang C, Zhou H. The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis. J Ophthalmol 2024; 2024:6416773. [PMID: 38205100 PMCID: PMC10776198 DOI: 10.1155/2024/6416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its pathogenesis may be related to mitochondrial dysfunction, inflammation, apoptosis, autophagy, complement, intestinal flora, and lipid disorders. In addition, the patient's genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be risk factors for this disease. Complement proteins are widely distributed in serum and tissue fluid. In the early 21st century, a connection was found between the complement cascade and age-related macular degeneration. However, little is known about the effect of complement factors on the pathogenesis of age-related macular degeneration. This article reviews the factors associated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and variants and provides new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Bode M, Herrnstadt GR, Dreher L, Ehnert N, Kirkerup P, Lindenmeyer MT, Meyer-Schwesinger CF, Ehmke H, Köhl J, Huber TB, Krebs CF, Steinmetz OM, Wiech T, Wenzel UO. Deficiency of Complement C3a and C5a receptors Does Not Prevent Angiotensin II-Induced Hypertension and Hypertensive End-Organ Damage. Hypertension 2024; 81:138-150. [PMID: 37909169 DOI: 10.1161/hypertensionaha.123.21599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.
Collapse
Affiliation(s)
- Marlies Bode
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Georg R Herrnstadt
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Leonie Dreher
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Nicolas Ehnert
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Pia Kirkerup
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Maja T Lindenmeyer
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Catherine F Meyer-Schwesinger
- Department of Cellular and Integrative Physiology (C.M.-S., H.E.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology (C.M.-S., H.E.), University Hospital Hamburg-Eppendorf
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck, Germany (J.K.)
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, OH (J.K.)
| | - Tobias B Huber
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Christian F Krebs
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Oliver M Steinmetz
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Thorsten Wiech
- Department of Pathology, Section of Nephropathology (T.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Ulrich O Wenzel
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| |
Collapse
|
8
|
Notarantonio AB, D'aveni-Piney M, Pagliuca S, Ashraf Y, Galimard JE, Xhaard A, Marçais A, Suarez F, Brissot E, Feugier P, Urien S, Bouazza N, Jacquelin S, Meatchi T, Bruneval P, Frémeaux-Bacchi V, Peffault De Latour R, Hermine O, Durey-Dragon MA, Rubio MT. Systemic complement activation influences outcomes after allogeneic hematopoietic cell transplantation: A prospective French multicenter trial. Am J Hematol 2023; 98:1559-1570. [PMID: 37483161 DOI: 10.1002/ajh.27030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Complement activation has shown a role in murine models of graft-versus-host disease (GVHD) and in endothelial complications after allogeneic hematopoietic cell transplantation (allo-HSCT). However, its impact on post-transplant outcomes has not been so far fully elucidated. Here, we conducted a prospective multicentric trial (NCT01520623) performing serial measurements of complement proteins, regulators, and CH50 activity for 12 weeks after allo-HSCT in 85 patients receiving a myeloablative conditioning (MAC) regimen for various hematological malignancies. Twenty-six out of 85 patients showed an "activated" complement profile through the classical/lectin pathway, defined as a post-transplant decline of C3/C4 and CH50 activity. Time-dependent Cox regression models demonstrated that complement activation within the first weeks after allo-HSCT was associated with increased non-relapse mortality (hazard ratio [HR]: 3.69, 95% confident interval [CI]: 1.55-8.78, p = .003) and poorer overall survival (HR: 2.72, 95% CI: 1.37-5.39, p = .004) due to increased incidence of grade II-IV acute GVHD and in particular gastrointestinal (GI) GVHD (HR: 36.8, 95% CI: 12.4-109.1, p < .001), higher incidences of thrombotic microangiopathy (HR: 8.58, 95% CI: 2.16-34.08, p = .0022), capillary leak syndrome (HR: 7.36, 95% CI: 2.51-21.66, p = .00028), post-engraftment bacterial infections (HR: 2.37, 95% CI: 1.22-4.63, p = .0108), and EBV reactivation (HR: 3.33, 95% CI: 1.31-8.45, p = .0112). Through specific immune staining, we showed the correlation of deposition of C1q, C3d, C4d, and of C5b9 components on endothelial cells in GI GVHD lesions with the histological grade of GVHD. Altogether these findings define the epidemiology and the clinical impact of complement classical/lectin pathway activation after MAC regimens and provide a rational for the use of complement inhibitory therapeutics in a post-allo-HSCT setting.
