1
|
Arnau‐Soler A, Tremblay BL, Sun Y, Madore A, Simard M, Kersten ETG, Ghauri A, Marenholz I, Eiwegger T, Simons E, Chan ES, Nadeau K, Sampath V, Mazer BD, Elliott S, Hampson C, Soller L, Sandford A, Begin P, Hui J, Wilken BF, Gerdts J, Bourkas A, Ellis AK, Vasileva D, Clarke A, Eslami A, Ben‐Shoshan M, Martino D, Daley D, Koppelman GH, Laprise C, Lee Y, Asai Y. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2025; 80:106-131. [PMID: 39698764 PMCID: PMC11724255 DOI: 10.1111/all.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a discussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false discovery of < 1 × 10-4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.
Collapse
Affiliation(s)
- Aleix Arnau‐Soler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Bénédicte L. Tremblay
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Anne‐Marie Madore
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Mathieu Simard
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Elin T. G. Kersten
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
| | - Thomas Eiwegger
- Translational Medicine Program, Research InstituteHospital for Sick ChildrenTorontoOntarioCanada
- Department of Immunology, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
- Department of Pediatric and Adolescent MedicineUniversity Hospital St. PöltenSt. PöltenAustria
- Department of Paediatrics, Division of Clinical Immunology and Allergy, Food Allergy and Anaphylaxis Program, the Hospital for Sick ChildrenThe University of TorontoTorontoOntarioCanada
| | - Elinor Simons
- Section of Allergy & Clinical Immunology, Department of Pediatrics & Child Health, University of ManitobaChildren's Hospital Research InstituteWinnipegManitobaCanada
| | - Edmond S. Chan
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kari Nadeau
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vanitha Sampath
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Bruce D. Mazer
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Susan Elliott
- Department of Geography and Environmental ManagementUniversity of WaterlooWaterlooOntarioCanada
| | | | - Lianne Soller
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andrew Sandford
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical ImmunologyCentre Hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Department of Medicine, Service of Allergy and Clinical ImmunologyCentre Hospitalier de l'Université de MontréalMontréalQuébecCanada
| | - Jennie Hui
- School of Population HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Bethany F. Wilken
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | | | - Adrienn Bourkas
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Anne K. Ellis
- Division of Allergy & Immunology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Denitsa Vasileva
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Ann Clarke
- Department of Medicine, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Aida Eslami
- Département de médecine Sociale et préventive, Faculté de médecineUniversité LavalQuebecCanada
| | - Moshe Ben‐Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montréal Children's HospitalMcGill University Health CentreMontréalQuebecCanada
| | - David Martino
- Wal‐Yan Respiratory Research CentreTelethon Kids InstitutePerthAustralia
| | - Denise Daley
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Catherine Laprise
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Young‐Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Yuka Asai
- Division of Dermatology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
2
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
3
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
4
|
Lee JS, Lee Y, Jang S, Oh JH, Lee DH, Cho S. Pregnane X receptor reduces particulate matter-induced type 17 inflammation in atopic dermatitis. Front Immunol 2024; 15:1415350. [PMID: 39399487 PMCID: PMC11467722 DOI: 10.3389/fimmu.2024.1415350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024] Open
Abstract
Background Epidemiological evidence suggests that particulate matter (PM) exposure can trigger or worsen atopic dermatitis (AD); however, the underlying mechanisms remain unclear. Recently, pregnane X receptor (PXR), a xenobiotic receptor, was reported to be related to skin inflammation in AD. Objectives This study aimed to explore the effects of PM on AD and investigate the role of PXR in PM-exposed AD. Methods In vivo and in vitro AD-like models were employed, using BALB/c mice, immortalized human keratinocytes (HaCaT), and mouse CD4 + T cells. Results Topical application of PM significantly increased dermatitis score and skin thickness in AD-like mice. PM treatment increased the mRNA and protein levels of type 17 inflammatory mediators, including interleukin (IL)-17A, IL-23A, IL-1β, and IL-6, in AD-like mice and human keratinocytes. PM also activated PXR signaling, and PXR knockdown exacerbated PM-induced type 17 inflammation in human keratinocytes and mouse CD4 + T cells. In contrast, PXR activation by rifampicin (a human PXR agonist) reduced PM-induced type 17 inflammation. Mechanistically, PXR activation led to a pronounced inhibition of the nuclear factor kappa B (NF-κB) pathway. Conclusion In summary, PM exposure induces type 17 inflammation and PXR activation in AD. PXR activation reduces PM-induced type 17 inflammation by suppressing the NF-κB signaling pathway. Thus, PXR represents a promising therapeutic target for controlling the PM-induced AD aggravation.
