1
|
Han P, Zhao X, Li X, Geng J, Ni S, Li Q. Pathophysiology, molecular mechanisms, and genetics of atrial fibrillation. Hum Cell 2024; 38:14. [PMID: 39505800 DOI: 10.1007/s13577-024-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The development of atrial fibrillation (AF) is a highly complex, multifactorial process involving pathophysiologic mechanisms, molecular pathway mechanisms and numerous genetic abnormalities. The pathophysiologic mechanisms including altered ion channels, abnormalities of the autonomic nervous system, inflammation, and abnormalities in Ca2 + handling. Molecular pathway mechanisms including, but not limited to, renin-angiotensin-aldosterone (RAAS), transforming growth factor-β (TGF-β), oxidative stress (OS). Although in clinical practice, the distinction between types of AF such as paroxysmal and persistent determines the choice of treatment options. However, it is the pathophysiologic alterations present in AF that truly determine the success of AF treatment and prognosis, but even more so the molecular mechanisms and genetic alterations that lie behind them. One tiny clue reveals the general trend, and small beginnings show how things will develop. This article will organize the development of these mechanisms and their interactions in recent years.
Collapse
Affiliation(s)
- Pan Han
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinxin Zhao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xuexun Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jing Geng
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shouxiang Ni
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qiao Li
- Department of Diagnostic Ultrasound, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
2
|
Pfenniger A, Yoo S, Arora R. Oxidative stress and atrial fibrillation. J Mol Cell Cardiol 2024; 196:141-151. [PMID: 39307416 DOI: 10.1016/j.yjmcc.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Though the pathogenesis of AF is complex and is not completely understood, many studies suggest that oxidative stress is a major mechanism in pathophysiology of AF. Through multiple mechanisms, reactive oxygen species (ROS) lead to the formation of an AF substrate that facilitates the development and maintenance of AF. In this review article, we provide an update on the different mechanisms by which oxidative stress promotes atrial remodeling. We then discuss several therapeutic strategies targeting oxidative stress for the prevention or treatment of AF. Considering the complex biology of ROS induced remodeling, and the evolution of ROS sources and compartmentalization during AF progression, there is a definite need for improvement in timing, targeting and reduction of off-target effects of therapeutic strategies targeting oxidative injury in AF.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
3
|
Wyatt B, McIntosh G, Campbell A, Little M, Rogers L, Wyatt B. Simulating left atrial arrhythmias with an interactive N-body model. J Electrocardiol 2024; 86:153762. [PMID: 39059214 DOI: 10.1016/j.jelectrocard.2024.153762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/31/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Heart disease and strokes are leading global killers. While atrial arrhythmias are not deadly by themselves, they can disrupt blood flow in the heart, causing blood clots. These clots can travel to the brain, causing strokes, or to the coronary arteries, causing heart attacks. Additionally, prolonged periods of elevated heart rates can lead to structural and functional changes in the heart, ultimately leading to heart failure if untreated. The left atrium, with its more complex topology, is the primary site for complex arrhythmias. Much remains unknown about the causes of these arrhythmias, and computer modeling is employed to study them. METHODS We use N-body modeling techniques and parallel computing to build an interactive model of the left atrium. Through user input, individual muscle attributes can be adjusted, and ectopic events can be placed to induce arrhythmias in the model. Users can test ablation scenarios to determine the most effective way to eliminate these arrhythmias. RESULTS We set up muscle conditions that either spontaneously generate common arrhythmias or, with a properly timed and located ectopic event, induce an arrhythmia. These arrhythmias were successfully eliminated with simulated ablation. CONCLUSIONS We believe the model could be useful to doctors, researchers, and medical students studying left atrial arrhythmias.
