1
|
Hu K, Zai W, Xu M, Wang H, Song X, Huang C, Liu J, Chen J, Deng Q, Yuan Z, Chen J. Augmented epigenetic repression of hepatitis B virus covalently closed circular DNA by interferon-α and small-interfering RNA synergy. mBio 2024; 15:e0241524. [PMID: 39570046 PMCID: PMC11633095 DOI: 10.1128/mbio.02415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is a key obstacle for HBV cure. This study aims to comprehensively assess the effect of interferon (IFN) and small-interfering RNA (siRNA) combination on the cccDNA minichromosome. Utilizing both cell and mouse cccDNA models, we compared the inhibitory effects of IFNα, siRNA, and their combination on cccDNA activity and assessed its epigenetic state. IFNα2 treatment alone reduced HBV RNAs, HBeAg, and HBsAg levels by approximately 50%, accompanied by a low-level reconstitution of SMC5/6-a chromatin modulator that restricts cccDNA transcription. HBx-targeting siRNA (siHBx) achieved significant suppression of viral antigens and reconstitution of SMC5/6, but this effect could be reversed by the deacetylase inhibitor Belinostat. The combination of IFN with siHBx resulted in over 95% suppression of virological markers, reduction in epigenetic activation modifications (H3Ac and H4Ac) on cccDNA, and further reduced cccDNA accessibility, with the effect not reversible by Belinostat. In an extracellular humanized IFNAR C57BL/6 mouse model harboring recombinant cccDNA, the effect of combination of clinically used pegylated IFNα2 and GalNac-siHBx was further clarified, indicating a higher and more durable suppression of cccDNA activity compared to either therapy alone. In conclusion, the combination of IFNα and siRNA achieves a more potent and durable epigenetic inhibition of cccDNA activity in cell and mouse models, compared to monotherapy. These findings deepen the understanding of cccDNA modulation and strengthen the scientific basis for the potential of combination therapy. IMPORTANCE Since there are currently no approved drugs targeting and silencing covalently closed circular DNA (cccDNA), achieving a "functional cure" remains difficult. This study aims to comprehensively compare the effects of IFNα, small-interfering RNA targeting hepatitis B virus (HBV), and their combination on the activity, accessibility, and epigenetic modifications of cccDNA minichromosomes in cell models. A more durable and stable inhibition of HBV RNAs and antigens expression by IFNα and HBx-targeting siRNA (siHBx) synergy was observed, associated with augmented epigenetic repression of the cccDNA minichromosome. Besides, in an extracellular humanized IFNAR mouse model harboring recombinant cccDNA with an intact response to human IFNα, the synergistic effect of clinically used pegylated IFNα2 and in-house-developed GalNac-siHBx was further clarified.
Collapse
Affiliation(s)
- Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Mingzhu Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Juan Chen
- Key Laboratory of Molecular Biology of Infectious Diseases (MOE), Chongqing Medical University, Chongqing, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
2
|
Pan DZ, Soulette CM, Aggarwal A, Han D, van Buuren N, Wu P, Feierbach B, Lin JT, Tseng CH, Chen CY, Downie B, Mo H, Diehl L, Li L, Fletcher SP, Balsitis S, Ramirez R, Suri V, Hsu YC. Effects of tenofovir disoproxil fumarate on intrahepatic viral burden and liver immune microenvironment in patients with chronic hepatitis B. Gut 2024:gutjnl-2024-332526. [PMID: 39384203 DOI: 10.1136/gutjnl-2024-332526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The impact of nucleos(t)ide analogues on intrahepatic viral burden and immune microenvironment in patients with chronic hepatitis B (CHB) is not clear. OBJECTIVE We aimed to characterise the effects of tenofovir disoproxil fumarate (TDF) on intrahepatic viral burden and the liver immune microenvironment in patients with CHB. DESIGN Core liver biopsies were collected at baseline and year 3 from patients with CHB with minimally raised serum alanine aminotransferase in a double-blind placebo-controlled trial (NCT01522625). Paired biopsies were analysed by RNA-sequencing (n=119 pairs), a custom multiplex immunofluorescence assay (n=30 pairs), and HBV-targeted long-read DNA sequencing (n=49 pairs). RESULTS Both non-integrated and integrated HBV DNA were present in all patients at baseline, with >65% having interchromosomal translocations. Treatment significantly reduced the frequency of HBV core+ hepatocytes and intrahepatic (integrated and non-integrated) HBV DNA, but had no effect on HBsAg+ hepatocytes. Clonally expanded integrations were enriched for HBsAg coding regions and showed dysregulation of nearby genes. At baseline, there was significant enrichment of intrahepatic CD8+ T cell proximity to HBV core+ hepatocytes, but not to HBsAg+ cells. The densities of T cells and B cells were significantly reduced by TDF. Transcriptomic analyses found TDF induced widespread downregulation of immune-related genes including inhibitory and regulatory genes. CONCLUSION TDF significantly reduced intrahepatic integrated and non-integrated HBV DNA, exerting disparate effects on HBV core+ and HBsAg+ cells and on different immune cell subsets. Our data suggest there may be differential cytotoxic T cell-mediated killing of HBV core+ versus HBsAg+ hepatocytes, providing insights for HBV cure strategies.