Collapse
Affiliation(s)
- Anne Béatrice Notarantonio
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Maud D'aveni-Piney
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
| | - Simona Pagliuca
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Yayha Ashraf
- Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Université Paris Cité and UMR S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | - Aliénor Xhaard
- BMT Unit, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris VII, Paris, France
| | - Ambroise Marçais
- Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Felipe Suarez
- Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Eolia Brissot
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Pierre Feugier
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Saik Urien
- Unité de Recherche Clinique, Paris Centre Necker Cochin, Hôpital Tarnier, Paris, France
| | - Naim Bouazza
- Unité de Recherche Clinique, Paris Centre Necker Cochin, Hôpital Tarnier, Paris, France
| | - Sébastien Jacquelin
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
| | - Tchao Meatchi
- Service d'Anatomopathologie, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrick Bruneval
- Service d'Anatomopathologie, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Frémeaux-Bacchi
- Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Université Paris Cité and UMR S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Régis Peffault De Latour
- BMT Unit, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris VII, Paris, France
| | - Olivier Hermine
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
- Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Marie Agnès Durey-Dragon
- Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Université Paris Cité and UMR S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marie-Thérèse Rubio
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Mehta RS, Ali H, Dai Y, Yao B, Overman B, Ratanatharathorn V, Gill S, Socié G, Anderson K, Cahn JY, Mujeebuddin A, Champlin R, Shpall E, Holtan SG, Alousi A. A prospective phase 2 clinical trial of a C5a complement inhibitor for acute GVHD with lower GI tract involvement. Bone Marrow Transplant 2023; 58:991-999. [PMID: 37202544 PMCID: PMC10195122 DOI: 10.1038/s41409-023-01996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Involvement of lower gastrointestinal tract (LGI) occurs in 60% of patients with graft-versus-host-disease (GVHD). Complement components C3 and C5 are involved in GVHD pathogenesis. In this phase 2a study, we evaluated the safety and efficacy of ALXN1007, a monoclonal antibody against C5a, in patients with newly diagnosed LGI acute GVHD receiving concomitant corticosteroid. Twenty-five patients were enrolled; one was excluded from the efficacy analysis based upon negative biopsy. Most patients (16/25, 64%) had acute leukemia; 52% (13/25) had an HLA-matched unrelated donor; and 68% (17/25) received myeloablative conditioning. Half the patients (12/24) had a high biomarker profile, Ann Arbor score 3; 42% (10/24) had high-risk GVHD per Minnesota classification. Day-28 overall response was 58% (13/24 complete response, 1/24 partial response), and 63% by Day-56 (all complete responses). Day-28 overall response was 50% (5/10) in Minnesota high-risk and 42% (5/12) in high-risk Ann Arbor patients, increasing to 58% (7/12) by Day-56. Non-relapse mortality at 6-months was 24% (95% CI 11-53). The most common treatment-related adverse event was infection (6/25, 24%). Neither baseline complement levels (except for C5), activity, nor inhibition of C5a with ALXN1007 correlated with GVHD severity or responses. Further studies are needed to evaluate the role of complement inhibition in GVHD treatment.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Clinical Research Division Fred Hutch, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Yang Dai
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| | - Bert Yao
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| | - Bethany Overman
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Saar Gill
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerard Socié
- University Paris VII Head of Hematology Transplantation APHP Hospital Saint Louis, Paris, France
| | | | | | | | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Wang L, Sun Y, Kong F, Jiang Y, An M, Jin B, Cao D, Li R, Guan X, Liang S, Abudurexiti S, Gong P. Mild Hypothermia Alleviates Complement C5a-Induced Neuronal Autophagy During Brain Ischemia-Reperfusion Injury After Cardiac Arrest. Cell Mol Neurobiol 2022:10.1007/s10571-022-01275-8. [PMID: 36006573 DOI: 10.1007/s10571-022-01275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
After restoration of spontaneous circulation (ROSC) following cardiac arrest, complements can be activated and excessive autophagy can contribute to the brain ischemia-reperfusion (I/R) injury. Mild hypothermia (HT) protects against brain I/R injury after ROSC, but the mechanisms have not been fully elucidated. Here, we found that HT significantly inhibited the increases in serum NSE, S100β, and C5a, as well as neurologic deficit scores, TUNEL-positive cells, and autophagic vacuoles in the pig brain cortex after ROSC. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. HT could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Our findings demonstrated that C5a could bind to C5aR1 to induce neuronal autophagy during the brain I/R injury, which was associated with the inhibited PI3K/Akt/mTOR pathway. HT could inhibit C5a-induced neuronal autophagy by regulating the C5a-C5aR1 interaction and the PI3K/Akt/mTOR pathway, which might be one of the neuroprotective mechanisms underlying I/R injury. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. Mild hypothermia (HT) could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Proposed mechanism by which HT protects against brain I/R injury by repressing C5a-C5aR1-induced excessive autophagy. Complement activation in response to brain I/R injury generates C5a that can interact with C5aR1 to inactivate mTOR, probably through the PI3K-AKT pathway, which can finally lead to autophagy activation. The excessively activated autophagy ultimately contributes to cell apoptosis and brain injury. HT may alleviate complement activation and then reduce C5a-induced autophagy to protect against brain I/R injury. HT, mild hypothermia; I/R, ischemia reperfusion.