Collapse
Affiliation(s)
- Bryant Wyatt
- Tarleton State University, Department of Mathematics,1333 W Washington St, Stephenville, TX 76401, United States of America.
| | - Gavin McIntosh
- Tarleton State University, Department of Mathematics,1333 W Washington St, Stephenville, TX 76401, United States of America
| | - Avery Campbell
- Oncor Electric Delivery, 1616 Woodall Rodgers Fwy, Dallas, TX 75202, United States of America
| | - Melanie Little
- MD Anderson School of Health Professions, 1515 Holocombe Blvd, Houston, TX 77030, United States of America
| | - Leah Rogers
- Tarleton State University, Department of Mathematics,1333 W Washington St, Stephenville, TX 76401, United States of America
| | - Brandon Wyatt
- Biosense Webster, 31 Technology Dr. Suite 200, Irvine, CA 92618, United States of America
| |
Collapse
|
4
|
Malik V, Linz D, Sanders P. The Role of the Autonomic Nervous System as Both "Trigger and "Substrate" in Atrial Fibrillation. Card Electrophysiol Clin 2024; 16:271-280. [PMID: 39084720 DOI: 10.1016/j.ccep.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Several complex mechanisms, working alone, or together, initiate and maintain atrial fibrillation (AF). At disease onset, pulmonary vein-atrial triggers, producing ectopy, predominate. Then, as AF progresses, a shift toward substrate occurs, which AF also self-perpetuates. The autonomic nervous system (ANS) plays an important role as trigger and substrate. Although the efferent arm of the ANS as AF trigger is well-established, there is emerging evidence to show that (1) the ANS is a substrate for AF and (2) afferent or regulatory ANS dysfunction occurs in AF patients. These findings could represent a mechanism for the progression of AF.
Collapse
Affiliation(s)
- Varun Malik
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia; Cardiac Arrhythmia Center, University of California, Los Angeles (UCLA), 100 UCLA Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Dominik Linz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
5
|
Cizauskas HE, Burnham HV, Panni A, Peña A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti CE, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. Am J Physiol Heart Circ Physiol 2024; 327:H460-H472. [PMID: 38940916 PMCID: PMC11442024 DOI: 10.1152/ajpheart.00148.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared with sinus rhythm atria. Atrial cardiomyocytes show reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and troponin I altering calcium sensitivity. We measured degradation of other myofilament proteins, including cardiac myosin binding protein C and actinin, that show degradation products in the AFib samples that are absent in the sinus rhythm atria. Many of the degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.NEW & NOTEWORTHY Atrial fibrillation is the most common cardiac rhythm disorder, and remodeling during atrial fibrillation is highly variable between patients. This study has defined the biophysical changes in contractility that occur in atrial fibrillation along with identifying potential molecular mechanisms that may drive this remodeling. This includes proteolysis of several myofilament proteins including titin, troponin I, myosin heavy chain, myosin binding protein C, and actinin, which is consistent with the observed contractile deficits.
Collapse
Affiliation(s)
- Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Azaria Panni
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Alexandra Peña
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - M Therese Davis
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Seby Edassery
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| |
Collapse
|
6
|
Meng S, Al-Kaisey AM, Parameswaran R, Sunderland N, Budgett DM, Kistler PM, Smaill BH, Kalman JM. Pulmonary Veins Function as Echo Chambers in Persistent Atrial Fibrillation: Circuitous Re-Entry Generates Outgoing Wavefronts. JACC Clin Electrophysiol 2024; 10:1313-1325. [PMID: 38752958 DOI: 10.1016/j.jacep.