1
|
Stylianou CE, Wiggins GAR, Lau VL, Dennis J, Shelling AN, Wilson M, Sykes P, Amant F, Annibali D, De Wispelaere W, Easton DF, Fasching PA, Glubb DM, Goode EL, Lambrechts D, Pharoah PDP, Scott RJ, Tham E, Tomlinson I, Bolla MK, Couch FJ, Czene K, Dörk T, Dunning AM, Fletcher O, García-Closas M, Hoppe R, Jernström H, Kaaks R, Michailidou K, Obi N, Southey MC, Stone J, Wang Q, Spurdle AB, O'Mara TA, Pearson J, Walker LC. Germline copy number variants and endometrial cancer risk. Hum Genet 2024:10.1007/s00439-024-02707-9. [PMID: 39495297 DOI: 10.1007/s00439-024-02707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the association of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA samples from cases compared to DNA samples from controls (p = 4.4 × 10-63). Under three models of putative CNV impact (deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated (p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 candidate risk gene(s) that warrant further analysis to better understand their role in human disease.
Collapse
Affiliation(s)
- Cassie E Stylianou
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Vanessa L Lau
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Michelle Wilson
- Te Pūriri o Te Ora Regional Cancer and Blood Service, Auckland Hospital, Auckland, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Frederic Amant
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University Hospitals KU Leuven, University of Leuven, Leuven, Belgium
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Daniela Annibali
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Wout De Wispelaere
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Dylan M Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ellen L Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Rodney J Scott
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, NSW, Australia
- Faculty of Health, Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Jennifer Stone
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, WA, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- Public Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - John Pearson
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Chambers TL, Dimet-Wiley A, Keeble AR, Haghani A, Lo WJ, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2024. [PMID: 39058663 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | | | - Alexander R Keeble
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Amin Haghani
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Wen-Juo Lo
- Department of Educational Statistics and Research Methods, University of Arkansas, Fayetteville, AR, USA
| | - Gyumin Kang
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - Christopher S Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Yamamoto S, Kanca O, Wangler MF, Bellen HJ. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 2024; 25:46-60. [PMID: 37491400 DOI: 10.1038/s41576-023-00633-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Mijdam R, Bijnagte-Schoenmaker C, Dyke E, Moons SJ, Boltje TJ, Nadif Kasri N, Lefeber DJ. Sialic acid biosynthesis pathway blockade disturbs neuronal network formation in human iPSC-derived excitatory neurons. J Neurochem 2023; 167:76-89. [PMID: 37650222 DOI: 10.1111/jnc.15934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
N-acetylneuraminic acid (sialic acid) is present in large quantities in the brain and plays a crucial role in brain development, learning, and memory formation. How sialic acid contributes to brain development is not fully understood. The purpose of this study was to determine the effects of reduced sialylation on network formation in human iPSC-derived neurons (iNeurons). Using targeted mass spectrometry and antibody binding, we observed an increase in free sialic acid and polysialic acid during neuronal development, which was disrupted by treatment of iNeurons with a synthetic inhibitor of sialic acid biosynthesis. Sialic acid inhibition disturbed synapse formation and network formation on microelectrode array (MEA), showing short but frequent (network) bursts and an overall lower firing rate, and higher percentage of random spikes. This study shows that sialic acid is necessary for neuronal network formation during human neuronal development and provides a physiologically relevant model to study the role of sialic acid in patient-derived iNeurons.
Collapse
Affiliation(s)
- Rachel Mijdam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Chantal Bijnagte-Schoenmaker
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Emma Dyke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Sam J Moons
- Synvenio B.V. Mercator 2, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Chakraborty A, Mondal S, Mahajan S, Sharma VK. High-quality genome assemblies provide clues on the evolutionary advantage of blue peafowl over green peafowl. Heliyon 2023; 9:e18571. [PMID: 37576271 PMCID: PMC10412995 DOI: 10.1016/j.heliyon.2023.e18571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
An intriguing example of differential adaptability is the case of two Asian peafowl species, Pavo cristatus (blue peafowl) and Pavo muticus (green peafowl), where the former has a "Least Concern" conservation status and the latter is an "Endangered" species. To understand the genetic basis of this differential adaptability of the two peafowl species, a comparative analysis of these species is much needed to gain the genomic and evolutionary insights. Thus, we constructed a high-quality genome assembly of blue peafowl with an N50 value of 84.81 Mb (pseudochromosome-level assembly), and a high-confidence coding gene set to perform the genomic and evolutionary analyses of blue and green peafowls with 49 other avian species. The analyses revealed adaptive evolution of genes related to neuronal development, immunity, and skeletal muscle development in these peafowl species. Major genes related to axon guidance such as NEO1 and UNC5, semaphorin (SEMA), and ephrin receptor showed adaptive evolution in peafowl species. However, blue peafowl showed the presence of 42% more coding genes compared to the green peafowl along with a higher number of species-specific gene clusters, segmental duplicated genes and expanded gene families, and comparatively higher evolution in neuronal and developmental pathways. Blue peafowl also showed longer branch length compared to green peafowl in the species phylogenetic tree. These genomic insights obtained from the high-quality genome assembly of P. cristatus constructed in this study provide new clues on the superior adaptability of the blue peafowl over green peafowl despite having a recent species divergence time.
Collapse
Affiliation(s)
- Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Samuel Mondal
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Da Silva A, Dort J, Orfi Z, Pan X, Huang S, Kho I, Heckel E, Muscarnera G, van Vliet PP, Sturiale L, Messina A, Romeo DA, van Karnebeek CD, Wen XY, Hinek A, Molina T, Andelfinger G, Ellezam B, Yamanaka Y, Olivos HJ, Morales CR, Joyal JS, Lefeber DJ, Garozzo D, Dumont NA, Pshezhetsky AV. N-acetylneuraminate pyruvate lyase controls sialylation of muscle glycoproteins essential for muscle regeneration and function. SCIENCE ADVANCES 2023; 9:eade6308. [PMID: 37390204 PMCID: PMC10313170 DOI: 10.1126/sciadv.ade6308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/25/2023] [Indexed: 07/02/2023]
Abstract
Deleterious variants in N-acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: NplR63C, carrying the human p.Arg63Cys variant, and Npldel116 with a 116-bp exonic deletion. In both strains, NPL deficiency causes drastic increase in free sialic acid levels, reduction of skeletal muscle force and endurance, slower healing and smaller size of newly formed myofibers after cardiotoxin-induced muscle injury, increased glycolysis, partially impaired mitochondrial function, and aberrant sialylation of dystroglycan and mitochondrial LRP130 protein. NPL-catalyzed degradation of sialic acid in the muscle increases after fasting and injury and in human patient and mouse models with genetic muscle dystrophy, demonstrating that NPL is essential for muscle function and regeneration and serves as a general marker of muscle damage. Oral administration of N-acetylmannosamine rescues skeletal myopathy, as well as mitochondrial and structural abnormalities in NplR63C mice, suggesting a potential treatment for human patients.