Collapse
Affiliation(s)
- David Z Pan
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | - Dong Han
- Gilead Sciences Inc, Foster City, California, USA
| | | | - Peiwen Wu
- Gilead Sciences Inc, Foster City, California, USA
| | | | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hao Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Chiayi Christian Hospital, Chia-Yi, Taiwan
| | - Bryan Downie
- Gilead Sciences Inc, Foster City, California, USA
| | - Hongmei Mo
- Gilead Sciences Inc, Foster City, California, USA
| | - Lauri Diehl
- Gilead Sciences Inc, Foster City, California, USA
| | - Li Li
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | | | - Vithika Suri
- Gilead Sciences Inc, Foster City, California, USA
| | - Yao-Chun Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Colleage of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Balagopal A, Thio CL. Hepatitis B Surface Antigen Loss: What Does Integration Have to Do With a Functional Hepatitis B Virus Cure? J Infect Dis 2024; 230:529-532. [PMID: 38912959 DOI: 10.1093/infdis/jiae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024] Open
Affiliation(s)
- Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chloe L Thio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Wang L, Wang J, Zhao K, Jiang L, Zhang X, Zhao J, Li J, Lu F. The Relationship between Viral Replication and the Severity of Hepatic Necroinflammatory Damage Changed before HBeAg Loss in Patients with Chronic Hepatitis B Virus Infection. J Clin Transl Hepatol 2024; 12:381-388. [PMID: 38638381 PMCID: PMC11022060 DOI: 10.14218/jcth.2023.00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/20/2024] Open
Abstract
Background and Aims Disease progression of chronic hepatitis B virus (HBV) infection is driven by the interactions between viral replication and the host immune response against the infection. This study aimed to clarify the relationship between HBV replication and hepatic inflammation during disease progression. Methods Two cross-sectional, one validation cohort, and meta-analyses were used to explore the relationship between HBV replication and liver inflammation. Spearman analysis, multiple linear regression, and logistic regression were used to explore the relationship between variables. Results In the cross-sectional cohorts A and B including 1,350 chronic hepatitis B patients, Spearman analysis revealed a negative relationship between HBV replication (such as HBV DNA) and liver inflammation (such as ALT) in HBeAg-positive patients with higher HBV DNA >2×106 IU/mL (rho=-0.160 and -0.042) which turned to be positive in HBeAg-positive patients with HBV DNA ≤2×106 IU/mL (rho=0.278 and 0.260) and HBeAg-negative patients (rho=0.450 and 0.363). After adjustment for sex, age, and anti-HBe, results from logistic regression and multiple linear regression showed the opposite relationship still existed in HBeAg-positive patients with different DNA levels; the opposite relationship in HBeAg-positive patients with different DNA levels was validated in a third cohort; the opposite relationship in patients with different HBeAg status was partially confirmed by meta-analysis (overall R: -0.004 vs 0.481). Conclusions These results suggested a negative relationship between viral replication and liver inflammation in HBeAg-positive patients with high HBV DNA, which changed to a positive relationship for those HBeAg-positive patients with DNA less than 2×106 IU/mL and HBeAg-negative patients.