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND Although the substrate in persistent atrial fibrillation (PeAF) is not limited to the pulmonary veins (PVs), PV isolation (PVI) remains the cornerstone ablation strategy. OBJECTIVES The aim of this study was to describe the mechanism of outgoing wavefronts (WFs) originating in the PV sleeves during PeAF. METHODS Eleven patients presenting for first-time PeAF ablation were recruited (mean age 63.1 ± 10.9 years, 91% men). A 64-electrode catheter (Constellation; 38 mm) was positioned within the PV under fluoroscopic guidance. An inverse mapping technique was used to reconstruct unipolar atrial electrograms on the PV surface, and the resulting phase maps were used to identify incoming and outgoing WFs at the PV junction and to classify focal and re-entrant activity within the PV sleeves. RESULTS During PeAF, the PVs gave rise to outgoing WFs with a frequency of 3.7 s-1 (Q1-Q3: 3.4-5.4 s-1) compared with 3.6 s-1 (Q1-Q3: 2.8-4.2 s-1) for incoming WFs. Circuitous macroscopic re-entry was the dominant mechanism driving outgoing WFs (frequency of re-entry 2.7 s-1 [Q1-Q3: 2.0-3.3 s-1] compared with focal activity 1.4 s-1 [Q1-Q3: 1.1-1.5 s-1]; P < 0.006). This was initiated by incoming WFs in 80% of cases. Consecutive focal activation from the same location was infrequent (10.0% ± 6.6%, n = 10). Rotors ≥360° were never observed. The median ratio (R) of outgoing to incoming WF frequency was 1.14 (Q1-Q3: 0.84-1.75), with R > 1 in 6 of 11 PVs. CONCLUSIONS Electric activity generated by PV sleeves during PeAF is due mainly to circuitous re-entry initiated by incoming waves, frequently with R > 1. That is, the PVs act less as drivers of atrial fibrillation than as "echo chambers" that sustain and amplify fibrillatory activity.
Collapse
Affiliation(s)
- Shu Meng
- Auckland Bioengineering Institute, University of Auckland, Auckland New Zealand
| | - Ahmed M Al-Kaisey
- Department of Medicine, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
| | - Ramanathan Parameswaran
- Department of Medicine, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
| | | | - David M Budgett
- Auckland Bioengineering Institute, University of Auckland, Auckland New Zealand
| | - Peter M Kistler
- Department of Medicine, University of Melbourne, Melbourne, Australia; Heart Centre, Alfred Hospital, Melbourne, Australia; Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Bruce H Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland New Zealand
| | - Jonathan M Kalman
- Department of Medicine, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Baker IDI Heart & Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
7
|
Rottmann M, Yoo S, Pfenniger A, Mikhailov A, Benefield B, Johnson DA, Zhang W, Ghosh AK, Kim D, Passman R, Knight BP, Lee DC, Arora R. Use of Atrial Fibrillation Electrograms and T1/T2 Magnetic Resonance Imaging to Define the Progressive Nature of Molecular and Structural Remodeling: A New Paradigm Underlying the Emergence of Persistent Atrial Fibrillation. J Am Heart Assoc 2024; 13:e032514. [PMID: 37930082 PMCID: PMC10944076 DOI: 10.1161/jaha.123.032514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The temporal progression states of the molecular and structural substrate in atrial fibrillation (AF) are not well understood. We hypothesized that these can be detected by AF electrograms and magnetic resonance imaging parametric mapping. METHODS AND RESULTS AF was induced in 43 dogs (25-35 kg, ≥1 year) by rapid atrial pacing (RAP) (3-33 weeks, 600 beats/min), and 4 controls were used. We performed high-resolution epicardial mapping (UnEmap, 6 atrial regions, both atria, 130 electrodes, distance 2.5 mm) and analyzed electrogram cycle length, dominant frequency, organization index, and peak-to-peak bipolar voltage. Implantable telemetry recordings were used to quantify parasympathetic nerve activity over RAP time. Magnetic resonance imaging native T1, postcontrast T1, T2 mapping, and extracellular volume fraction were assessed (1.5T, Siemens) at baseline and AF. In explanted atrial tissue, DNA oxidative damage (8-hydroxy-2'-deoxyguanosine staining) and percentage of fibrofatty tissue were quantified. Cycle length and organization index decreased (R=0.5, P<0.05; and R=0.5, P<0.05; respectively), and dominant frequency increased (R=0.3, P n.s.) until 80 days of RAP but not thereafter. In contrast, voltage continued to decrease throughout the duration of RAP (R=0.6, P<0.05). Parasympathetic nerve activity increased following RAP and plateaued at 80 days. Magnetic resonance imaging native T1 and T2 times increased with RAP days (R=0.5, P<0.05; R=0.6, P<0.05) in the posterior left atrium throughout RAP. Increased RAP days correlated with increasing 8-hydroxy-2'-deoxyguanosine levels and with fibrosis percentage (R=0.5, P<0.05 for both). CONCLUSIONS A combination of AF electrogram characteristics and T1/T2 magnetic resonance imaging can detect early-stage AF remodeling (autonomic remodeling, oxidative stress) and advanced AF remodeling due to oxidative stress and fibrosis.