Collapse
Affiliation(s)
- Afitz Da Silva
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Junio Dort
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Zakaria Orfi
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Sjanie Huang
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen 6500, Netherlands
| | - Ikhui Kho
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Emilie Heckel
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Giacomo Muscarnera
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Patrick Piet van Vliet
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Luisa Sturiale
- CNR, Institute of Polymers, Composites and Biomaterials, Catania, Italy
| | - Angela Messina
- CNR, Institute of Polymers, Composites and Biomaterials, Catania, Italy
| | | | - Clara D.M. van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery and ZebraPeutics (Guangdong) Ltd., HengQin District, Zhuhai, China
| | - Aleksander Hinek
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Thomas Molina
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Gregor Andelfinger
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Benjamin Ellezam
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen 6500, Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500, Netherlands
| | - Domenico Garozzo
- CNR, Institute of Polymers, Composites and Biomaterials, Catania, Italy
| | - Nicolas A. Dumont
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- School of Rehabilitation, University of Montreal, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Xu P, Wang M, Sharma NK, Comeau ME, Wabitsch M, Langefeld CD, Civelek M, Zhang B, Das SK. Multi-omic integration reveals cell-type-specific regulatory networks of insulin resistance in distinct ancestry populations. Cell Syst 2023; 14:41-57.e8. [PMID: 36630956 PMCID: PMC9852073 DOI: 10.1016/j.cels.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Our knowledge of the cell-type-specific mechanisms of insulin resistance remains limited. To dissect the cell-type-specific molecular signatures of insulin resistance, we performed a multiscale gene network analysis of adipose and muscle tissues in African and European ancestry populations. In adipose tissues, a comparative analysis revealed ethnically conserved cell-type signatures and two adipocyte subtype-enriched modules with opposite insulin sensitivity responses. The modules enriched for adipose stem and progenitor cells as well as immune cells showed negative correlations with insulin sensitivity. In muscle tissues, the modules enriched for stem cells and fibro-adipogenic progenitors responded to insulin sensitivity oppositely. The adipocyte and muscle fiber-enriched modules shared cellular-respiration-related genes but had tissue-specific rearrangements of gene regulations in response to insulin sensitivity. Integration of the gene co-expression and causal networks further pinpointed key drivers of insulin resistance. Together, this study revealed the cell-type-specific transcriptomic networks and signaling maps underlying insulin resistance in major glucose-responsive tissues. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Peng Xu
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Neeraj K Sharma
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Division of Public Health Sciences, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, D-89075 Ulm, Germany
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Swapan K Das
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
9
|
Livne H, Avital T, Ruppo S, Harazi A, Mitrani-Rosenbaum S, Daya A. Generation and characterization of a novel gne Knockout Model in Zebrafish. Front Cell Dev Biol 2022; 10:976111. [PMID: 36353515 PMCID: PMC9637792 DOI: 10.3389/fcell.2022.976111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
GNE Myopathy is a rare, recessively inherited neuromuscular worldwide disorder, caused by a spectrum of bi-allelic mutations in the human GNE gene. GNE encodes a bi-functional enzyme responsible for the rate-limiting step of sialic acid biosynthesis pathway. However, the process in which GNE mutations lead to the development of a muscle pathology is not clear yet. Cellular and mouse models for GNE Myopathy established to date have not been informative. Further, additional GNE functions in muscle have been hypothesized. In these studies, we aimed to investigate gne functions using zebrafish genetic and transgenic models, and characterized them using macroscopic, microscopic, and molecular approaches. We first established transgenic zebrafish lineages expressing the human GNE cDNA carrying the M743T mutation, driven by the zebrafish gne promoter. These fish developed entirely normally. Then, we generated a gne knocked-out (KO) fish using the CRISPR/Cas9 methodology. These fish died 8–10 days post-fertilization (dpf), but a phenotype appeared less than 24 h before death and included progressive body axis curving, deflation of the swim bladder and decreasing movement and heart rate. However, muscle histology uncovered severe defects, already at 5 dpf, with compromised fiber organization. Sialic acid supplementation did not rescue the larvae from this phenotype nor prolonged their lifespan. To have deeper insights into the potential functions of gne in zebrafish, RNA sequencing was performed at 3 time points (3, 5, and 7 dpf). Genotype clustering was progressive, with only 5 genes differentially expressed in gne KO compared to gne WT siblings at 3 dpf. Enrichment analyses of the primary processes affected by the lack of gne also at 5 and 7 dpf point to the involvement of cell cycle and DNA damage/repair processes in the gne KO zebrafish. Thus, we have established a gne KO zebrafish lineage and obtained new insights into gne functions. This is the only model where GNE can be related to clear muscle defects, thus the only animal model relevant to GNE Myopathy to date. Further elucidation of gne precise mechanism-of-action in these processes could be relevant to GNE Myopathy and allow the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Hagay Livne
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tom Avital
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Shmuel Ruppo
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Harazi
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
- *Correspondence: Alon Daya,
| |
Collapse
|
10
|
Donoghue SE, Heath O, Pitt J, Hong KM, Fuller M, Smith J. Free urinary sialic acid levels may be elevated in patients with pneumococcal sepsis. Clin Chem Lab Med 2022; 60:1855-1858. [PMID: 36000484 DOI: 10.1515/cclm-2022-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Urine free sialic acid (UFSA) is an important diagnostic biomarker for sialuria (GNE variants) and infantile sialic acid storage disease/Salla disease (SLC17A5 variants). Traditionally, UFSA has been measured using specific single-plex methodology in relatively small cohorts of patients with clinical symptoms suggestive of these disorders. The use of multiplex tandem mass spectrometry urine screening (UMSMS) has meant that UFSA can be measured semi-quantitatively in a much larger cohort of patients being investigated for suspected metabolic disorders. We hypothesised that the neuraminidase of Streptococcus pneumoniae may release free sialic acid from endogenous sialylated glycoconjugates and result in increased UFSA levels. METHODS We conducted a retrospective review of clinical records of patients who were identified as having S. pneumoniae infection and who also had UMSMS at the time of their acute infection. RESULTS We identified three cases of increased UFSA detected by UMSMS screening that were secondary to S. pneumoniae sepsis. Additional testing ruled out genetic causes of increased UFSA in the first patient. All three patients had overwhelming sepsis with multiorgan dysfunction which was fatal. Glycosylation abnormalities consistent with the removal of sialic acid were demonstrated in serum transferrin patterns in one patient. CONCLUSIONS We have demonstrated in a retrospective cohort that elevation of UFSA levels have been observed in cases of S. pneumoniae sepsis. This expands our knowledge of UFSA as a biomarker in human disease. This research demonstrates that infection with organisms with neuraminidase activity should be considered in patients with unexplained increases in UFSA.
