1
|
Mundada K, Pellerito JS, Srivastava B, Revzin MV. Ultrasound Contrast Agents: Current Role in Adults and Children for Various Indications. Radiol Clin North Am 2024; 62:1035-1062. [PMID: 39393849 DOI: 10.1016/j.rcl.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Intravenous contrast-enhanced ultrasound (CEUS) is a rapidly evolving imaging technique that uses a microbubble contrast agent to enhance ultrasonographic images by augmenting characterization of blood vessels and organ perfusion. CEUS is considered as a useful problem-solving tool and as an indicated first-line imaging modality in select settings. CEUS technique has an inherent advantage over its predecessor B-mode and Doppler imaging. This article reviews different approved and off-label use of CEUS in the pediatric and adult population and also discusses Food and Drug Administration-approved contrast agents in the United States, their reported side effects, and ongoing efforts in the field.
Collapse
Affiliation(s)
- Krishna Mundada
- Department of Nuclear Medicine, Seth G.S. Medical College and K.E.M Hospital, Mumbai
| | - John S Pellerito
- Department of Radiology, Division of US, CT and MRI, Peripheral Vascular Laboratory, North Shore - Long Island Jewish Health System
| | | | - Margarita V Revzin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Lin YY, Liao AH, Li HT, Jiang PY, Lin YC, Chuang HC, Ma KH, Chen HK, Liu YT, Shih CP, Wang CH. Ultrasound-Mediated Lysozyme Microbubbles Targeting NOX4 Knockdown Alleviate Cisplatin-Exposed Cochlear Hair Cell Ototoxicity. Int J Mol Sci 2024; 25:7096. [PMID: 39000202 PMCID: PMC11241201 DOI: 10.3390/ijms25137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.
Collapse
Affiliation(s)
- Yuan-Yung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Road, Taipei 114201, Taiwan; (Y.-Y.L.); (H.-K.C.)
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 114201, Taiwan
| | - Hsiang-Tzu Li
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
| | - Peng-Yi Jiang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
| | - Yi-Chun Lin
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan;
| | - Hang-Kang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Road, Taipei 114201, Taiwan; (Y.-Y.L.); (H.-K.C.)
- Division of Otolaryngology, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan 33052, Taiwan
| | - Yi-Tsen Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (A.-H.L.); (H.-T.L.); (P.-Y.J.); (Y.-T.L.)
| | - Cheng-Ping Shih
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Road, Taipei 114201, Taiwan; (Y.-Y.L.); (H.-K.C.)
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Taipei 11490, Taiwan;
- Division of Otolaryngology, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan 33052, Taiwan
| |
Collapse
|
3
|
Chen Y, Zhang H. [Research progress in targeted delivery of inner ear using nanocarriers]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:348-353. [PMID: 38563182 PMCID: PMC11387296 DOI: 10.13201/j.issn.2096-7993.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 04/04/2024]
Abstract
Various inner ear diseases such as sensorineural deafness and Meniere's disease bring about problems such as speech communication disorders and decreased work efficiency, which seriously affect the life quality of patients. Due to the special anatomical structure and blood-labyrinth barrier in the inner ear, the current drug administration methods are often unable to achieve satisfactory results. Nanocarriers are the forefront and hot spot of nanotechnology research. In recent years, a lot of research progress has been made in the field of targeted delivery of the inner ear, which is expected to be eventually applied to the treatment of clinical diseases of the inner ear. This review focuses on the advantages, main research achievements and limitations of various nanocarriers in the targeted delivery of the inner ear, hoping to provide new ideas for related research.