Collapse
Affiliation(s)
- Ling Wang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yuanyuan Sun
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Fang Kong
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yi Jiang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Mengmeng An
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Beibei Jin
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Da Cao
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Ruifang Li
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Xiaolan Guan
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuangshuang Liang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Subi Abudurexiti
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Ping Gong
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
11
|
Heja D, Zhao D, Cody E, Cumpelik A, Lim PC, Prado-Acosta M, Palma L, Dellepiane S, Chun N, Ferrara J, Heeger PS. Mannan-Binding Lectin Promotes Murine Graft-versus-Host Disease by Amplifying Lipopolysaccharide-Initiated Inflammation. Transplant Cell Ther 2022; 28:472.e1-472.e11. [PMID: 35643350 PMCID: PMC9357100 DOI: 10.1016/j.jtct.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
Conditioning regimens used for hematopoietic stem cell transplantation (HCT) can escalate the severity of acute T cell-mediated graft-versus-host disease (GVHD) by disrupting gastrointestinal integrity and initiating lipopolysaccharide (LPS)-dependent innate immune cell activation. Activation of the complement cascade has been associated with murine GVHD, and previous work has shown that alternative pathway complement activation can amplify T cell immunity. Whether and how mannan-binding lectin (MBL), a component of the complement system that binds mannose as well as oligosaccharide components of LPS and lipoteichoic acid, affects GVHD is unknown. In this study, we tested the hypothesis that MBL modulates murine GVHD and examined the mechanisms by which it does so. We adoptively transferred C3.SW bone marrow (BM) cells ± T cells into irradiated wild type (WT) or MBL-deficient C57Bl/6 (B6) recipients with or without inhibiting MBL-initiated complement activation using C1-esterase inhibitor (C1-INH). We analyzed the clinical severity of disease expression and analyzed intestinal gene and cell infiltration. In vitro studies assessed MBL expression on antigen-presenting cells (APCs) and compared LPS-induced responses of WT and MBL-deficient APCs. MBL-deficient recipients of donor BM ± T cells exhibited significantly less weight loss over the first 2 weeks post-transplantation weeks compared with B6 controls (P < .05), with similar donor engraftment in the 2 groups. In recipients of C3.SW BM + T cells, the clinical expression of GVHD was less severe (P < .05) and overall survival was better (P < .05) in MBL-deficient mice compared with WT mice. On day-7 post-transplantation, analyses showed that the MBL-deficient recipients exhibited less intestinal IL1b, IL17, and IL12 p40 gene expression (P < .05 for each) and fewer infiltrating intestinal CD11c+, CD11b+, and F4/80+ cells and TCRβ+, CD4+, CD4+IL17+, and CD8+ T cells (P < .05 for each). Ovalbumin or allogeneic cell immunizations induced equivalent T cell responses in MBL-deficient and WT mice, demonstrating that MBL-deficiency does not directly impact T cell immunity in the absence of irradiation conditioning. Administration of C1-INH did not alter the clinical expression of GVHD in preconditioned WT B6 recipients, suggesting that MBL amplifies clinical expression of GVHD via a complement-independent mechanism. WT, but not MBL-deficient, APCs express MBL on their surfaces. LPS-stimulated APCs from MBL-deficient mice produced less proinflammatory cytokines (P < .05) and induced weaker alloreactive T cell responses (P < .05) compared with WT APCs. Together, our data show that MBL modulates murine GVHD, likely by amplifying complement-independent, LPS-initiated gastrointestinal inflammation. The results suggest that devising strategies to block LPS/MBL ligation on APCs has the potential to reduce the clinical expression of GVHD.