Collapse
Affiliation(s)
- Markus Rottmann
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
- Division of CardiologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Aleksei Mikhailov
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Brandon Benefield
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - David A. Johnson
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Wenwei Zhang
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Asish K. Ghosh
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Daniel Kim
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Rod Passman
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
- Division of CardiologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Bradley P. Knight
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
- Division of CardiologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Daniel C. Lee
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
- Division of CardiologyNorthwestern University Feinberg School of MedicineChicagoILUSA
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
- Division of CardiologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
8
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149:e1-e156. [PMID: 38033089 PMCID: PMC11095842 DOI: 10.1161/cir.0000000000001193] [Citation(s) in RCA: 523] [Impact Index Per Article: 523.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anita Deswal
- ACC/AHA Joint Committee on Clinical Practice Guidelines liaison
| | | | | | | | | | - Paul L Hess
- ACC/AHA Joint Committee on Performance Measures liaison
| | | | | | | | | | - Kazuhiko Kido
- American College of Clinical Pharmacy representative
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2024; 83:109-279. [PMID: 38043043 PMCID: PMC11104284 DOI: 10.1016/j.jacc.2023.08.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
|
10
|
Cizauskas HE, Burnham HV, Panni A, Pena A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti C, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565691. [PMID: 37961455 PMCID: PMC10635151 DOI: 10.1101/2023.11.05.565691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aims Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance. Treatment of AFib involves restoration of the atrial electrical rhythm. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs that involves decreased blood flow velocity and reduced atrial contractility. This suggests that defects in contractility occur in AFib and are revealed upon restoration of rhythm. The aim of this project is to define the contractile remodeling that occurs in AFib. Methods and Results To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared to sinus rhythm atria. Atrial cardiomyocytes showed reduced force of contraction in skinned single cardiomyocyte calcium-force studies. There were no significant differences in myosin heavy chain isoform expression. Resting tension is decreased in the AFib samples correlating with reduced full-length titin in the sarcomere. We measured degradation of other myofilament proteins including cMyBP-C, actinin, and cTnI, showing significant degradation in the AFib samples compared to sinus rhythm atria. Many of the protein degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. Skinned cardiomyocytes from AFib atria showed decreased troponin I phosphorylation, consistent with the increased calcium sensitivity that was found within these cardiomyocytes. Conclusions With these results it can be concluded that AFib causes alterations in contraction that can be explained by both molecular changes occurring in myofilament proteins and overall myofilament protein degradation. These results provide an understanding of the contractile remodeling that occurs in AFib and provides insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.
Collapse
|
11
|
Hurtado GM, Clarke JRD, Zimerman A, Maher T, Tavares L, d’Avila A. Speech-induced atrial tachycardia: A narrative review of putative mechanisms implicating the autonomic nervous system. Heart Rhythm O2 2023; 4:574-580. [PMID: 37744943 PMCID: PMC10513919 DOI: 10.1016/j.hroo.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Despite being uncommon, speech-induced atrial tachycardias carry significant morbidity and affect predominantly healthy individuals. Little is known about their mechanism, treatment, and prognosis. In this review, we seek to identify the underlying connections and pathophysiology between speech and arrhythmias while providing an informed approach to evaluation and management.