Collapse
Affiliation(s)
- Yaoheng Chen
- Department of Otolaryngology Head and Neck Surgery,Affiliated Zhujiang Hospital of Southern Medical University;Department of Southern Medical University Hearing Research Center,Guangzhou,510220,China
| | - Hongzheng Zhang
- Department of Otolaryngology Head and Neck Surgery,Affiliated Zhujiang Hospital of Southern Medical University;Department of Southern Medical University Hearing Research Center,Guangzhou,510220,China
| |
Collapse
|
4
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
5
|
Liao A, Wang C, Wang B, Lin Y, Chuang H, Liu H, Shih C. Combined use of microbubbles of various sizes and single-transducer dual-frequency ultrasound for safe and efficient inner ear drug delivery. Bioeng Transl Med 2023; 8:e10450. [PMID: 37693043 PMCID: PMC10487305 DOI: 10.1002/btm2.10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
We have previously applied ultrasound (US) with microbubbles (MBs) to enhance inner ear drug delivery, with most experiments conducted using single-frequency, high-power density US, and multiple treatments. In the present study, the treatment efficacy was enhanced and safety concerns were addressed using a combination of low-power-density, single-transducer, dual-frequency US (I SPTA = 213 mW/cm2) and MBs of different sizes coated with insulin-like growth factor 1 (IGF-1). This study is the first to investigate the drug-coating capacity of human serum albumin (HSA) MBs of different particle sizes and their drug delivery efficiency. The concentration of HSA was adjusted to produce different MB sizes. The drug-coating efficiency was significantly higher for large-sized MBs than for smaller MBs. In vitro Franz diffusion experiments showed that the combination of dual-frequency US and large MB size delivered the most IGF-1 (24.3 ± 0.47 ng/cm2) to the receptor side at the second hour of treatment. In an in vivo guinea pig experiment, the efficiency of IGF-1 delivery into the inner ear was 15.9 times greater in animals treated with the combination of dual-frequency US and large MBs (D-USMB) than in control animals treated with round window soaking (RWS). The IGF-1 delivery efficiency was 10.15 times greater with the combination of single-frequency US and large size MBs (S-USMB) than with RWS. Confocal microscopy of the cochlea showed a stronger distribution of IGF-1 in the basal turn in the D-USMB and S-USMB groups than in the RWS group. In the second and third turns, the D-USMB group showed the greatest IGF-1 distribution. Hearing assessments revealed no significant differences among the D-USMB, S-USMB, and RWS groups. In conclusion, the combination of single-transducer dual-frequency US and suitably sized MBs can significantly reduce US power density while enhancing the delivery of large molecular weight drugs, such as IGF-1, to the inner ear.
Collapse
Affiliation(s)
- Ai‐Ho Liao
- Graduate Institute of Biomedical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
- Department of Biomedical EngineeringNational Defense Medical CenterTaipeiTaiwan
| | - Chih‐Hung Wang
- Department of Otolaryngology‐Head and Neck Surgery, Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Bo‐Han Wang
- Department of Mechanical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
| | - Yi‐Chun Lin
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Ho‐Chiao Chuang
- Department of Mechanical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
| | - Hao‐Li Liu
- Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Ping Shih
- Department of Otolaryngology‐Head and Neck Surgery, Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
6
|
Xu K, Xu B, Gu J, Wang X, Yu D, Chen Y. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss. Theranostics 2023; 13:3524-3549. [PMID: 37441605 PMCID: PMC10334830 DOI: 10.7150/thno.83383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Noise accounts for one-third of hearing loss worldwide. Regretfully, noise-induced hearing loss (NIHL) is deemed to be irreversible due to the elusive pathogenic mechanisms that have not been fully elucidated. The complex interaction between genetic and environmental factors, which influences numerous downstream molecular and cellular events, contributes to the NIHL. In clinical settings, there are no effective therapeutic drugs other than steroids, which are the only treatment option for patients with NIHL. Therefore, the need for treatment of NIHL that is currently unmet, along with recent progress in our understanding of the underlying regulatory mechanisms, has led to a lot of new literatures focusing on this therapeutic field. The emergence of novel technologies that modify local drug delivery to the inner ear has led to the development of promising therapeutic approaches, which are currently under clinical investigation. In this comprehensive review, we focus on outlining and analyzing the basics and potential therapeutics of NIHL, as well as the application of biomaterials and nanomedicines in inner ear drug delivery. The objective of this review is to provide an incentive for NIHL's fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Sonoporation