Collapse
Affiliation(s)
- David Heja
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dongchang Zhao
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evan Cody
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arun Cumpelik
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pik Chin Lim
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mariano Prado-Acosta
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Liv Palma
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sergio Dellepiane
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas Chun
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James Ferrara
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter S Heeger
- Translational Transplant Research Center, Tisch Cancer Institute, Precision Immunology Institute, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
12
|
Wei C, Ma L, Xiang D, Huang C, Wang H, Wang X, Zhang S, Qi X, Shi W, Gao H. Enhanced autophagy alleviated corneal allograft rejection via inhibiting NLRP3 inflammasome activity. Am J Transplant 2022; 22:1362-1371. [PMID: 35092164 DOI: 10.1111/ajt.16968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Autophagy has been reported to be involved in many aspects of innate and adaptive immunity. Manipulating autophagy is recognized as a promising therapeutic approach for treating immunological diseases, including allograft rejection, and graft-versus-host disease. However, whether autophagy was closely associated with the pathogenesis of corneal allograft rejection remains largely unknown. Here, we showed that rapamycin (RAPA)-induced autophagy alleviated corneal allograft rejection. By contrast, blocking autophagic activity using 3-methyladeine (3-MA) aggravated corneal transplantation rejection. Mechanistically, we revealed that the enhanced autophagic turnover by RAPA inhibited NLRP3 inflammasome activity through NLRP3 degradation. While blocking the fusion of autophagosomes with lysosomes by bafilomycin A1(BafA1), the reduced NLRP3 inflammasome activity induced by RAPA was significantly restored, with increased protein levels of NLRP3 and cleaved Casp-1(p10), as well as IL-1β secretion. Moreover, we further revealed that pharmacologically blocking NLRP3 inflammasome signaling prolonged the survival of corneal allografts. Taken together, these findings underscored the critical roles of enhanced autophagy in treating corneal allograft rejection, which provided an alternative intervention strategy to control corneal transplantation rejection.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Demeng Xiang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Cixin Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Huijin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaolin Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
13
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
14
|
Epithelial phenotype restoring drugs suppress macular degeneration phenotypes in an iPSC model. Nat Commun 2021; 12:7293. [PMID: 34911940 PMCID: PMC8674335 DOI: 10.1038/s41467-021-27488-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Age-related Macular Degeneration (AMD), a blinding eye disease, is characterized by pathological protein- and lipid-rich drusen deposits underneath the retinal pigment epithelium (RPE) and atrophy of the RPE monolayer in advanced disease stages - leading to photoreceptor cell death and vision loss. Currently, there are no drugs that stop drusen formation or RPE atrophy in AMD. Here we provide an iPSC-RPE AMD model that recapitulates drusen and RPE atrophy. Drusen deposition is dependent on AMD-risk-allele CFH(H/H) and anaphylatoxin triggered alternate complement signaling via the activation of NF-κB and downregulation of autophagy pathways. Through high-throughput screening we identify two drugs, L-745,870, a dopamine receptor antagonist, and aminocaproic acid, a protease inhibitor that reduce drusen deposits and restore RPE epithelial phenotype in anaphylatoxin challenged iPSC-RPE with or without the CFH(H/H) genotype. This comprehensive iPSC-RPE model replicates key AMD phenotypes, provides molecular insight into the role of CFH(H/H) risk-allele in AMD, and discovers two candidate drugs to treat AMD.