Collapse
Affiliation(s)
- Sarah E Donoghue
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Oliver Heath
- Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - James Pitt
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Kai Mun Hong
- Department of Biochemical Genetics, Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Joel Smith
- Laboratory Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pathology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Neonatal encephalopathy plasma metabolites are associated with neurodevelopmental outcomes. Pediatr Res 2022; 92:466-473. [PMID: 34621028 PMCID: PMC8986879 DOI: 10.1038/s41390-021-01741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND To investigate mechanisms of injury and recovery in neonatal encephalopathy (NE), we performed targeted metabolomic analysis of plasma using liquid chromatography with tandem mass spectrometry (LC/MS/MS) from healthy term neonates or neonates with NE. METHODS Plasma samples from the NE (n = 45, day of life 0-1) or healthy neonatal (n = 30, ≥36 weeks gestation) cohorts had LC/MS/MS metabolomic profiling with a 193-plex targeted metabolite assay covering >366 metabolic pathways. Metabolite levels were compared to 2-year neurodevelopmental outcomes measured by the Bayley Scales of Infant and Toddler Development III (Bayley-III). RESULTS Out of 193 metabolites, 57 met the pre-defined quality control criteria for analysis. Significant (after false discovery rate correction) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways included aminoacyl-tRNA biosynthesis, arginine biosynthesis, and metabolism of multiple amino acids. Significant disease pathways included seizures. In regression models, histidine and C6 sugar amine were significantly associated with cognitive, motor, and language and betaine with cognitive and motor Bayley-III composite scores. The addition of histidine, C6 sugar amine, and betaine to a Sarnat score-based clinical regression model significantly improved model performance (Akaike information criterion and adjusted r2) for Bayley-III cognitive, motor, and language scores. CONCLUSIONS Plasma metabolites may help to predict neurological outcomes in neonatal brain injury and enhance current clinical predictors. IMPACT Plasma metabolites may help to predict neurological outcomes in NE and supplement current clinical predictors. Current metabolomics research is limited in terms of clinical application and association with long-term outcomes. Our study presents novel associations of plasma metabolites from the first 24 h of life and 2-year neurodevelopmental outcomes for infants with NE. Our metabolomics discovery provides insight into possible disease mechanisms and methods to rescue and/or supplement metabolic pathways involved in NE. Our metabolomics discovery of metabolic pathway supplementations and/or rescue mechanisms may serve as adjunctive therapies for NE.
Collapse
|
12
|
Hu ZX, Cheng C, Li YQ, Qi XH, Wang T, Liu L, Voglmeir J. Recombinant snail sialic acid aldolase is promiscuous towards aliphatic aldehydes. Chembiochem 2022; 23:e202200074. [PMID: 35543120 DOI: 10.1002/cbic.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Indexed: 11/08/2022]
Abstract
Aldolases are enzymes that reversibly catalyze the cleavage of carbon-carbon bonds. Here we describe a recombinant sialic acid aldolase originating from the freshwater snail Biomphalaria glabrata (sNPL), and compare its substrate spectrum with a sialic acid aldolase originating from chicken (chNPL). In contrast to vertebrate animals which can synthesize, degrade, and incorporate sialic acids on glycoconjugate ubiquitously, snails (as all mollusks) cannot synthesize sialic acids endogenously, and therefore the biological function and substrate scope of sNPL ought to differ significantly from vertebrate sialic aldolases such as chNPL. sNPL was active towards a series of sialic acid derivatives but was in contrast to chNPL unable to catalyze the cleavage of N-acetylneuraminic acid into N-acetylmannosamine and pyruvate. Interestingly, chNPL and sNPL showed contrasting C4 (R) / (S) diastereoselectivity towards the substrates d-mannose and d-galactose in the presence of pyruvate. In addition, sNPL was also able to synthesize a series of 4-hydroxy-2-oxoates using the corresponding aliphatic aldehyde substrates in the presence of pyruvate, which could be not achieved by chNPL.