of the Round Window Membrane on a Sheep Model: A Safety Study. Pharmaceutics 2023; 15:pharmaceutics15020442. [PMID: 36839763 PMCID: PMC9964975 DOI: 10.3390/pharmaceutics15020442] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Sonoporation using microbubble-assisted ultrasound increases the permeability of a biological barrier to therapeutic molecules. Application of this method to the round window membrane could improve the delivery of therapeutics to the inner ear. The aim of this study was to assess the safety of sonoporation of the round window membrane in a sheep model. To achieve this objective, we assessed auditory function and cochlear heating, and analysed the metabolomics profiles of perilymph collected after sonoporation, comparing them with those of the control ear in the same animal. Six normal-hearing ewes were studied, with one sonoporation ear and one control ear for each. A mastoidectomy was performed on both ears. On the sonoporation side, Vevo MicroMarker® microbubbles (MBs; VisualSonics-Fujifilm, Amsterdam, The Netherlands) at a concentration of 2 × 108 MB/mL were locally injected into the middle ear and exposed to 1.1 MHz sinusoidal ultrasonic waves at 0.3 MPa negative peak pressure with 40% duty cycle and 100 μs interpulse period for 1 min; this was repeated three times with 1 min between applications. The sonoporation protocol did not induce any hearing impairment or toxic overheating compared with the control condition. The metabolomic analysis did not reveal any significant metabolic difference between perilymph samples from the sonoporation and control ears. The results suggest that sonoporation of the round window membrane does not cause damage to the inner ear in a sheep model.
Collapse
|
8
|
Kashizadeh A, Pastras C, Rabiee N, Mohseni-Dargah M, Mukherjee P, Asadnia M. Potential nanotechnology-based diagnostic and therapeutic approaches for Meniere's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102599. [PMID: 36064032 DOI: 10.1016/j.nano.2022.102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Meniere's disease (MD) is a progressive inner ear disorder involving recurrent and prolonged episodes or attacks of vertigo with associated symptoms, resulting in a significantly reduced quality of life for sufferers. In most cases, MD starts in one ear; however, in one-third of patients, the disorder progresses to the other ear. Unfortunately, the etiology of the disease is unknown, making the development of effective treatments difficult. Nanomaterials, including nanoparticles (NPs) and nanocarriers, offer an array of novel diagnostic and therapeutic applications related to MD. NPs have specific features such as biocompatibility, biochemical stability, targetability, and enhanced visualization using imaging tools. This paper provides a comprehensive and critical review of recent advancements in nanotechnology-based diagnostic and therapeutic approaches for MD. Furthermore, the crucial challenges adversely affecting the use of nanoparticles to treat middle ear disorders are investigated. Finally, this paper provides recommendations and future directions for improving the performances of nanomaterials on theragnostic applications of MD.
Collapse
Affiliation(s)
- Afsaneh Kashizadeh
- School of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Christopher Pastras
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; The Menière's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Masoud Mohseni-Dargah
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payal Mukherjee
- RPA Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
9
|
Ma P, Lai X, Luo Z, Chen Y, Loh XJ, Ye E, Li Z, Wu C, Wu YL. Recent advances in mechanical force-responsive drug delivery systems. NANOSCALE ADVANCES 2022; 4:3462-3478. [PMID: 36134346 PMCID: PMC9400598 DOI: 10.1039/d2na00420h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Mechanical force responsive drug delivery systems (in terms of mechanical force induced chemical bond breakage or physical structure destabilization) have been recently explored to exhibit a controllable pharmaceutical release behaviour at a molecular level. In comparison with chemical or biological stimulus triggers, mechanical force is not only an external but also an internal stimulus which is closely related to the physiological status of patients. However, although this mechanical force stimulus might be one of the most promising and feasible sources to achieve on-demand pharmaceutical release, current research in this field is still limited. Hence, this tutorial review aims to comprehensively evaluate the recent advances in mechanical force-responsive drug delivery systems based on different types of mechanical force, in terms of direct stimulation by compressive, tensile, and shear force, or indirect/remote stimulation by ultrasound and a magnetic field. Furthermore, the exciting developments and current challenges in this field will also be discussed to provide a blueprint for potential clinical translational research of mechanical force-responsive drug delivery systems.