Collapse
|
15
|
Martinsen V, Kursula P. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 2021; 54:99-109. [PMID: 34889995 PMCID: PMC8810476 DOI: 10.1007/s00726-021-03111-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Myelin basic protein (MBP) is an abundant protein in central nervous system (CNS) myelin. MBP has long been studied as a factor in the pathogenesis of the autoimmune neurodegenerative disease multiple sclerosis (MS). MS is characterized by CNS inflammation, demyelination, and axonal loss. One of the main theories on the pathogenesis of MS suggests that exposure to foreign antigens causes the activation of cross-reactive T cells in genetically susceptible individuals, with MBP being a possible autoantigen. While a direct role for MBP as a primary antigen in human MS is unclear, it is clear that MBP and its functions in myelin formation and long-term maintenance are linked to MS. This review looks at some key molecular characteristics of MBP and its relevance to MS, as well as the mechanisms of possible molecular mimicry between MBP and some viral antigens. We also discuss the use of serum anti-myelin antibodies as biomarkers for disease. MBP is a prime example of an apparently simple, but in fact biochemically and structurally complex molecule, which is closely linked to both normal nervous system development and neurodegenerative disease.
Collapse
Affiliation(s)
- Vebjørn Martinsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway. .,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| |
Collapse
|
16
|
The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13102475. [PMID: 34069611 PMCID: PMC8161379 DOI: 10.3390/cancers13102475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Sphingolipids are membrane-associated lipids that are involved in signal transduction pathways regulating cell death, growth, and migration. In cancer cells, sphingolipids regulate pathways relevant to cancer therapy, such as invasion, metastasis, apoptosis, and lethal mitophagy. Notable sphingolipids include ceramide, a sphingolipid that induces death and lethal mitophagy, and sphingosine-1 phosphate, a sphingolipid that induces survival and chemotherapeutic resistance. These sphingolipids participate in regulating the process of mitophagy, where cells encapsulate damaged mitochondria in double-membrane vesicles (called autophagosomes) for degradation. Lethal mitophagy is an anti-tumorigenic mechanism mediated by ceramide, where cells degrade many mitochondria until the cancer cell dies in an apoptosis-independent manner. Abstract Sphingolipids are bioactive lipids responsible for regulating diverse cellular functions such as proliferation, migration, senescence, and death. These lipids are characterized by a long-chain sphingosine backbone amide-linked to a fatty acyl chain with variable length. The length of the fatty acyl chain is determined by specific ceramide synthases, and this fatty acyl length also determines the sphingolipid’s specialized functions within the cell. One function in particular, the regulation of the selective autophagy of mitochondria, or mitophagy, is closely regulated by ceramide, a key regulatory sphingolipid. Mitophagy alterations have important implications for cancer cell proliferation, response to chemotherapeutics, and mitophagy-mediated cell death. This review will focus on the alterations of ceramide synthases in cancer and sphingolipid regulation of lethal mitophagy, concerning cancer therapy.
Collapse
|
17
|
Fu K, Chen L, Hu S, Guo Y, Zhang W, Bai Y. Grape seed proanthocyanidins attenuate apoptosis in ischemic stroke. Acta Neurol Belg 2021; 121:357-364. [PMID: 30835051 DOI: 10.1007/s13760-019-01111-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
Grape seed proanthocyanidins (GSP) has been reported to attenuate endoplasmic reticulum (ER) stress-induced apoptosis, which is associated with ischemic stroke. However, whether GSP pays crucial roles in ischemic stroke still remains unclear. The purpose of this study is to explore the role of GSP in ischemic stroke and the underlying mechanism. The ischemic stroke mouse model was established by middle cerebral artery occlusion. GSP administration was performed intragastrically. Long-term neurological outcome was assessed by the foot fault test after reperfusion. Brain injury was identified by infarct volume from 2,3,5-triphenyltetrazolium chloride staining. Neuronal apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. The expression levels of Bax, Bcl-2, Cleaved Caspase-3, phosphorylated ERK (p-ERK), ERK, Glucose-regulated protein 78 kDa (GRP78), Caspase-12 were detected by western blotting. In mice with ischemia stroke, GSP administration improved long-term neurological outcomes by attenuating ischemia-reperfusion induced neuronal apoptosis and brain injury. Mechanically, GSP performance inhibited the expression levels of ER stress-associated genes. GSP protects mice against ischemic stroke via attenuating neuronal apoptosis. Moreover, GSP attenuated ER stress-associated apoptosis by inhibiting GRP78 and Caspase-12. Our study indicates that GSP attenuates neuronal apoptosis in ischemic stroke, which shows the potential for ischemic stroke treatment.