Collapse
Affiliation(s)
- Zi-Xuan Hu
- Nanjing Agricultural University - Weigang Campus: Nanjing Agricultural University, College of Food Science and Technology, CHINA
| | - Cheng Cheng
- Nanjing Agricultural University - Weigang Campus: Nanjing Agricultural University, College of Food Science and Technology, CHINA
| | - Yu-Qian Li
- Nanjing Agricultural University - Weigang Campus: Nanjing Agricultural University, College of Food Science and Technology, CHINA
| | - Xiao-Han Qi
- Nanjing Agricultural University - Weigang Campus: Nanjing Agricultural University, College of Food Science and Technology, CHINA
| | - Ting Wang
- Nanjing Agricultural University - Weigang Campus: Nanjing Agricultural University, College of Food Science and Technology, CHINA
| | - Li Liu
- Nanjing Agricultural University - Weigang Campus: Nanjing Agricultural University, College of Food Science and Technology, CHINA
| | - Josef Voglmeir
- Nanjing Agricultural University, College of Food Science And Technology, 1 Weigang, 210095, Nanjing, CHINA
| |
Collapse
|
13
|
Hu Q, Li Y, Zhang Y, Sun S, Wang H, Jiang Z, Deng S. Case Report: First Report of T-Cell Large Granular Lymphocytic Leukemia With NPL-DHX9 Gene Fusion Successfully Treated With Cladribine: Clinical Experience and Literature Review. Front Oncol 2022; 12:824393. [PMID: 35600388 PMCID: PMC9120773 DOI: 10.3389/fonc.2022.824393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Background T-cell large granular lymphocytic leukemia (T-LGLL) is a rare lymphoproliferative disorder that starts in T cells and is usually indolent. Long-term use of immunosuppressants, combined with agranulocytosis, is a double-edged sword, as both can lead to serious infections, especially in patients with combined hematologic malignancies and immune defects. Case Presentation A 30-year-old female patient was admitted to the hospital because of agranulocytosis for five years, with chest tightness, fatigue, and fever for two days. Pathology and metagenomic next-generation sequencing (mNGS) detected Aspergillus. Although she received cyclosporine and methylprednisolone, the patient showed drug intolerance and progression with invasive pulmonary fungal infections. After a bone marrow aspiration biopsy and other related examinations, she was diagnosed with T-LGLL and invasive pulmonary aspergillosis (IPA). T-cell immunophenotype was CD45+CD3dim+CD5-CD4-CD8+CD7+CD57p+CD25-CD30-, TCRγδ+, transducer and activator of transcripton-3 (STAT3) Y640F mutation and fusion gene NPL-DHX9 rearrangement were confirmed, which has never been reported in hematological diseases. After voriconazole regimen adjustment during treatment based on therapeutic drug concentration monitoring (TDM) and improvement in lung infection, the patient finally treated with purine nucleoside analogues (PNA) cladribine as a single agent at 0.14 mg/kg/d for 5 days. Complete response was achieved after four-cycles cladribine treatment (WBC 2.1*109/L, HGB 117 g/L, PLT 196*109/L, ANC 1.6*109/L, and ALC 0.2*109/L). Conclusions To our knowledge, this is the first case of T-LGLL with a rare γδ type and fusion gene NPL-DHX9 rearrangement. The patient was successfully treated with cladribine, suggesting that this regimen could be a promising therapeutic strategy for patients with aggressive T-LGLL.
Collapse
Affiliation(s)
- Qin Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Management, Central South University, Changsha, China
| | - Yunfei Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shusen Sun
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Western New England University, Springfeld, MA, United States
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Zhiping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Cheng C, Hu ZX, He M, Liu L, Voglmeir J. Recombinant human N-acetylneuraminate lyase as a tool to study clinically relevant mutant variants. Carbohydr Res 2022; 516:108561. [DOI: 10.1016/j.carres.2022.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
|
15
|
Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022; 14:23. [PMID: 35220969 PMCID: PMC8883622 DOI: 10.1186/s13073-022-01026-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Rare diseases affect 30 million people in the USA and more than 300-400 million worldwide, often causing chronic illness, disability, and premature death. Traditional diagnostic techniques rely heavily on heuristic approaches, coupling clinical experience from prior rare disease presentations with the medical literature. A large number of rare disease patients remain undiagnosed for years and many even die without an accurate diagnosis. In recent years, gene panels, microarrays, and exome sequencing have helped to identify the molecular cause of such rare and undiagnosed diseases. These technologies have allowed diagnoses for a sizable proportion (25-35%) of undiagnosed patients, often with actionable findings. However, a large proportion of these patients remain undiagnosed. In this review, we focus on technologies that can be adopted if exome sequencing is unrevealing. We discuss the benefits of sequencing the whole genome and the additional benefit that may be offered by long-read technology, pan-genome reference, transcriptomics, metabolomics, proteomics, and methyl profiling. We highlight computational methods to help identify regionally distant patients with similar phenotypes or similar genetic mutations. Finally, we describe approaches to automate and accelerate genomic analysis. The strategies discussed here are intended to serve as a guide for clinicians and researchers in the next steps when encountering patients with non-diagnostic exomes.
Collapse
Affiliation(s)
- Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Diabetes Research Center, Cardiovascular Institute and Prevention Research Center, Stanford, CA, USA
| | - Euan A Ashley
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
A point-mutation in the C-domain of CMP-sialic acid synthetase leads to lethality of medaka due to protein insolubility. Sci Rep 2021; 11:23211. [PMID: 34853329 PMCID: PMC8636478 DOI: 10.1038/s41598-021-01715-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
Vertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.
Collapse
|
17
|
Li C, Zhao M, Xiao L, Wei H, Wen Z, Hu D, Yu B, Sun Y, Gao J, Shen X, Zhang Q, Cao H, Huang J, Huang W, Li K, Huang M, Ni L, Yu T, Ji L, Xu Y, Liu G, Konerman MC, Zheng L, Wen Wang D. Prognostic Value of Elevated Levels of Plasma N-Acetylneuraminic Acid in Patients With Heart Failure. Circ Heart Fail 2021; 14:e008459. [PMID: 34711067 DOI: 10.1161/circheartfailure.121.008459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cardiac sialylation is involved in a variety of physiological processes in the heart. Altered sialylation has been implicated in heart failure (HF) mice. However, its role in patients with HF is unclear, and the potential effect of modulation of cardiac sialylation is worth exploring. METHODS We first assessed the association between plasma N-acetylneuraminic acid levels and the incidence of adverse cardiovascular events in patients with HF over a median follow-up period of 2 years. Next, immunoblot analysis and lectin histochemistry were performed in cardiac tissue to determine the expression levels of neuraminidases and the extent of cardiac desialylation. Finally, the therapeutic impact of a neuraminidase inhibitor was evaluated in animal models of HF. RESULTS Among 1699 patients with HF, 464 (27%) died of cardiovascular-related deaths or underwent heart transplantation. We found that the elevated plasma N-acetylneuraminic acid level was independently associated with a higher risk of incident cardiovascular death and heart transplantation (third tertile adjusted hazard ratio, 2.11 [95% CI, 1.67-2.66], P<0.001). In addition, in cardiac tissues from patients with HF, neuraminidase expression was upregulated, accompanied by desialylation. Treatment with oseltamivir, a neuraminidase inhibitor, in HF mice infused with isoproterenol and angiotensin II significantly inhibited desialylation and ameliorated cardiac dysfunction. CONCLUSIONS This study uncovered a significant association between elevated plasma N-acetylneuraminic acid level and an increased risk of a poor clinical outcome in patients with HF. Our data support the notion that desialylation represents an important contributor to the progression of HF, and neuraminidase inhibition may be a potential therapeutic strategy for HF.