Collapse
Affiliation(s)
- Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xiyu Lai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology, and Research (ASTAR) Singapore 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
10
|
Liao AH, Chen YC, Chen CY, Chang SC, Chuang HC, Lin DL, Chiang CP, Wang CH, Wang JK. Mechanisms of ultrasound-microbubble cavitation for inducing the permeability of human skin. J Control Release 2022; 349:388-400. [PMID: 35787912 DOI: 10.1016/j.jconrel.2022.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
We have previously reported that ultrasound (US)-mediated microbubble (MB) cavitation (US-MB) changed the permeability of the skin and significantly enhanced transdermal drug delivery (TDD) without changing the structure of the skin. In this study we found that US-MB enhanced TDD via disruption of epidermal cell-cell junctions and increased matriptase activity. Matriptase is a membrane-bound serine protease regulated by its inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1), and it is expressed in most epithelial tissues under physiologic conditions. Matriptase is expressed in mice after chronic exposure to UV radiation. This study found that US-MB can be used to monitor active matriptase, which rapidly formed the canonical 120-kDa matriptase-HAI-1 complex. These processes were observed in HaCaT human keratinocytes when matriptase activation was induced by US-MB. The results of immunoblot analysis indicated that the matriptase-HAI-1 complex can be detected from 10 min to 3 h after US-MB. Immunohistochemistry (IHC) of human skin revealed that US-MB rapidly increased the activated matriptase, which was observed in the basal layer, with this elevation lasting 3 h. After 3 h, the activated matriptase extended from the basal layer to the granular layer, and then gradually decayed from 6 to 12 h. Moreover, prostasin expression was observed in the epidermal granular layer to the spinous layer, and became more obvious in the granular layer after 3 h. Prostasin was also detected in the cytoplasm or on the cell membrane after 6 h. These results suggest that matriptase plays an important role in recovering from US-MB-induced epidermal cell-cell junction disruption within 6 h. US-MB is therefore a potentially effective method for noninvasive TDD in humans.
Collapse
Affiliation(s)
- Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Chen Chen
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chen
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shun-Cheng Chang
- Division of Plastic Surgery, Integrated Burn and Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City 235, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Dao-Lung Lin
- Spirit Scientific Co., Ltd. Taiwan Branch (Cayman), 12F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221416, Taiwan
| | - Chien-Ping Chiang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
11
|
Talaśka K, Wojtkowiak D, Wilczyński D, Ferreira A. Computational methodology for drug delivery to the inner ear using magnetic nanoparticle aggregates. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106860. [PMID: 35576687 DOI: 10.1016/j.cmpb.2022.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE The main goal of the proposed study is to improve the efficiency of the ear treatment via targeted drug delivery to the inner ear, i.e. the cochlea. Although pharmacotherapy has been proposed as a solution to prevent damage or restore functionality to hair cells, the main challenge in such treatments is ensuring adequate drug delivery to the cells. To this end, we present a methodology for the evaluation of the magnetic forces needed to move magnetic particle nanorobots (abbreviated as MNP) and their aggregates through the cochlea round window membrane (RWM). METHODS The FEM - Lagrangian-Eulerian approach (Abaqus software) was used to determine the specific parameters of movement of the nanoparticles crossing the RWM. This method results in a high consistency of FEM simulations and in-vivo experimental results in regards to the required magnetic force during the movement of spherical nanoparticles with a given viscosity ηave. Based on the analysis of the experimental studies found in subject literature, the sizes of the MNPs and their aggregates able to cross RWM with and without the application of magnetic force FM have been determined. RESULTS The present work accounts for both the experimental and theoretical aspects of these investigations. Presented research confirms the definite usability of the Lagrange-Euler method for the precise determination of the required magnetic force value FM to control the accelerated motion of MNP aggregates of complex shapes through RWM. It is possible to determine the predominant parameters with a precision of less than 5% for single-layer aggregates and spatial aggregates crossing the RWM. It can be concluded that the MNPs and their aggregates should not be larger than 500-750 nm to cross the RWM with high velocities of penetration close to 800 nm/s for magnetic forces of hundreds 10-14 Newtons. CONCLUSIONS The proposed Lagrangian-Eulerian approach is capable of accurately predicting the movement parameters of MNP aggregates of irregular shape that are close to the experimental test cases. The presented method can serve as a supplementary tool for the design of drug delivery systems to the inner ear using MNPs.