Collapse
Affiliation(s)
- Kun Fu
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China
| | - Liqiang Chen
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China
| | - Shuai Hu
- Department of Neurology, Qingdao West Coast New Area Central Hospital, Qingdao, 266000, Shandong, China
| | - Yan Guo
- Department of Internal Medicine, Qingzhoushi People's Hospital, Qingzhou, 262500, Shandong, China
| | - Wei Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China
| | - Yunan Bai
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China.
| |
Collapse
|
18
|
More than a Pore: Nonlytic Antimicrobial Functions of Complement and Bacterial Strategies for Evasion. Microbiol Mol Biol Rev 2021; 85:85/1/e00177-20. [PMID: 33504655 DOI: 10.1128/mmbr.00177-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system is an evolutionarily ancient defense mechanism against foreign substances. Consisting of three proteolytic activation pathways, complement converges on a common effector cascade terminating in the formation of a lytic pore on the target surface. The classical and lectin pathways are initiated by pattern recognition molecules binding to specific ligands, while the alternative pathway is constitutively active at low levels in circulation. Complement-mediated killing is essential for defense against many Gram-negative bacterial pathogens, and genetic deficiencies in complement can render individuals highly susceptible to infection, for example, invasive meningococcal disease. In contrast, Gram-positive bacteria are inherently resistant to the direct bactericidal activity of complement due to their thick layer of cell wall peptidoglycan. However, complement also serves diverse roles in immune defense against all bacteria by flagging them for opsonization and killing by professional phagocytes, synergizing with neutrophils, modulating inflammatory responses, regulating T cell development, and cross talk with coagulation cascades. In this review, we discuss newly appreciated roles for complement beyond direct membrane lysis, incorporate nonlytic roles of complement into immunological paradigms of host-pathogen interactions, and identify bacterial strategies for complement evasion.
Collapse
|
19
|
Rozmus J. Monogenic Immune Diseases Provide Insights Into the Mechanisms and Treatment of Chronic Graft-Versus-Host Disease. Front Immunol 2021; 11:574569. [PMID: 33613511 PMCID: PMC7889949 DOI: 10.3389/fimmu.2020.574569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic graft-versus-host disease (GvHD) has become a leading cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HSCT) and can burden patients with devastating and lifelong health effects. Our understanding of the pathogenic mechanisms underlying chronic GvHD remains incomplete and this lack of understanding is reflected by lack of clear therapeutic approaches to steroid refractory disease. Observations predominantly from mouse models and human correlative studies currently support a three phase model for the initiation and development of chronic GvHD: 1) early inflammation and tissue damage triggers the innate immune system. This leads to inflammatory cytokine/chemokine patterns that recruit effector immune cell populations; 2) chronic inflammation causes the loss of central and peripheral tolerance mechanisms leading to emergence of pathogenic B and T cell populations that promote autoimmune and alloimmune reactions; 3) the dysregulated immunity causes altered macrophage polarization, aberrant tissue repair leading to scarring and end organ fibrosis. This model has led to the evaluation of many new therapies aimed at limiting inflammation, targeting dysregulated signaling pathways and restoring tolerance mechanisms. However, chronic GvHD is a multisystem disease with complex clinical phenotypes and it remains unclear as to which cluster of patients will respond best to specific therapeutic strategies. However, it is possible to gain novel insights from immune-related monogenic diseases. These diseases either share common clinical manifestations, replicate steps from the three phase chronic GvHD model or serve as surrogates for perfectly targeted drugs being investigated in chronic GvHD therapy. In this review, we will summarize the evidence from these monogenic immune related diseases that provide insight into pathogenic pathways in chronic GvHD, rationales for current therapies and novel directions for future drug discovery.