Collapse
Affiliation(s)
- Leijie Wang
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kunyu Zhao
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingming Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Testoni B, Scholtès C, Plissonnier ML, Paturel A, Berby F, Facchetti F, Villeret F, Degasperi E, Scott B, Hamilton A, Heil M, Lampertico P, Levrero M, Zoulim F. Quantification of circulating HBV RNA expressed from intrahepatic cccDNA in untreated and NUC treated patients with chronic hepatitis B. Gut 2024; 73:659-667. [PMID: 37879886 PMCID: PMC10958289 DOI: 10.1136/gutjnl-2023-330644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE A convenient, reproducible biomarker of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) transcriptional activity is lacking. We measured circulating HBV RNA (cirB-RNA) in untreated and nucleos(t)ide analogues (NUC) treated chronic hepatitis B (CHB) patients to define its correlation with intrahepatic viral markers and HBV core-related antigen (HBcrAg). DESIGN Paired liver biopsy and serum samples were collected from 122 untreated and 30 NUC-treated CHB patients. We measured cirB-RNA, HBV DNA, hepatitis B surface antigen (HBsAg), HBcrAg and alanine aminotransferase levels. cirB-RNA was quantified using an investigational HBV RNA assay for use on the cobas 6800 system. The test detects a region spanning the HBV canonical polyadenylation site. cccDNA and 3.5 kb RNA in liver tissue were assessed by quantitative PCR and droplet digital PCR. RESULTS cirB-RNA was detectable in 100% of HBeAg(+) chronic hepatitis (CH), 57% and 14% of HBeAg(-) CH and chronic infection untreated patients and 47% of NUC-treated patients. cirB-RNA undetectability was associated with lower intrahepatic cccDNA transcriptional activity, as well as serum HBcrAg, but no significant differences in HBsAg, in both untreated and treated patients. In untreated HBeAg(-) patients, cirB-RNA correlated with intrahepatic 3.5 kb RNA and cccDNA transcriptional activity, serum HBV DNA and HBcrAg, but not with HBsAg or total cccDNA levels. Combined undetectability of both cirB-RNA and HBcrAg detection in untreated HBeAg(-) patients identified a subgroup with the lowest levels of intrahepatic transcriptionally active cccDNA. CONCLUSION Our results support the usefulness of quantification of circulating HBV RNA expressed from cccDNA as an indicator of intrahepatic active viral reservoir in both untreated and NUC-treated CHB patients. TRIAL REGISTRATION NUMBER NCT02602847.
Collapse
Affiliation(s)
- Barbara Testoni
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
| | - Caroline Scholtès
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Virology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Alexia Paturel
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
| | | | - Floriana Facchetti
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - François Villeret
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Elisabetta Degasperi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beth Scott
- Roche Molecular Diagnostics, Pleasanton, California, USA
| | - Aaron Hamilton
- Roche Molecular Diagnostics, Pleasanton, California, USA
| | - Marintha Heil
- Roche Molecular Diagnostics, Pleasanton, California, USA
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimo Levrero
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine-DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Hong X, Mendenhall MA, Hu J. Detection of Hepatitis B Virus Covalently Closed Circular DNA and Intermediates in Its Formation. Methods Mol Biol 2024; 2837:99-111. [PMID: 39044078 DOI: 10.1007/978-1-0716-4027-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Hepatitis B virus (HBV) infection remains a global public health issue, and approximately 294 million individuals worldwide are chronically infected with HBV. Approved antivirals rarely cure chronic HBV infection due to their inability to eliminate the HBV covalently closed circular DNA (cccDNA), the viral episome, in the nucleus of infected hepatocytes. The persistence of cccDNA underlies the chronic nature of HBV infection and the frequent relapse after the cessation of antiviral treatment. However, drug development targeting cccDNA formation and maintenance is hindered by the lack of sufficient biological knowledge on cccDNA, and of its reliable detection due to its low abundance and the presence of high levels of HBV DNA species similar to cccDNA. Here, we describe a Southern blot method for reliably detecting the HBV cccDNA even in the presence of high levels of plasmid DNA and other HBV DNA species, based on the efficient removal of plasmid DNA and all DNA species with free 3' ends. This approach also allows the detection of certain potential intermediates during cccDNA formation.