Collapse
Affiliation(s)
- Gabriel M.Pajares Hurtado
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - John-Ross D. Clarke
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Andre Zimerman
- TIMI Study Group, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy Maher
- Harvard-Thorndike Electrophysiology Institute, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Liliana Tavares
- Department of Medicine, MetroWest Medical Center, Tufts School of Medicine, Framingham, Massachusetts
| | - Andre d’Avila
- Harvard-Thorndike Electrophysiology Institute, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Magtibay K, Massé S, Nanthakumar K, Umapathy K. Pro-arrhythmic role of adrenergic spatial densities in the human atria: An in-silico study. PLoS One 2023; 18:e0290676. [PMID: 37624832 PMCID: PMC10456151 DOI: 10.1371/journal.pone.0290676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic stress among young patients (≤ 45 years old) could result in autonomic dysfunction. Autonomic dysfunction could be exhibited via sympathetic hyperactivity, sympathetic nerve sprouting, and diffuse adrenergic stimulation in the atria. Adrenergic spatial densities could alter atrial electrophysiology and increase arrhythmic susceptibility. Therefore, we examined the role of adrenergic spatial densities in creating arrhythmogenic substrates in silico. We simulated three 25 cm2 atrial sheets with varying adrenergic spatial densities (ASD), activation rates, and external transmembrane currents. We measured their effects on spatial and temporal heterogeneity of action potential durations (APD) at 50% and 20%. Increasing ASD shortens overall APD, and maximum spatial heterogeneity (31%) is achieved at 15% ASD. The addition of a few (5% to 10%) adrenergic elements decreases the excitation threshold, below 18 μA/cm2, while ASDs greater than 10% increase their excitation threshold up to 22 μA/cm2. Increase in ASD during rapid activation increases APD50 and APD20 by 21% and 41%, respectively. Activation times of captured beats during rapid activation could change by as much as 120 ms from the baseline cycle length. Rapidly activated atrial sheets with high ASDs significantly increase temporal heterogeneity of APD50 and APD20. Rapidly activated atrial sheets with 10% ASD have a high likelihood (0.7 ± 0.06) of fragmenting otherwise uniform wavefronts due to the transient inexcitability of adrenergically stimulated elements, producing an effective functional block. The likelihood of wave fragmentation due to ASD highly correlates with the spatial variations of APD20 (ρ = 0.90, p = 0.04). Our simulations provide a novel insight into the contributions of ASD to spatial and temporal heterogeneities of APDs, changes in excitation thresholds, and a potential explanation for wave fragmentation in the human atria due to sympathetic hyperactivity. Our work may aid in elucidating an electrophysiological link to arrhythmia initiation due to chronic stress among young patients.
Collapse
Affiliation(s)
- Karl Magtibay
- Biomedical Signal and Image Processing Laboratory, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Stéphane Massé
- Toby Hull Cardiac Fibrillation Management Laboratory, Department of Medicine/Cardiology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Toby Hull Cardiac Fibrillation Management Laboratory, Department of Medicine/Cardiology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Karthikeyan Umapathy
- Biomedical Signal and Image Processing Laboratory, Department of Electrical, Computer, and Biomedical Engineering, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Alkhouli M, Di Biase L, Natale A, Rihal CS, Holmes DR, Asirvatham S, Bartus K, Lakkireddy D, Friedman PA. Nonthrombogenic Roles of the Left Atrial Appendage: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:1063-1075. [PMID: 36922093 DOI: 10.1016/j.jacc.2023.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
The atrial appendage (LAA) is a well-established source of cardioembolism in patients with atrial fibrillation. Therefore, research involving the LAA has largely focused on its thrombogenic attribute and the utility of its exclusion in stroke prevention. However, recent studies have highlighted several novel functions of the LAA that may have important therapeutic implications. In this paper, we provide a concise overview of the LAA anatomy and summarize the emerging data on its nonthrombogenic roles.