Collapse
Affiliation(s)
- Jacob Rozmus
- Division of Pediatric Hematology, Oncology & BMT, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
20
|
Nguyen HD, Ticer T, Bastian D, Kuril S, Li H, Du H, Yan C, Yu XZ. Lysosomal Acid Lipase Is Required for Donor T Cells to Induce Graft-versus-Host Disease. Cell Rep 2020; 33:108316. [PMID: 33113360 PMCID: PMC7706352 DOI: 10.1016/j.celrep.2020.108316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) limits the success of allogeneic hematopoietic cell transplantation (allo-HCT). Lysosomal acid lipase (LAL) mediates the intrinsic lipolysis of cells to generate free fatty acids (FFAs), which play an essential role in the development, proliferation, and function of T cells. Here, we find that LAL is essential for donor T cells to induce GVHD in murine models of allo-HCT. Specifically, LAL is required for donor T cell survival, differentiation, and alloreactivity in GVHD target organs, but not in lymphoid organs. LAL induces the differentiation of donor T cells toward GVHD pathogenic Th1/Tc1 and Th17 while suppressing regulatory T cell generation. LAL-/- T cells succumb to oxidative stress and become anergic in target organs. Pharmacologically targeting LAL effectively prevents GVHD development while preserving the GVL activity. Thus, the present study reveals the role of LAL in T cell alloresponse and pathogenicity and validates LAL as a target for controlling GVHD and tumor relapse after allo-HCT.
Collapse
Affiliation(s)
- Hung D Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Taylor Ticer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sandeepkumar Kuril
- Department of Pediatric Hematology-Oncology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Hong Li
- Department of Public Health, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indianapolis, IN 46202, USA
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indianapolis, IN 46202, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
21
|
King BC, Kulak K, Colineau L, Blom AM. Outside in: Roles of complement in autophagy. Br J Pharmacol 2020; 178:2786-2801. [PMID: 32621514 DOI: 10.1111/bph.15192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a well-characterized cascade of extracellular serum proteins that is activated by pathogens and unwanted waste material. Products of activated complement signal to the host cells via cell surface receptors, eliciting responses such as removal of the stimulus by phagocytosis. The complement system therefore functions as a warning system, resulting in removal of unwanted material. This review describes how extracellular activation of the complement system can also trigger autophagic responses within cells, up-regulating protective homeostatic autophagy in response to perceived stress, but also initiating targeted anti-microbial autophagy in order to kill intracellular cytoinvasive pathogens. In particular, we will focus on recent discoveries that indicate that complement may also have roles in detection and autophagy-mediated disposal of unwanted materials within the intracellular environment. We therefore summarize the current evidence for complement involvement in autophagy, both by transducing signals across the cell membrane, as well as roles within the cellular environment. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
22
|
Nguyen H, Alawieh A, Bastian D, Kuril S, Dai M, Daenthanasanmak A, Zhang M, Iamsawat S, Schutt SD, Wu Y, Sleiman MM, Shetty A, Atkinson C, Sun S, Varela JC, Tomlinson S, Yu XZ. Targeting the Complement Alternative Pathway Permits Graft Versus Leukemia Activity while Preventing Graft Versus Host Disease. Clin Cancer Res 2020; 26:3481-3490. [PMID: 31919135 PMCID: PMC7334060 DOI: 10.1158/1078-0432.ccr-19-1717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/03/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Application of allogeneic hematopoietic cell transplantation (allo-HCT) for patients with hematologic disorders is limited by the development of GVHD. Separation of GVHD and graft-versus-leukemia (GVL) remains a great challenge in the field. We investigated the contribution of individual pathways involved in the complement cascade in GVH and GVL responses to identify specific targets by which to separate these two processes. EXPERIMENTAL DESIGN We used multiple preclinical murine and human-to-mouse xenograft models involving allo-HCT recipients lacking components of the alternative pathway (AP) or classical pathway (CP)/lectin pathway (LP) to dissect the role of each individual pathway in GVHD pathogenesis and the GVL effect. For translational purposes, we used the AP-specific complement inhibitor, CR2-fH, which localizes in injured target organs to allow specific blockade of complement activation at sites of inflammation. RESULTS Complement deposition was evident in intestines of mice and patients with GVHD. In a preclinical setting, ablation of the AP, but not the CP/LP, significantly improved GVHD outcomes. Complement activation through the AP in host hematopoietic cells, and specifically dendritic cells (DC), was required for GVHD progression. AP deficiency in recipients decreased donor T-cell migration and Th1/Th2 differentiation, while increasing the generation of regulatory T cells. This was because of decreased activation and stimulatory activity of recipient DCs in GVHD target organs. Treatment with CR2-fH effectively prevented GVHD while preserving GVL activity. CONCLUSIONS This study highlights the AP as a new therapeutic target to prevent GVHD and tumor relapse after allo-HCT. Targeting the AP by CR2-fH represents a promising therapeutic approach for GVHD treatment.