Collapse
Affiliation(s)
- Ji Su Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Sunhyae Jang
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Soyun Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul Metropolitan Government – Seoul National University (SMG-SNU) Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kim M, Kim C, Zheng H, Kim Y, Cho PS, Lim JY, Choi W, Kim M, Kim Y, Kim HR, Lee GY, Hwang SW. Pharmacologic inhibition of Il6st/gp130 improves dermatological inflammation and pruritus. Biomed Pharmacother 2024; 178:117155. [PMID: 39047422 DOI: 10.1016/j.biopha.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic dermatitis is a disease with large unmet need for pharmacological improvement. Dermatitis conditions are maintained and exacerbated by various cytokine actions in the context of inflammation. Interleukin 6 signal transducer (Il6st), also known as glycoprotein 130 (Gp130), is a key component for surface reception of a multitude of cytokines and transduction and amplification of their pro-inflammatory signals. We hypothesized accordingly that pharmacological inhibition of Il6st can alter dermatitis pathology. Treatment with SC-144 and bazedoxifene, two representative small molecule Il6st inhibitors with different binding modes led to moderate but significant improvement of skin conditions in a 1-chloro-2,4-dinitrobenzene animal model. Part of cytokine expressions indicating the dermatological index were normalized particularly when treated with SC-144. Pruritic behaviors were blunted, also possibly giving limited contribution to disease improvement. In psoriatic skin and itch of an imiquimod animal model, those two treatments appeared to be relatively moderate. Collectively, pharmacological inhibition of Il6st seems to lessen pathological irritation. Inversely, this experimental attempt newly implies that Il6st participates in pathological mechanisms. In conclusion, we suggest Il6st as a novel target for improving dermatitis, and that agents with suitable efficacy and safety for its modulation are translatable.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chaeeun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yerin Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Pyung Sun Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - WonSeok Choi
- Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Miri Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yebeen Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Gi Young Lee
- Department of Microbiology & Immunology, Cornell University, Ithaca, New York, NY 14853, USA
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Garrett-Sinha LA. An update on the roles of transcription factor Ets1 in autoimmune diseases. WIREs Mech Dis 2023; 15:e1627. [PMID: 37565573 PMCID: PMC10842644 DOI: 10.1002/wsbm.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Transcription factors are crucial to regulate gene expression in immune cells and in other cell types. In lymphocytes, there are a large number of different transcription factors that are known to contribute to cell differentiation and the balance between quiescence and activation. One such transcription factor is E26 oncogene homolog 1 (Ets1). Ets1 expression is high in quiescent B and T lymphocytes and its levels are decreased upon activation. The human ETS1 gene has been identified as a susceptibility locus for many autoimmune and inflammatory diseases. In accord with this, gene knockout of Ets1 in mice leads to development of a lupus-like autoimmune disease, with enhanced activation and differentiation of both B cells and T cells. Prior reviews have summarized functional roles for Ets1 based on studies of Ets1 knockout mice. In recent years, numerous additional studies have been published that further validate ETS1 as a susceptibility locus for human diseases where immune dysregulation plays a causative role. In this update, new information that further links Ets1 to human autoimmune diseases is organized and collated to serve as a resource. This update also describes recent studies that seek to understand molecularly how Ets1 regulates immune cell activation, either using human cells and tissues or mouse models. This resource is expected to be useful to investigators seeking to understand how Ets1 may regulate the human immune response, particularly in terms of its roles in autoimmunity and inflammation. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
7
|
Kendirli A, de la Rosa C, Lämmle KF, Eglseer K, Bauer IJ, Kavaka V, Winklmeier S, Zhuo L, Wichmann C, Gerdes LA, Kümpfel T, Dornmair K, Beltrán E, Kerschensteiner M, Kawakami N. A genome-wide in vivo CRISPR screen identifies essential regulators of T cell migration to the CNS in a multiple sclerosis model. Nat Neurosci 2023; 26:1713-1725. [PMID: 37709997 PMCID: PMC10545543 DOI: 10.1038/s41593-023-01432-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule α4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4+ T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4+ T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.
Collapse
Affiliation(s)
- Arek Kendirli
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Clara de la Rosa
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin F Lämmle
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Isabel J Bauer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - La Zhuo
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| |
Collapse
|
8
|
Battaglia M, Sunshine AC, Luo W, Jin R, Stith A, Lindemann M, Miller LS, Sinha S, Wohlfert E, Garrett-Sinha LA. Ets1 and IL17RA cooperate to regulate autoimmune responses and skin immunity to Staphylococcus aureus. Front Immunol 2023; 14:1208200. [PMID: 37691956 PMCID: PMC10486983 DOI: 10.3389/fimmu.2023.1208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alex C. Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Wei Luo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard Jin
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
9
|
Hu L, Han M, Deng Y, Gong J, Hou Z, Zeng Y, Zhang Y, He J, Zhong C. Genetic distinction between functional tissue-resident and conventional natural killer cells. iScience 2023; 26:107187. [PMID: 37404378 PMCID: PMC10316664 DOI: 10.1016/j.isci.2023.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Tissue-residential natural killer (trNK) cells act as pioneering responders during infectious challenges. However, their discrimination with conventional NK (cNK) cells is still an issue. Through an integrative transcriptome comparison of the two NK subgroups from different tissues, we have defined two genesets capable of efficiently distinguishing them. Based on the two genesets, a fundamental difference between the activation of trNK and cNK is identified and further confirmed. Mechanistically, we have discovered a particular role of chromatin landscape in regulating the trNK activation. In addition, IL-21R and IL-18R are respectively highly expressed by trNK and cNK, indicating a role of cytokine milieu in determining their differential activation. Indeed, IL-21 is particularly critical in accessorily promoting trNK activation using a bunch of bifunctional transcription factors. Together, this study sheds light on the bona fide difference between trNK and cNK, which will further expand our knowledge about their distinct functionalities during immune responses.