Collapse
Affiliation(s)
- Krzysztof Talaśka
- Institute of Machine Design, Poznan University of Technology, Piotrowo 3, Poznań 61-138, Poland.
| | - Dominik Wojtkowiak
- Institute of Machine Design, Poznan University of Technology, Piotrowo 3, Poznań 61-138, Poland
| | - Dominik Wilczyński
- Institute of Machine Design, Poznan University of Technology, Piotrowo 3, Poznań 61-138, Poland
| | - Antoine Ferreira
- Laboratoire PRISME, Institut National des Sciences Appliquées (INSA) Centre Val de Loire, Bourges, France.
| |
Collapse
|
12
|
Zhang Z, Li X, Zhang W, Kohane DS. Drug Delivery across Barriers to the Middle and Inner Ear. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008701. [PMID: 34795553 PMCID: PMC8594847 DOI: 10.1002/adfm.202008701] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 05/28/2023]
Abstract
The prevalence of ear disorders has spurred efforts to develop drug delivery systems to treat these conditions. Here, recent advances in drug delivery systems that access the ear through the tympanic membrane (TM) are reviewed. Such methods are either non-invasive (placed on the surface of the TM), or invasive (placed in the middle ear, ideally on the round window [RW]). The major hurdles to otic drug delivery are identified and highlighted the representative examples of drug delivery systems used for drug delivery across the TM to the middle and (crossing the RW also) inner ear.
Collapse
Affiliation(s)
- Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Lin B, Du H, Fan J, Huang D, Gao F, Li J, Zhang Y, Feng G, Dai T, Du X. Radioimmunotherapy Combined With Low-Intensity Ultrasound and Microbubbles: A Potential Novel Strategy for Treatment of Solid Tumors. Front Oncol 2021; 11:750741. [PMID: 34745976 PMCID: PMC8570127 DOI: 10.3389/fonc.2021.750741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The prognosis of advanced malignant tumors is very poor, and effective treatment is limited. Radioimmunotherapy (RIT) is a novel treatment method. However, its anti-tumor effect is relatively low in solid tumors, which is mainly due to the blood-tumor barrier preventing RIT from penetrating the tumor, resulting in an insufficient dose. Low-intensity ultrasound with microbubbles (USMB) has proven capable of opening the blood-tumor barrier. The combination of the two technologies may overcome the poor anti-tumor effect of RIT and promote the clinical application of RIT in solid tumors. In this article, we reviewed the current research status of RIT in the treatment of solid tumors and the opportunities and challenges of USMB combined with RIT.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Huan Du
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jinjia Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Huang
- Radiology Department, Mianyang Central Hospital, Mianyang, China
| | - Feng Gao
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Jie Li
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Yu Zhang
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Gang Feng
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Tangzhi Dai
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| | - Xiaobo Du
- Department of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Treatment of auditory dysfunction is dependent on inner ear drug delivery, with microtechnologies playing an increasingly important role in cochlear access and pharmacokinetic profile control. This review examines recent developments in the field for clinical and animal research environments. RECENT FINDINGS Micropump technologies are being developed for dynamic control of flow rates with refillable reservoirs enabling timed delivery of multiple agents for protection or regeneration therapies. These micropumps can be combined with cochlear implants with integral catheters or used independently with cochleostomy or round window membrane (RWM) delivery modalities for therapy development in animal models. Sustained release of steroids with coated cochlear implants remains an active research area with first-time-in-human demonstration of reduced electrode impedances. Advanced coatings containing neurotrophin producing cells have enhanced spiral ganglion neuron survival in animal models, and have proven safe in a human study. Microneedles have emerged for controlled microperforation of the RWM for significant enhancement in permeability, combinable with emerging matrix formulations that optimize biological interaction and drug release kinetics. SUMMARY Microsystem technologies are providing enhanced and more controlled access to the inner ear for advanced drug delivery approaches, alone and in conjunction with cochlear implants.