Collapse
Affiliation(s)
- Mohamad Alkhouli
- Department of Cardiology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA.
| | - Luigi Di Biase
- Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrea Natale
- St David's Medical Center, Texas Cardiac Arrhythmia Institute, Austin, Texas, USA
| | - Charanjit S Rihal
- Department of Cardiology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - David R Holmes
- Department of Cardiology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - Samuel Asirvatham
- Department of Cardiology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - Krzysztof Bartus
- Department of Cardiovascular Surgery and Transplantology, Medical College, John Paul Hospital, Jagiellonian University, Krakow, Poland
| | | | - Paul A Friedman
- Department of Cardiology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Regions of Highly Recurrent Electrogram Morphology With Low Cycle Length Reflect Substrate for Atrial Fibrillation. JACC. BASIC TO TRANSLATIONAL SCIENCE 2022; 8:68-84. [PMID: 36777167 PMCID: PMC9911322 DOI: 10.1016/j.jacbts.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Traditional anatomically guided ablation and attempts to perform electrogram-guided atrial fibrillation (AF) ablation (CFAE, DF, and FIRM) have not been shown to be sufficient treatment for persistent AF. Using biatrial high-density electrophysiologic mapping in a canine rapid atrial pacing model of AF, we systematically investigated the relationship of electrogram morphology recurrence (EMR) (Rec% and CLR) with established AF electrogram parameters and tissue characteristics. Rec% correlates with stability of rotational activity and with the spatial distribution of parasympathetic nerve fibers. These results have indicated that EMR may therefore be a viable therapeutic target in persistent AF.
Collapse
Key Words
- AF, atrial fibrillation
- AI, anisotropy index
- CFAE, complex fractionated atrial electrogram
- CLR, cycle length of the most recurrent electrogram morphology
- DF, dominant frequency
- EGM, electrogram
- EMR, electrogram morphology recurrence
- FFT, fast Fourier transform
- FI, fractionation interval
- FIRM, focal impulse and rotor mapping
- LAA, left atrial appendage
- LAFW, left atrial free wall
- LAT, local activation time
- OI, organization index
- PLA, posterior left atrium
- PV, pulmonary vein
- RAA, right atrial appendage
- RAFW, right atrial free wall
- RAP, rapid atrial pacing
- Rec%, recurrence percentage
- ShEn, Shannon’s entropy
- arrhythmias
- atrial fibrillation
- fibrosis
- mapping
Collapse
|
15
|
Nerve growth factor and post-infarction cardiac remodeling. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevalence of sudden death from chronic heart failure and cardiac arrhythmias caused by myocardial infarction is a complex problem in cardiology. Post-infarction cardiac remodeling occurs after myocardial infarction. This compensatory-adaptive reaction, regulated by mechanical, neurohumoral and genetic factors, includes the structural and functional changes of cardiomyocytes, stromal elements and extracellular matrix, geometry and architectonics of the left ventricular cavity. Adverse left ventricular remodeling is associated with heart failure and increased mortality. The concept of post-infarction cardiac remodeling is an urgent problem, since the mechanisms of development and progression of adverse post-infarction changes in the myocardium are completely unexplored. In recent years, the scientist attention has been focused on neurotrophic factors involved in the sympathetic nervous system and the vascular system remodeling after myocardial infarction. Nerve growth factor (NGF) is a protein from the neurotrophin family that is essential for the survival and development of sympathetic and sensory neurons, which also plays an important role in vasculogenesis. Acute myocardial infarction and heart failure are characterized by changes in the expression and activity of neurotrophic factors and their receptors, affecting the innervation of the heart muscle, as well as having a direct effect on cardiomyocytes, endothelial and smooth muscle vascular cells. The identification of the molecular mechanisms involved in the interactions between cardiomyocytes and neurons, as well as the study of the effects of NGF in the cardiovascular system, will improve understanding of the cardiac remodeling mechanism. This review summarizes the available scientific information (2019–2021) about mechanisms of the link between post-infarction cardiac remodeling and NGF functions.