Collapse
Affiliation(s)
- Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
| | - Ali Alawieh
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Sandeepkumar Kuril
- Department of Pediatric, Medical University of South Carolina, Charleston, South Carolina
| | - Min Dai
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Anusara Daenthanasanmak
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mengmeng Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Supinya Iamsawat
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven D Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - M Mahdi Sleiman
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Akshay Shetty
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shaoli Sun
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - Juan Carlos Varela
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, South Carolina
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
23
|
Nguyen HD, Huong PT, Hossack K, Gurshaney S, Ezhakunnel K, Huynh TH, Alvarez AM, Le NT, Luu HN. Bone Marrow Transplantation Platform to Investigate the Role of Dendritic Cells in Graft-versus-Host Disease. J Vis Exp 2020:10.3791/60083. [PMID: 32250356 PMCID: PMC11537245 DOI: 10.3791/60083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Allogeneic bone marrow transplantation (BMT) is an effective therapy for hematological malignancies due to the graft-versus-leukemia (GVL) effect to eradicate tumors. However, its application is limited by the development of graft-versus-host disease (GVHD), a major complication of BMT. GVHD is evoked when T-cells in the donor grafts recognizealloantigen expressed by recipient cells and mount unwanted immunological attacks against recipient healthy tissues. Thus, traditional therapies are designed to suppress donor T-cell alloreactivity. However, these approaches substantially impair the GVL effect so that the recipient's survival is not improved. Understanding the effects of therapeutic approaches on BMT, GVL, and GVHD, is thus essential. Due to the antigen-presenting and cytokine-secreting capacities to stimulate donor T-cells, recipient dendritic cells (DCs) play a significant role in the induction of GVHD. Therefore, targeting recipient DCs becomes a potential approach for controlling GVHD. This work provides a description of a novel BMT platform to investigate how host DCs regulate GVH and GVL responses after transplantation. Also presented is an effective BMT model to study the biology of GVHD and GVL after transplantation.
Collapse
Affiliation(s)
- Hung D Nguyen
- Cancer Division, Burnett School of Biomedical Sciences, University of Central Florida;
| | | | - Krystal Hossack
- Cancer Division, Burnett School of Biomedical Sciences, University of Central Florida
| | - Sanjeev Gurshaney
- Cancer Division, Burnett School of Biomedical Sciences, University of Central Florida
| | - Kevin Ezhakunnel
- Cancer Division, Burnett School of Biomedical Sciences, University of Central Florida
| | - Thien-Huong Huynh
- Cancer Division, Burnett School of Biomedical Sciences, University of Central Florida
| | | | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute
| | - Hung N Luu
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health; Division of Cancer Control and Population Sciences, University of Pittsburgh Medical Center, Hillman Cancer Center
| |
Collapse
|
24
|
Royer DJ, Echegaray-Mendez J, Lin L, Gmyrek GB, Mathew R, Saban DR, Perez VL, Carr DJ. Complement and CD4 + T cells drive context-specific corneal sensory neuropathy. eLife 2019; 8:48378. [PMID: 31414985 PMCID: PMC6783265 DOI: 10.7554/elife.48378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Whether complement dysregulation directly contributes to the pathogenesis of peripheral nervous system diseases, including sensory neuropathies, is unclear. We addressed this important question in a mouse model of ocular HSV-1 infection, where sensory nerve damage is a common clinical problem. Through genetic and pharmacologic targeting, we uncovered a central role for C3 in sensory nerve damage at the morphological and functional levels. Interestingly, CD4 T cells were central in facilitating this complement-mediated damage. This same C3/CD4 T cell axis triggered corneal sensory nerve damage in a mouse model of ocular graft-versus-host disease (GVHD). However, this was not the case in a T-dependent allergic eye disease (AED) model, suggesting that this inflammatory neuroimmune pathology is specific to certain disease etiologies. Collectively, these findings uncover a central role for complement in CD4 T cell-dependent corneal nerve damage in multiple disease settings and indicate the possibility for complement-targeted therapeutics to mitigate sensory neuropathies.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - Liwen Lin
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Rose Mathew
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Immunology, Duke University Medical Center, Durham, United States
| | - Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel Jj Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|