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Megan A Mendenhall
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
7
|
Thio CL, Taddese M, Saad Y, Zambo K, Ribeiro RM, Grudda T, Sulkowski MS, Sterling RK, Zhang Y, Young ED, Hwang HS, Balagopal A. Hepatitis B e Antigen-Negative Single Hepatocyte Analysis Shows Transcriptional Silencing and Slow Decay of Infected Cells With Treatment. J Infect Dis 2023; 228:1219-1226. [PMID: 37129258 PMCID: PMC10629706 DOI: 10.1093/infdis/jiad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Nucleos(t)ide analogues (NUCs) rarely cure chronic hepatitis B (CHB) because they do not eliminate covalently closed circular deoxyribonucleic acid, the stable replication template. In hepatitis B e antigen (HBeAg)-positive CHB during NUCs, HBV-infected cells decline slowly and are transcriptionally silenced. Whether these occur in HBeAg-negative CHB is unknown. METHODS Using paired liver biopsies separated by 2.7-3.7 years in 4 males with HIV and HBeAg-negative CHB at both biopsies and 1 male with HIV who underwent HBeAg seroconversion between biopsies, we quantified amounts of viral nucleic acids in hundreds of individual hepatocytes. RESULTS In the 4 persistently HBeAg-negative participants, HBV-infected hepatocytes ranged from 6.2% to 17.7% (biopsy 1) and significantly declined in 3 of 4 by biopsy 2. In the HBeAg seroconverter, the proportion was 97.4% (biopsy 1) and declined to 81.9% at biopsy 2 (P < .05). We extrapolated that HBV eradication with NUCs would take >100 years. At biopsy 1 in the persistently HBeAg-negative participants, 23%-56.8% of infected hepatocytes were transcriptionally inactive-higher than we observed in HBeAg-positive CHB-and significantly declined in 1 of 4 at biopsy 2. CONCLUSIONS In HBeAg-negative CHB on NUCs, the negligible decline in infected hepatocytes is similar to HBeAg-positive CHB, supporting the need for more potent therapeutics to achieve functional cure.
Collapse
Affiliation(s)
- Chloe L Thio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MarylandUSA
| | - Maraake Taddese
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yasmeen Saad
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristina Zambo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Tanner Grudda
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MarylandUSA
| | - Mark S Sulkowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard K Sterling
- Divison of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yang Zhang
- Division of Gastrointestinal and Hepatic Pathology, Joint Pathology Center, Silver Spring, Maryland, USA
| | - Eric D Young
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hyon S Hwang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Testoni B, Roca Suarez AA, Battisti A, Plissonnier ML, Heil M, Fontanges T, Villeret F, Chouik Y, Levrero M, Gill U, Kennedy P, Zoulim F. Evaluation of the HBV liver reservoir with fine needle aspirates. JHEP Rep 2023; 5:100841. [PMID: 37675272 PMCID: PMC10477677 DOI: 10.1016/j.jhepr.2023.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 09/08/2023] Open
Abstract
Background & Aims Finite duration of treatment associated with HBsAg loss is the current goal for improved therapeutic approaches against chronic HBV infection, as it indicates elimination or durable inactivation of intrahepatic covalently closed circular DNA (cccDNA). To assist drug development, the definition of early predictive markers of HBsAg loss by assessing their value in reflecting intrahepatic cccDNA levels and transcriptional activity is essential. Fine needle aspirates (FNAs) have recently emerged as a less invasive alternative to core liver biopsy (CLB) and showed to be useful for investigating intrahepatic immune responses. The aim of this study was to optimise and validate the use of FNA vs. CLB to evaluate the intrahepatic viral reservoir. Methods Paired FNA/CLB samples were obtained from patients with HBeAg+ chronic hepatitis (n = 4), HBeAg- chronic hepatitis (n = 4), and HBeAg- chronic infection (n = 1). One HBeAg+ patient was undergoing tenofovir treatment. HBV 3.5-kb RNA and cccDNA were quantified by droplet digital PCR. Results cccDNA was quantifiable in all but one FNA/CLB pair, showing the highest levels in untreated HBeAg+ patients, except for the tenofovir-treated patient. Similarly, 3.5-kb RNA was detectable in all but one FNA sample and showed higher levels in HBeAg+ patients. When comparing cccDNA and 3.5-kb RNA quantification in FNA vs. CLB samples, no statistically significant differences were identified. Conclusions These results demonstrate the possibility to quantify cccDNA and assess its transcriptional activity in patients with chronic hepatitis B by combining FNA and droplet digital PCR. This supports the use of FNA in clinical trials to evaluate the intrahepatic viral reservoir during the development of new antivirals and immunomodulatory agents. Impact and implications Chronic hepatitis B infection is characterised by a complex interplay between immune responses and viral replication in the liver, which determines the long-term outcome of the disease. In this study, we show that fine needle aspiration of the liver, a less-invasive alternative to core biopsies, allows the assessment of the hepatic viral reservoir.