Collapse
|
16
|
Malik V, Elliott AD, Thomas G, Mishima RS, Pitman B, Middeldorp ME, Fitzgerald JL, Young GD, Roberts-Thomson KC, Arnolda LF, Lau DH, Sanders P. Autonomic Afferent Dysregulation in Atrial Fibrillation. JACC Clin Electrophysiol 2022; 8:152-164. [PMID: 35210071 DOI: 10.1016/j.jacep.2021.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study sought to evaluate the role of cardiac afferent reflexes in atrial fibrillation (AF). BACKGROUND Efferent autonomic tone is not associated with atrial remodeling and AF persistence. However, the role of cardiac afferents is unknown. METHODS Individuals with nonpermanent AF (n = 48) were prospectively studied (23 in the in-AF group and 25 in sinus rhythm [SR]) with 12 matched control subjects. We performed: 1) low-level lower body negative pressure (LBNP), which decreases cardiac volume, offloading predominantly cardiac afferent (volume-sensitive) low-pressure baroreceptors; 2) Valsalva reflex (predominantly arterial high-pressure baroreceptors); and 3) isometric handgrip reflex (both baroreceptors). We measured beat-to-beat mean arterial pressure (MAP) and heart rate (HR). LBNP elicits reflex vasoconstriction, estimated using venous occlusion plethysmography-derived forearm blood flow (∝1/vascular resistance), maintaining MAP. To assess reversibility, we repeated LBNP (same day) after 1-hour low-level tragus stimulation (in n = 5 in the in-AF group and n = 10 in the in-SR group) and >6 weeks post-cardioversion (n = 7). RESULTS The 3 groups were well matched for age (59 ± 12 years, 83% male), body mass index, and risk factors (P = NS). The in-AF group had higher left atrial volume (P < 0.001) and resting HR (P = 0.01) but similar MAP (P = 0.7). The normal LBNP vasoconstriction (-49 ± 5%) maintaining MAP (control subjects) was attenuated in the in-SR group (-12 ± 9%; P = 0.005) and dysfunctional in the in-AF group (+11 ± 6%; P < 0.001), in which MAP decreased and HR was unchanged. Valsalva was normal throughout. Handgrip MAP response was lowest in the in-AF group (P = 0.01). Interestingly, low-level tragus stimulation and cardioversion improved LBNP vasoconstriction (-48 ± 15%; P = 0.04; and -32 ± 9%; P = 0.02, respectively). CONCLUSIONS Cardiac afferent (volume-sensitive) reflexes are abnormal in AF patients during SR and dysfunctional during AF. This could contribute to AF progression, thus explaining "AF begets AF." (Characterisation of Autonomic function in Atrial Fibrillation [AF-AF Study]; ACTRN12619000186156).
Collapse
Affiliation(s)
- Varun Malik
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Adrian D Elliott
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Gijo Thomas
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Ricardo S Mishima
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Bradley Pitman
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Melissa E Middeldorp
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - John L Fitzgerald
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Glenn D Young
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Kurt C Roberts-Thomson
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Leonard F Arnolda
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
17
|
Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, Shivkumar K. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res 2021; 117:1732-1745. [PMID: 33989382 PMCID: PMC8208752 DOI: 10.1093/cvr/cvab172] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The cardiac autonomic nervous system (ANS) plays an integral role in normal cardiac physiology as well as in disease states that cause cardiac arrhythmias. The cardiac ANS, comprised of a complex neural hierarchy in a nested series of interacting feedback loops, regulates atrial electrophysiology and is itself susceptible to remodelling by atrial rhythm. In light of the challenges of treating atrial fibrillation (AF) with conventional pharmacologic and myoablative techniques, increasingly interest has begun to focus on targeting the cardiac neuraxis for AF. Strong evidence from animal models and clinical patients demonstrates that parasympathetic and sympathetic activity within this neuraxis may trigger AF, and the ANS may either induce atrial remodelling or undergo remodelling itself to serve as a substrate for AF. Multiple nexus points within the cardiac neuraxis are therapeutic targets, and neuroablative and neuromodulatory therapies for AF include ganglionated plexus ablation, epicardial botulinum toxin injection, vagal nerve (tragus) stimulation, renal denervation, stellate ganglion block/resection, baroreceptor activation therapy, and spinal cord stimulation. Pre-clinical and clinical studies on these modalities have had promising results and are reviewed here.