Collapse
Affiliation(s)
- Luni Hu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mengwei Han
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yichen Deng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yime Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing He
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
10
|
Teng Y, Cang B, Mao F, Chen W, Cheng P, Peng L, Luo P, Lu D, You N, Zou Q, Zhuang Y. Expression of ETS1 in gastric epithelial cells positively regulate inflammatory response in Helicobacter pylori-associated gastritis. Cell Death Dis 2020; 11:498. [PMID: 32612120 PMCID: PMC7329872 DOI: 10.1038/s41419-020-2705-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 11/09/2022]
Abstract
Gastric epithelial cells (GECs) provide the first point of contact of the host by Helicobacter pylori (H. pylori), and the interaction between H. pylori and GECs plays a critical role in H. pylori-associated diseases. Aberrant expression of transcription factors (TFs) contributes to the pathogenesis of inflammatory disorders, including H. pylori-associated gastritis. ETS (E26 transformation specific) transcription factor family is one of the largest families of evolutionarily conserved TFs, regulating critical functions during cell homeostasis. We screened ETS family gene expression in H. pylori-infected mouse and human GECs and found that ETS1 (ETS proto-oncogene 1, transcription factor) expression was highly affected by H. pylori infection. Then, we reported that ETS1 was induced in GECs by H. pylori via cagA activated NF-κB pathway. Notably, we demonstrated that proinflammatory cytokines IL-1β and TNFα have synergistic effects on ETS1 expression during H. pylori infection in an NF-κB-pathway-dependent manner. RNA-seq assay and Gene-ontology functional analysis revealed that ETS1 positively regulate inflammatory response during H. pylori infection. Increased ETS1 is also detected in the gastric mucosa of mice and patients with H. pylori infection. Collectively, these data showed that ETS1 may play an important role in the pathogenesis of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | | | - Fangyuan Mao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ping Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Dongshui Lu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
11
|
Ko E, Park S, Lee JH, Cui CH, Hou J, Kim MH, Kim SC. Ginsenoside Rh2 Ameliorates Atopic Dermatitis in NC/Nga Mice by Suppressing NF-kappaB-Mediated Thymic Stromal Lymphopoietin Expression and T Helper Type 2 Differentiation. Int J Mol Sci 2019; 20:ijms20246111. [PMID: 31817146 PMCID: PMC6940811 DOI: 10.3390/ijms20246111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
Ginsenosides are known to have various highly pharmacological activities, such as anti-cancer and anti-inflammatory effects. However, the search for the most effective ginsenosides against the pathogenesis of atopic dermatitis (AD) and the study of the effects of ginsenosides on specific cytokines involved in AD remain unclear. In this study, ginsenoside Rh2 was shown to exert the most effective anti-inflammatory action on thymic stromal lymphopoietin (TSLP) and interleukin 8 in tumor necrosis factor-alpha and polyinosinic: polycytidylic acid induced normal human keratinocytes by inhibiting proinflammatory cytokines at both protein and transcriptional levels. Concomitantly, Rh2 also efficiently alleviated 2,4-dinitrochlorobenzene-induced AD-like skin symptoms when applied topically, including suppression of immune cell infiltration, cytokine expression, and serum immunoglobulin E levels in NC/Nga mice. In line with the in vitro results, Rh2 inhibited TSLP levels in AD mice via regulation of an underlying mechanism involving the nuclear factor κB pathways. In addition, in regard to immune cells, we showed that Rh2 suppressed not only the expression of TSLP but the differentiation of naïve CD4+ T-cells into T helper type 2 cells and their effector function in vitro. Collectively, our results indicated that Rh2 might be considered as a good therapeutic candidate for the alternative treatment of AD.
Collapse
Affiliation(s)
- Eunsu Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Sungjoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Jun Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Chang-Hao Cui
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
| | - Myung-ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea;
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
- Correspondence: ; Tel.: +82-042-2619
| |
Collapse
|