Collapse
Affiliation(s)
- Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, China (C.L.)
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China (M.Z.)
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Xiaoqing Shen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Jin Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Cardiology, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China (W.H.)
| | - Ke Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health (G.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthew C Konerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute for Health Care Policy and Innovation, University of Michigan, Veterans Affairs Center for Clinical Management Research, Ann Arbor (M.C.K.)
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing (L.Z.)
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Scherpenzeel M, Conte F, Büll C, Ashikov A, Hermans E, Willems A, Tol W, Kragt E, Noga M, Moret EE, Heise T, Langereis JD, Rossing E, Zimmermann M, Rubio-Gozalbo ME, de Jonge MI, Adema GJ, Zamboni N, Boltje T, Lefeber DJ. Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology 2021; 32:239-250. [PMID: 34939087 PMCID: PMC8966471 DOI: 10.1093/glycob/cwab106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography–triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.
Collapse
Affiliation(s)
- Monique Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,GlycoMScan B.V., Kloosterstraat 9, RE0329, 5349 AB Oss, The Netherlands
| | - Federica Conte
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Esther Hermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Walinka Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Else Kragt
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Marek Noga
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Ed E Moret
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Emiel Rossing
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | - M Estela Rubio-Gozalbo
- Department of Clinical Genetics, department of Pediatrics, Maastricht University Medical Centre, Universiteitssingel 50, P.O. Box 616, box 16, 6200 MD, Maastricht, The Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Tran C, Turolla L, Ballhausen D, Buros SC, Teav T, Gallart-Ayala H, Ivanisevic J, Faouzi M, Lefeber DJ, Ivanovski I, Giangiobbe S, Caraffi SG, Garavelli L, Superti-Furga A. The fate of orally administered sialic acid: First insights from patients with N-acetylneuraminic acid synthase deficiency and control subjects. Mol Genet Metab Rep 2021; 28:100777. [PMID: 34258226 PMCID: PMC8251509 DOI: 10.1016/j.ymgmr.2021.100777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In NANS deficiency, biallelic mutations in the N-acetylneuraminic acid synthase (NANS) gene impair the endogenous synthesis of sialic acid (N-acetylneuraminic acid) leading to accumulation of the precursor, N-acetyl mannosamine (ManNAc), and to a multisystemic disorder with intellectual disability. The aim of this study was to determine whether sialic acid supplementation might be a therapeutic avenue for NANS-deficient patients. METHODS Four adults and two children with NANS deficiency and four adult controls received oral NeuNAc acid (150 mg/kg/d) over three days. Total NeuNAc, free NeuNAc and ManNAc were analyzed in plasma and urine at different time points. RESULTS Upon NeuNAc administration, plasma free NeuNAc increased within hours (P < 0.001) in control and in NANS-deficient individuals. Total and free NeuNAc concentrations also increased in the urine as soon as 6 h after beginning of oral administration in both groups. NeuNAc did not affect plasma and urinary ManNAc, that remained higher in NANS deficient subjects than in controls (day 1-3; all P < 0.01). Oral NeuNAc was well tolerated with no significant side effects. DISCUSSION Orally administered free NeuNAc was rapidly absorbed but also rapidly excreted in the urine. It did not change ManNAc levels in either patients or controls, indicating that it may not achieve enough feedback inhibition to reduce ManNAc accumulation in NANS-deficient subjects. Within the limitations of this study these results do not support a potential for oral free NeuNAc in the treatment of NANS deficiency but they provide a basis for further therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Christel Tran
- Center for Molecular Diseases, Division of Genetic Medicine, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Licia Turolla
- Medical Genetics Unit, Azienda ULSS 2, Treviso, Italy
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | | | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Mohamed Faouzi
- Division of Biostatistics, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Dirk J. Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ivan Ivanovski
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Institute of Medical Genetics, University of Zurich, Switzerland
| | - Sara Giangiobbe
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Superti-Furga
- Center for Molecular Diseases, Division of Genetic Medicine, University of Lausanne and University Hospital of Lausanne, Switzerland
| |
Collapse
|
20
|
Feng P, Zeng T, Yang H, Chen G, Du J, Chen L, Shen J, Tao Z, Wang P, Yang L, Lu L. Whole-genome resequencing provides insights into the population structure and domestication signatures of ducks in eastern China. BMC Genomics 2021; 22:401. [PMID: 34058976 PMCID: PMC8165772 DOI: 10.1186/s12864-021-07710-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
Background Duck is an ancient domesticated animal with high economic value, used for its meat, eggs, and feathers. However, the origin of indigenous Chinese ducks remains elusive. To address this question, we performed whole-genome resequencing to first explore the genetic relationship among variants of these domestic ducks with their potential wild ancestors in eastern China, as well as understand how the their genomes were shaped by different natural and artificial selective pressures. Results Here, we report the resequencing of 60 ducks from Chinese spot-billed ducks (Anas zonorhyncha), mallards (Anas platyrhnchos), Fenghua ducks, Shaoxing ducks, Shanma ducks and Cherry Valley Pekin ducks of eastern China (ten from each population) at an average effective sequencing depth of ~ 6× per individual. The results of population and demographic analysis revealed a deep phylogenetic split between wild (Chinese spot-billed ducks and mallards) and domestic ducks. By applying selective sweep analysis, we identified that several candidate genes, important pathways and GO categories associated with artificial selection were functionally related to cellular adhesion, type 2 diabetes, lipid metabolism, the cell cycle, liver cell proliferation, and muscle functioning in domestic ducks. Conclusion Genetic structure analysis showed a close genetic relationship of Chinese spot-billed ducks and mallards, which supported that Chinese spot-billed ducks contributed to the breeding of domestic ducks. During the long history of artificial selection, domestic ducks have developed a complex biological adaptation to captivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07710-2.