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Eric Buch
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 1100 N Lindsay Ave, Oklahoma City, OK 73104, USA
| | - Christian Meyer
- Division of Cardiology, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Kirchfeldstraße 40, 40217 Düsseldorf, Germany
- Institute of Neural and Sensory Physiology, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - John D Tompkins
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Jeffrey L Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Alvarez-Franco A, Rouco R, Ramirez RJ, Guerrero-Serna G, Tiana M, Cogliati S, Kaur K, Saeed M, Magni R, Enriquez JA, Sanchez-Cabo F, Jalife J, Manzanares M. Transcriptome and proteome mapping in the sheep atria reveal molecular featurets of atrial fibrillation progression. Cardiovasc Res 2021; 117:1760-1775. [PMID: 33119050 PMCID: PMC8208739 DOI: 10.1093/cvr/cvaa307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. There is a clear demand for more inclusive and large-scale approaches to understand the molecular drivers responsible for AF, as well as the fundamental mechanisms governing the transition from paroxysmal to persistent and permanent forms. In this study, we aimed to create a molecular map of AF and find the distinct molecular programmes underlying cell type-specific atrial remodelling and AF progression. METHODS AND RESULTS We used a sheep model of long-standing, tachypacing-induced AF, sampled right and left atrial tissue, and isolated cardiomyocytes (CMs) from control, intermediate (transition), and late time points during AF progression, and performed transcriptomic and proteome profiling. We have merged all these layers of information into a meaningful three-component space in which we explored the genes and proteins detected and their common patterns of expression. Our data-driven analysis points at extracellular matrix remodelling, inflammation, ion channel, myofibril structure, mitochondrial complexes, chromatin remodelling, and genes related to neural function, as well as critical regulators of cell proliferation as hallmarks of AF progression. Most important, we prove that these changes occur at early transitional stages of the disease, but not at later stages, and that the left atrium undergoes significantly more profound changes than the right atrium in its expression programme. The pattern of dynamic changes in gene and protein expression replicate the electrical and structural remodelling demonstrated previously in the sheep and in humans, and uncover novel mechanisms potentially relevant for disease treatment. CONCLUSIONS Transcriptomic and proteomic analysis of AF progression in a large animal model shows that significant changes occur at early stages, and that among others involve previously undescribed increase in mitochondria, changes to the chromatin of atrial CMs, and genes related to neural function and cell proliferation.
Collapse
Affiliation(s)
- Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raquel Rouco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rafael J Ramirez
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Maria Tiana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Physiology, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Kuljeet Kaur
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Mohammed Saeed
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jose Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
19
|
Pfenniger A, Geist GE, Arora R. Autonomic Dysfunction and Neurohormonal Disorders in Atrial Fibrillation. Card Electrophysiol Clin 2021; 13:183-190. [PMID: 33516396 DOI: 10.1016/j.ccep.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atrial fibrillation (AF) is the most commonly diagnosed arrhythmia and eludes an efficacious cure despite an increasing prevalence and a significant association with morbidity and mortality. In addition to an array of clinical sequelae, the origins and propagation of AF are multifactorial. In recent years, the contribution from the autonomic nervous system has been an area of particular interest. This review highlights the relevant physiology of autonomic and neurohormonal contributions to AF origin and maintenance, the current state of the literature on targeted therapies, and the path forward for clinical interventions.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, 251 East Huron, Feinberg 8-503, Chicago, IL 60611, USA
| | - Gail Elizabeth Geist
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, 251 East Huron, Feinberg 8-503, Chicago, IL 60611, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, 251 East Huron, Feinberg 8-503, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 2021; 8:974-987. [PMID: 33465292 PMCID: PMC8006610 DOI: 10.1002/ehf2.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or denervation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its survival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mechanisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent data on the effects of NGF on various cardiovascular neuronal and non‐neuronal functions. Understanding these mechanisms with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action mechanism‐guided therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|