Collapse
|
15
|
Chu YC, Chan YH, Lim J, Ho CY, Lin PH, Lu YC, Wu CC, Wang JL. Low intensity ultrasound enhances cisplatin uptake in vitro by cochlear hair cells. JASA EXPRESS LETTERS 2021; 1:072001. [PMID: 36154652 DOI: 10.1121/10.0005641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug delivery to the inner ear has been challenging due to the blood-labyrinth barrier. Intracochlear drug delivery is an invasive alternative with less pharmacokinetic variables. In this study, the effect of low intensity ultrasound on drug uptake by hair cells is investigated. Cochlear explants harvested from newborn mice were cultured in a medium containing cisplatin to emulate drug delivered to the endolymph. The results demonstrated the exposure to ultrasound stimulation effectively enhanced cisplatin uptake by hair cells. The uptake started from the apical side of the hair cells and progressed inward as the exposure time increased.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan , , , , , , ,
| | - Jormay Lim
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| | - Chien-Ying Ho
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan , , , , , , ,
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan , , , , , , ,
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan , , , , , , ,
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Lin YC, Shih CP, Chen HC, Chou YL, Sytwu HK, Fang MC, Lin YY, Kuo CY, Su HH, Hung CL, Chen HK, Wang CH. Ultrasound Microbubble-Facilitated Inner Ear Delivery of Gold Nanoparticles Involves Transient Disruption of the Tight Junction Barrier in the Round Window Membrane. Front Pharmacol 2021; 12:689032. [PMID: 34262458 PMCID: PMC8273281 DOI: 10.3389/fphar.2021.689032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
The application of ultrasound microbubbles (USMBs) enhances the permeability of the round window membrane (RWM) and improves drug delivery to the inner ear. In this study, we investigated the efficiency of USMB-aided delivery of chitosan-coated gold nanoparticles (CS-AuNPs) and the mechanism of USMB-mediated enhancement of RMW permeability. We exposed mouse inner ears to USMBs at an intensity of 2 W/cm2 and then filled the tympanic bulla with CS-AuNPs or fluorescein isothiocyanate-decorated CS-AuNPs (FITC-CS-AuNPs). The membrane uptake of FITC-CS-AuNPs and their depth of permeation into the three-layer structure of the RWM, with or without prior USMB treatment, were visualized by z-stack confocal laser scanning microscopy. Ultrastructural changes in the RWM due to USMB-mediated cavitation appeared as sunburn-like peeling and various degrees of depression in the RWM surface, with pore-like openings forming in the outer epithelium. This disruption of the outer epithelium was paralleled by a transient reduction in tight junction (TJ)-associated protein levels in the RWM and an enhanced delivery of FITC-CS-AuNPs into the RWM. Without prior USMB exposure, the treatment with CS-AuNPs also caused a noticeable reduction in TJ proteins of the RWM. Our findings indicated that the combined treatment with USMBs and CS-AuNPs represents a promising and efficient drug and gene delivery vehicle for a trans-RWM approach for inner ear therapy. The outer epithelial layer of the RWM plays a decisive role in controlling the transmembrane transport of substances such as CS-AuNPs following the administration of USMBs. Most importantly, the enhanced permeation of AuNPs involved the transient disruption of the TJ-created paracellular barrier in the outer epithelium of the RWM.