Collapse
Affiliation(s)
- Peishi Feng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.,Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Science, Wuhan, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenrong Tao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Lin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
21
|
Huizing M, Hackbarth ME, Adams DR, Wasserstein M, Patterson MC, Walkley SU, Gahl WA. Free sialic acid storage disorder: Progress and promise. Neurosci Lett 2021; 755:135896. [PMID: 33862140 DOI: 10.1016/j.neulet.2021.135896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Lysosomal free sialic acid storage disorder (FSASD) is an extremely rare, autosomal recessive, neurodegenerative, multisystemic disorder caused by defects in the lysosomal sialic acid membrane exporter SLC17A5 (sialin). SLC17A5 defects cause free sialic acid and some other acidic hexoses to accumulate in lysosomes, resulting in enlarged lysosomes in some cell types and 10-100-fold increased urinary excretion of free sialic acid. Clinical features of FSASD include coarse facial features, organomegaly, and progressive neurodegenerative symptoms with cognitive impairment, cerebellar ataxia and muscular hypotonia. Central hypomyelination with cerebellar atrophy and thinning of the corpus callosum are also prominent disease features. Around 200 FSASD cases are reported worldwide, with the clinical spectrum ranging from a severe infantile onset form, often lethal in early childhood, to a mild, less severe form with subjects living into adulthood, also called Salla disease. The pathobiology of FSASD remains poorly understood and FSASD is likely underdiagnosed. Known patients have experienced a diagnostic delay due to the rarity of the disorder, absence of routine urine sialic acid testing, and non-specific clinical symptoms, including developmental delay, ataxia and infantile hypomyelination. There is no approved therapy for FSASD. We initiated a multidisciplinary collaborative effort involving worldwide academic clinical and scientific FSASD experts, the National Institutes of Health (USA), and the FSASD patient advocacy group (Salla Treatment and Research [S.T.A.R.] Foundation) to overcome the scientific, clinical and financial challenges facing the development of new treatments for FSASD. We aim to collect data that incentivize industry to further develop, obtain approval for, and commercialize FSASD treatments. This review summarizes current aspects of FSASD diagnosis, prevalence, etiology, and disease models, as well as challenges on the path to therapeutic approaches for FSASD.
Collapse
Affiliation(s)
- Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Mary E Hackbarth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Melissa Wasserstein
- Departments of Pediatrics and Genetics, The Children's Hospital at Montefiore, Bronx, NY, 10467, United States; Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | | |
Collapse
|
22
|
Kawanishi K, Saha S, Diaz S, Vaill M, Sasmal A, Siddiqui SS, Choudhury B, Sharma K, Chen X, Schoenhofen IC, Sato C, Kitajima K, Freeze HH, Münster-Kühnel A, Varki A. Evolutionary conservation of human ketodeoxynonulosonic acid production is independent of sialoglycan biosynthesis. J Clin Invest 2021; 131:137681. [PMID: 33373330 DOI: 10.1172/jci137681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Human metabolic incorporation of nonhuman sialic acid (Sia) N-glycolylneuraminic acid into endogenous glycans generates inflammation via preexisting antibodies, which likely contributes to red meat-induced atherosclerosis acceleration. Exploring whether this mechanism affects atherosclerosis in end-stage renal disease (ESRD), we instead found serum accumulation of 2-keto-3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (Kdn), a Sia prominently expressed in cold-blooded vertebrates. In patients with ESRD, levels of the Kdn precursor mannose also increased, but within a normal range. Mannose ingestion by healthy volunteers raised the levels of urinary mannose and Kdn. Kdn production pathways remained conserved in mammals but were diminished by an M42T substitution in a key biosynthetic enzyme, N-acetylneuraminate synthase. Remarkably, reversion to the ancestral methionine then occurred independently in 2 lineages, including humans. However, mammalian glycan databases contain no Kdn-glycans. We hypothesize that the potential toxicity of excess mannose in mammals is partly buffered by conversion to free Kdn. Thus, mammals probably conserve Kdn biosynthesis and modulate it in a lineage-specific manner, not for glycosylation, but to control physiological mannose intermediates and metabolites. However, human cells can be forced to express Kdn-glycans via genetic mutations enhancing Kdn utilization, or by transfection with fish enzymes producing cytidine monophosphate-Kdn (CMP-Kdn). Antibodies against Kdn-glycans occur in pooled human immunoglobulins. Pathological conditions that elevate Kdn levels could therefore result in antibody-mediated inflammatory pathologies.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Sudeshna Saha
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Sandra Diaz
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Michael Vaill
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and.,Center for Academic Research and Training in Anthropogeny, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | - Shoib S Siddiqui
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and
| | | | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis (UCD), Davis, California, USA
| | - Ian C Schoenhofen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Ajit Varki
- Glycobiology Research and Training Center.,Department of Cellular and Molecular Medicine, and.,Center for Academic Research and Training in Anthropogeny, University of California, San Diego (UCSD), La Jolla, California, USA.,Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
23
|
Dougherty BV, Rawls KD, Kolling GL, Vinnakota KC, Wallqvist A, Papin JA. Identifying functional metabolic shifts in heart failure with the integration of omics data and a heart-specific, genome-scale model. Cell Rep 2021; 34:108836. [PMID: 33691118 DOI: 10.1016/j.celrep.2021.108836] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022] Open
Abstract
In diseased states, the heart can shift to use different carbon substrates, measured through changes in uptake of metabolites by imaging methods or blood metabolomics. However, it is not known whether these measured changes are a result of transcriptional changes or external factors. Here, we explore transcriptional changes in late-stage heart failure using publicly available data integrated with a model of heart metabolism. First, we present a heart-specific genome-scale metabolic network reconstruction (GENRE), iCardio. Next, we demonstrate the utility of iCardio in interpreting heart failure gene expression data by identifying tasks inferred from differential expression (TIDEs), which represent metabolic functions associated with changes in gene expression. We identify decreased gene expression for nitric oxide (NO) and N-acetylneuraminic acid (Neu5Ac) synthesis as common metabolic markers of heart failure. The methods presented here for constructing a tissue-specific model and identifying TIDEs can be extended to multiple tissues and diseases of interest.
Collapse
Affiliation(s)
- Bonnie V Dougherty
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Kalyan C Vinnakota
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
24
|
Awasthi K, Srivastava A, Bhattacharya S, Bhattacharya A. Tissue specific expression of sialic acid metabolic pathway: role in GNE myopathy. J Muscle Res Cell Motil 2020; 42:99-116. [PMID: 33029681 DOI: 10.1007/s10974-020-09590-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
GNE myopathy is an adult-onset degenerative muscle disease that leads to extreme disability in patients. Biallelic mutations in the rate-limiting enzyme UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine-kinase (GNE) of sialic acid (SA) biosynthetic pathway, was shown to be the cause of this disease. Other genetic disorders with muscle pathology where defects in glycosylation are known. It is yet not clear why a defect in SA biosynthesis and glycosylation affect muscle cells selectively even though they are ubiquitously present in all tissues. Here we have comprehensively examined the complete SA metabolic pathway involving biosynthesis, sialylation, salvage, and catabolism. To understand the reason for tissue-specific phenotype caused by mutations in genes of this pathway, we analysed the expression of different SA pathway genes in various tissues, during the muscle tissue development and in muscle tissues from GNE myopathy patients (p.Met743Thr) using publicly available databases. We have also analysed gene co-expression networks with GNE in different tissues as well as gene interactions that are unique to muscle tissues only. The results do show a few muscle specific interactions involving ANLN, MYO16 and PRAMEF25 that could be involved in specific phenotype. Overall, our results suggest that SA biosynthetic and catabolic genes are expressed at a very low level in skeletal muscles that also display a unique gene interaction network.
Collapse
Affiliation(s)
- Kapila Awasthi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Srivastava
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon, India.,Institute of Bioinformatics and Computational Biology, Visakhapatnam, Andhra Pradesh, India
| | - Sudha Bhattacharya
- Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O.Rai, Sonepat, Haryana, 131029, India
| | - Alok Bhattacharya
- Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O.Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
25
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Johnsen M, Kubacki T, Yeroslaviz A, Späth MR, Mörsdorf J, Göbel H, Bohl K, Ignarski M, Meharg C, Habermann B, Altmüller J, Beyer A, Benzing T, Schermer B, Burst V, Müller RU. The Integrated RNA Landscape of Renal Preconditioning against Ischemia-Reperfusion Injury. J Am Soc Nephrol 2020; 31:716-730. [PMID: 32111728 DOI: 10.1681/asn.2019050534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. METHODS To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. RESULTS The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. CONCLUSIONS This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).
Collapse
Affiliation(s)
- Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jannis Mörsdorf
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Bianca Habermann
- Development Biology Institute of Marseille, Aix-Marseille University, CNRS, Marseille, France
| | | | - Andreas Beyer
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Boycott KM, Campeau PM, Howley HE, Pavlidis P, Rogic S, Oriel C, Berman JN, Hamilton RM, Hicks GG, Lipshitz HD, Masson JY, Shoubridge EA, Junker A, Leroux MR, McMaster CR, Michaud JL, Turvey SE, Dyment D, Innes AM, van Karnebeek CD, Lehman A, Cohn RD, MacDonald IM, Rachubinski RA, Frosk P, Vandersteen A, Wozniak RW, Pena IA, Wen XY, Lacaze-Masmonteil T, Rankin C, Hieter P. The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: Connecting Understudied Genes to Model Organisms. Am J Hum Genet 2020; 106:143-152. [PMID: 32032513 DOI: 10.1016/j.ajhg.2020.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.
Collapse
Affiliation(s)
- Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| | - Philippe M Campeau
- Centre de Recherche du CHU Ste-Justine, Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Heather E Howley
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sanja Rogic
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christine Oriel
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, BC V5Z 4H4, Canada
| | - Jason N Berman
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Robert M Hamilton
- Labatt Family Heart Centre and Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geoffrey G Hicks
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean-Yves Masson
- Oncology Division, CHU de Québec-Université Laval, Laval University Cancer Research Center, Quebec City, QC, G1R 3S3, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Anne Junker
- Department of Pediatrics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Jaques L Michaud
- Centre de Recherche du CHU Ste-Justine, Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Stuart E Turvey
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - David Dyment
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary, AB T2N 4N1, Canada
| | - Clara D van Karnebeek
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pediatrics, Amsterdam University Medical Centres, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Ronald D Cohn
- Genetics and Genome Biology Program, SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Richard A Rachubinski
- Genetics and Genome Biology Program, SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Patrick Frosk
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Anthony Vandersteen
- Department of Pediatrics, Maritime Medical Genetics Service, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Richard W Wozniak
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Izabella A Pena
- CHEO Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8
| | - Thierry Lacaze-Masmonteil
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, BC V5Z 4H4, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Catharine Rankin
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
28
|
van Karnebeek CDM, Ramos RJ, Wen XY, Tarailo-Graovac M, Gleeson JG, Skrypnyk C, Brand-Arzamendi K, Karbassi F, Issa MY, van der Lee R, Drögemöller BI, Koster J, Rousseau J, Campeau PM, Wang Y, Cao F, Li M, Ruiter J, Ciapaite J, Kluijtmans LAJ, Willemsen MAAP, Jans JJ, Ross CJ, Wintjes LT, Rodenburg RJ, Huigen MCDG, Jia Z, Waterham HR, Wasserman WW, Wanders RJA, Verhoeven-Duif NM, Zaki MS, Wevers RA. Bi-allelic GOT2 Mutations Cause a Treatable Malate-Aspartate Shuttle-Related Encephalopathy. Am J Hum Genet 2019; 105:534-548. [PMID: 31422819 DOI: 10.1016/j.ajhg.2019.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022] Open
Abstract
Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics & Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam Gastro-enterology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Pediatrics / Medical Genetics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Amalia Children's Hospital, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands.