Collapse
Affiliation(s)
- Yi-Chun Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Liang Chou
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Cho Fang
- Laboratory Animal Center, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Yung Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Han Su
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lien Hung
- Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Chih-Hung Wang
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
17
|
Flaherty SM, Russell IJ, Lukashkin AN. Drug distribution along the cochlea is strongly enhanced by low-frequency round window micro vibrations. Drug Deliv 2021; 28:1312-1320. [PMID: 34176371 PMCID: PMC8238068 DOI: 10.1080/10717544.2021.1943059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cochlea’s inaccessibility and complex nature provide significant challenges to delivering drugs and other agents uniformly, safely and efficiently, along the entire cochlear spiral. Large drug concentration gradients are formed along the cochlea when drugs are administered to the middle ear. This undermines the major goal of attaining therapeutic drug concentration windows along the whole cochlea. Here, utilizing a well-known physiological effect of salicylate, we demonstrate a proof of concept in which drug distribution along the entire cochlea is enhanced by applying round window membrane low-frequency micro vibrations with a probe that only partially covers the round window. We provide evidence of enhanced drug influx into the cochlea and cochlear apical drug distribution without breaching cochlear boundaries. It is further suggested that ossicular functionality is not required for the effective drug distribution we report. The novel method presented here of local drug delivery to the cochlea could be implemented when ossicular functionality is absent or impeded and can be incorporated in clinically approved auditory protheses for patients who suffer with conductive, sensorineural or mixed hearing loss.
Collapse
Affiliation(s)
- Samuel M Flaherty
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK
| |
Collapse
|
18
|
Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021; 28:49. [PMID: 34154581 PMCID: PMC8215828 DOI: 10.1186/s12929-021-00744-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Microbubbles are typically 0.5-10 μm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Liao AH, Shih CP, Li MW, Lin YC, Chuang HC, Wang CH. Development of thermosensitive poloxamer 407-based microbubble gel with ultrasound mediation for inner ear drug delivery. Drug Deliv 2021; 28:1256-1271. [PMID: 34142922 PMCID: PMC8216251 DOI: 10.1080/10717544.2021.1938758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
ABSTRACTSOur previous study first investigated feasibility of applying ultrasound (US) and microbubbles (MBs) via external auditory canal to facilitate drug delivery into inner ear. However, most drugs are in aqueous formulae and eliminated via Eustachian tubes after drug application. In this study, feasibility of sustained release of thermosensitive poloxamer 407 (P407)-based MB gel for US mediation-enhanced inner ear drug (dexamethasone, DEX) delivery was investigated. The sol-to-gel transition temperature showed that mixture of DEX and only 10% and 12.5% P407 in MBs can be used for in vitro and in vivo drug delivery experiments. In in vitro Franz diffusion experiments, the release rates of 12.5% P407-MBs + US groups in the model using DEX as the delivered reagent at 3 h resulted in values 1.52 times greater than those of 12.5% P407-MBs groups. In guinea pigs, by filling tympanic bulla with DEX in 12.5% P407-MBs (DEX-P407-MBs), USMB applied at post-treatment days 1 and 7 induced 109.13% and 66.67% increases in DEX delivery efficiencies, respectively, compared to the group without US. On the 28th day after US-mediated P407-MB treatment, the safety assessment showed no significant changes in the hearing thresholds and no damage to the integrity of cochlea or middle ear. These are the first results to demonstrate feasibility of US-modified liquid form DEX-P407-MB cavitation for enhancing permeability of round window membrane. Then, a gel form of DEX-P407-MBs was generated and thus prolonged the release of DEX in middle ear to maintain the therapeutic DEX level in inner ear for at least 7 days.
Collapse
Affiliation(s)
- Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Wei Li
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Yi-Chun Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Taichung Armed Forces General Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Ultrasound Microbubbles Enhance the Efficacy of Insulin-Like Growth Factor-1 Therapy for the Treatment of Noise-Induced Hearing Loss. Molecules 2021; 26:molecules26123626. [PMID: 34199327 PMCID: PMC8231984 DOI: 10.3390/molecules26123626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
The application of insulin-like growth factor 1 (IGF-1) to the round window membrane (RWM) is an emerging treatment for inner ear diseases. RWM permeability is the key factor for efficient IGF-1 delivery. Ultrasound microbubbles (USMBs) can increase drug permeation through the RWM. In the present study, the enhancing effect of USMBs on the efficacy of IGF-1 application and the treatment effect of USMB-mediated IGF-1 delivery for noise-induced hearing loss (NIHL) were investigated. Forty-seven guinea pigs were assigned to three groups: the USM group, which received local application of recombinant human IGF-1 (rhIGF-1, 10 µg/µL) following application of USMBs to the RWM; the RWS group, which received IGF-1 application alone; and the saline-treated group. The perilymphatic concentration of rhIGF-1 in the USM group was 1.95- and 1.67- fold of that in the RWS group, 2 and 24 h after treatment, respectively. After 5 h of 118 dB SPL noise exposure, the USM group had the lowest threshold shift in auditory brainstem response, least loss of cochlear outer hair cells, and least reduction in the number of synaptic ribbons on postexposure day 28 among the three groups. The combination of USMB and IGF-1 led to a better therapeutic response to NIHL. Two hours after treatment, the USM group had significantly higher levels of Akt1 and Mapk3 gene expression than the other two groups. The most intense immunostaining for phosphor-AKT and phospho-ERK1/2 was detected in the cochlea in the USM group. These results suggested that USMB can be applied to enhance the efficacy of IGF-1 therapy in the treatment of inner ear diseases.
Collapse
|
21
|
Liao AH, Huang YJ, Chuang HC, Wang CH, Shih CP, Chiang CP. Minoxidil-Coated Lysozyme-Shelled Microbubbes Combined With Ultrasound for the Enhancement of Hair Follicle Growth: Efficacy In Vitro and In Vivo. Front Pharmacol 2021; 12:668754. [PMID: 33986689 PMCID: PMC8111400 DOI: 10.3389/fphar.2021.668754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/26/2021] [Indexed: 01/13/2023] Open
Abstract
Lysozyme (Lyz) is an antimicrobial peptide, a safe adjunct, and it has been indicated that Lyz can promote vibrissae follicle growth by enhancing the hair-inductive capacity of dermal papilla cells in mice. The present study produced a new type of minoxidil (Mx)-coated antifungal Lyz-shelled microbubble (LyzMB) for inhibiting bacteria and allergies on the oily scalp. The potential of Mx-coated LyzMBs (Mx-LyzMBs) combined with ultrasound (US) and the role of LyzMB fragments in enhancing hair follicle growth were investigated. Mx grafted with LyzMBs were synthesized and the loading efficiency of Mx on cationic LyzMBs was 20.3%. The biological activity of Lyz in skin was determined using an activity assay kit and immunohistochemistry expression, and the activities in the US+Mx-LyzMBs group were 65.8 and 118.5 μU/mL at 6 and 18 h, respectively. In hair follicle cell culture experiments, the lengths of hair follicle cells were significantly enhanced in the US+Mx-LyzMBs group (108.2 ± 11.6 μm) compared to in the US+LyzMBs+Mx group (44.3 ± 9.8 μm) and the group with Mx alone (79.6 ± 12.0 μm) on day 2 (p < 0.001). During 21 days of treatment in animal experiments, the growth rates at days 10 and 14 in the US+Mx-LyzMBs group increased by 19.4 and 65.7%, respectively, and there were significant differences (p < 0.05) between the US+Mx-LyzMBs group and the other four groups. These findings indicate that 1-MHz US (applied at 3 W/cm2, acoustic pressure = 0.266 MPa) for 1 min combined with Mx-LyzMBs can significantly increase more penetration of Mx and LyzMB fragments into skin and enhance hair growth than Mx alone.
Collapse
Affiliation(s)
- Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Jhen Huang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Ping Chiang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
22
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|