| | - Rúben J Ramos
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Department of Medicine, Physiology and LMP & Institute of Medical Science, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joseph G Gleeson
- Department Neurosciences and Pediatric, Howard Hughes Medical Institute, University of California; Rady Children's Institute for Genomic Medicine, San Diego, CA 92093, USA
| | - Cristina Skrypnyk
- Department of Molecular Medicine and Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Postal Code 328, Bahrain
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Farhad Karbassi
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Britt I Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Youdong Wang
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Feng Cao
- Department of Neuroscience & Mental Health, The Hospital for Sick Children & Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Meng Li
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Jos Ruiter
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Jolita Ciapaite
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Leo A J Kluijtmans
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Michel A A P Willemsen
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Amalia Children's Hospital, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Judith J Jans
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liesbeth T Wintjes
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Richard J Rodenburg
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Amalia Children's Hospital, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Marleen C D G Huigen
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Zhengping Jia
- Department of Neuroscience & Mental Health, The Hospital for Sick Children & Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Hans R Waterham
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ronald J A Wanders
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Nanda M Verhoeven-Duif
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Ron A Wevers
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Furukawa H, Oka S, Shimada K, Hashimoto A, Komiya A, Matsui T, Tohma S. Role of Deleterious Rare Alleles for Acute-Onset Diffuse Interstitial Lung Disease in Collagen Diseases. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2019; 13:1179548419866443. [PMID: 31391785 PMCID: PMC6668171 DOI: 10.1177/1179548419866443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022]
Abstract
Objective Acute-onset diffuse interstitial lung disease (AoDILD) includes acute exacerbation of interstitial lung disease (ILD), drug-induced ILD, and Pneumocystis pneumonia in collagen diseases patients. As AoDILD causes a poor prognosis in collagen disease patients, the pathogenesis of AoDILD should be investigated. Exome sequencing studies revealed that rare variants were detected to be causative in some diseases. Recently reported upregulated genes in acute exacerbation of idiopathic pulmonary fibrosis could provide candidate genes for restricted exome analysis of AoDILD in collagen disease. Here, we investigated rare variants in the coding and boundary regions of these candidate genes in AoDILD. Methods Deleterious rare variants in the coding and boundary regions of the candidate genes were analyzed by exome sequencing and the deleterious rare allele frequencies in AoDILD were compared with those of controls. Results A significant association was detected for deleterious rare alleles in NPL (P = .0044, P c = .0399, odds ratio [OR] = 10.05, 95% confidence interval [CI] = 3.01-33.55). A deleterious rare allele frequency in the 9 candidate genes (P = .0011, OR = 7.17, 95% CI = 2.80-18.33) was also increased in AoDILD in multigene panel analysis. The Krebs von den Lungen-6 (KL-6) levels in AoDILD patients with deleterious rare alleles were tended to be lower than those without (P = .0168, P c = .1509). Conclusions The deleterious rare alleles in NPL were associated with AoDILD. In addition, the deleterious rare allele frequency in the 9 candidate genes was also increased in AoDILD. The deleterious rare alleles might contribute to the pathogenesis of AoDILD.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Shomi Oka
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Kota Shimada
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| | - Atsushi Hashimoto
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Akiko Komiya
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Clinical Laboratory, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Toshihiro Matsui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| |
Collapse
|
30
|
Maroilley T, Tarailo-Graovac M. Uncovering Missing Heritability in Rare Diseases. Genes (Basel) 2019; 10:E275. [PMID: 30987386 PMCID: PMC6523881 DOI: 10.3390/genes10040275] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The problem of 'missing heritability' affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The 'missing heritability' concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has accelerated discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases in RD patients, as is the case in common diseases-the majority of RDs are also facing the 'missing heritability' problem. This review outlines the key role of high throughput sequencing in uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current advances and challenges of sequencing technologies, bioinformatics approaches, and resources.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
31
|
Pogoryelova O, Urtizberea JA, Argov Z, Nishino I, Lochmüller H. 237th ENMC International Workshop: GNE myopathy - current and future research Hoofddorp, The Netherlands, 14-16 September 2018. Neuromuscul Disord 2019; 29:401-410. [PMID: 30956020 DOI: 10.1016/j.nmd.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Oksana Pogoryelova
- Institute of Medical Genetics, Newcastle University, Newcastle upon Tyne, Central Parkway, NE1 3BZ, UK.
| | | | - Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Baldri I reixac 4, 08028 Barcelona, Spain; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, K1Y 4E9, Canada
| | | |
Collapse
|
32
|
Milcheva R, Janega P, Celec P, Petkova S, Hurniková Z, Izrael-Vlková B, Todorova K, Babál P. Accumulation of α-2,6-sialyoglycoproteins in the Muscle Sarcoplasm Due to Trichinella Sp. Invasion. Open Life Sci 2019; 14:470-481. [PMID: 33817183 PMCID: PMC7874827 DOI: 10.1515/biol-2019-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 01/02/2023] Open
Abstract
The sialylation of the glycoproteins in skeletal muscle tissue is not well investigated, even though the essential role of the sialic acids for the proper muscular function has been proven by many researchers. The invasion of the parasitic nematode Trichinella spiralis in the muscles with subsequent formation of Nurse cell-parasite complex initiates increased accumulation of sialylated glycoproteins within the affected area of the muscle fiber. The aim of this study is to describe some details of the α-2,6-sialylation in invaded muscle cells. Asynchronous invasion with infectious T. spiralis larvae was experimentally induced in mice. The areas of the occupied sarcoplasm were reactive towards α-2,6-sialic acid specific Sambucus nigra agglutinin during the whole process of transformation to a Nurse cell.The cytoplasm of the developing Nurse cell reacted with Helix pomatia agglutinin, Arachis hypogea agglutinin and Vicia villosa lectin-B4 after neuraminidase pretreatment.Up-regulation of the enzyme ST6GalNAc1 and down-regulation of the enzyme ST6GalNAc3 were detected throughout the course of this study. The results from our study assumed accumulation of sialyl-Tn-Ag, 6`-sialyl lactosamine, SiA-α-2,6-Gal-β-1,3-GalNAc-α-Ser/Thr and Gal-β-1,3-GalNAc(SiA-α-2,6-)-α-1-Ser/Thr oligosaccharide structures into the occupied sarcoplasm. Further investigations in this domain will develop the understanding about the amazing adaptive capabilities of skeletal muscle tissue.
Collapse
Affiliation(s)
- Rositsa Milcheva
- Department of Pathology, IEMPAM, Bulgarian Academy of Sciences, ‘’Acad. G. Bonchev’’ Str. 25, 1113, Sofia, Bulgaria
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM), Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. 25, 1113Sofia, Bulgaria
| | - Pavol Janega
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| | - Peter Celec
- Department of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| | - Svetlozara Petkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM), Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. 25, 1113Sofia, Bulgaria
| | - Zuzana Hurniková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01Košice, Slovak Republic
| | - Barbora Izrael-Vlková
- Department of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM), Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. 25, 1113Sofia, Bulgaria
| | - Pavel Babál
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81372Bratislava, Slovakia
| |
Collapse
|