Collapse
Affiliation(s)
- Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | - Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | - Arianna Battisti
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | | | - Thierry Fontanges
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - François Villeret
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Yasmina Chouik
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine – DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Upkar Gill
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patrick Kennedy
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
9
|
Kim SC, Wallin JJ, Ghosheh Y, Zahoor MA, Sanchez Vasquez JD, Nkongolo S, Fung S, Mendez P, Feld JJ, Janssen HL, Gehring AJ. Efficacy of antiviral therapy and host-virus interactions visualised using serial liver sampling with fine-needle aspirates. JHEP Rep 2023; 5:100817. [PMID: 37600958 PMCID: PMC10432215 DOI: 10.1016/j.jhepr.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 08/22/2023] Open
Abstract
Background & Aims Novel therapies for chronic hepatitis B (CHB), such as RNA interference, target all viral RNAs for degradation, whereas nucleoside analogues are thought to block reverse transcription with minimal impact on viral transcripts. However, limitations in technology and sampling frequency have been obstacles to measuring actual changes in HBV transcription in the liver of patients starting therapy. Methods We used elective liver sampling with fine-needle aspirates (FNAs) to investigate the impact of treatment on viral replication in patients with CHB. Liver FNAs were collected from patients with CHB at baseline and 12 and 24 weeks after starting tenofovir alafenamide treatment. Liver FNAs were subjected to single-cell RNA sequencing and analysed using the Viral-Track method. Results HBV was the only viral genome detected and was enriched within hepatocytes. The 5' sequencing technology identified protein-specific HBV transcripts and showed that tenofovir alafenamide therapy specifically reduced pre-genomic RNA transcripts with little impact on HBsAg or HBx transcripts. Infected hepatocytes displayed unique gene signatures associated with an immunological response to viral infection. Conclusions Longitudinal liver sampling, combined with single-cell RNA sequencing, captured the dynamic impact of antiviral therapy on the replication status of HBV and revealed host-pathogen interactions at the transcriptional level in infected hepatocytes. This sequencing-based approach is applicable to early-stage clinical studies, enabling mechanistic studies of immunopathology and the effect of novel therapeutic interventions. Impact and Implications Infection-dependent transcriptional changes and the impact of antiviral therapy on viral replication can be measured in longitudinal human liver biopsies using single-cell RNA sequencing data.
Collapse
Affiliation(s)
| | | | - Yanal Ghosheh
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Muhammad Atif Zahoor
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Juan Diego Sanchez Vasquez
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shirin Nkongolo
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases), University Hospital Heidelberg, Heidelberg, Germany
| | - Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Jordan J. Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Harry L.A. Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Erasmus Medical Center, Division of Gastroenterology and Hepatology, Rotterdam, The Netherlands
| | - Adam J. Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Kang M, Price JC, Peters MG, Lewin SR, Sulkowski M. Design and analysis considerations for early phase clinical trials in hepatitis B (HBV) cure research: the ACTG A5394 study in persons with both HIV and HBV. J Virus Erad 2023; 9:100344. [PMID: 37744732 PMCID: PMC10514436 DOI: 10.1016/j.jve.2023.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
With growing interest and efforts to achieve a hepatitis B (HBV) cure, HBV therapeutics have increasingly entered the clinical testing phase. In designing an early phase clinical trial aimed at HBV cure, the heterogeneity in participants and the choice of a biomarker endpoint that signals a cure requires careful consideration. We describe the key elements to consider during the development of HBV clinical trials aimed at a functional cure, and how we have addressed them in the design of a phase II AIDS Clinical Trials Group (ACTG) study, A5394 (NCT05551273). The trial we present is for persons with both HIV and HBV, a unique population that has much to gain from an HBV cure. Our decisions on the design elements are specific to the study agent and the targeted population, but our deliberations may be informative in the emerging field of early phase HBV trials aimed at cure.
Collapse
Affiliation(s)
- Minhee Kang
- Center for Biostatistics in AIDS Research in the Department of Biostatistics, Harvard T.H. Chan School of Public Health, United States
| | - Jennifer C. Price
- Division of Gastroenterology, University of California San Francisco School of Medicine, United States
| | - Marion G. Peters
- Department of Medicine, Feinberg School of Medicine, Northwestern University, United States
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Australia
| | - Mark Sulkowski
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
11
|
Nonproductive Hepatitis B Virus Covalently Closed Circular DNA Generates HBx-Related Transcripts from the HBx/Enhancer I Region and Acquires Reactivation by Superinfection in Single Cells. J Virol 2023; 97:e0171722. [PMID: 36475867 PMCID: PMC9888189 DOI: 10.1128/jvi.01717-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a public health problem worldwide. Persistent HBV infection relies on active transcription of the covalently closed circular DNA (cccDNA) in hepatocytes, which is less understood at the single-cell level. In this study, we isolated primary human hepatocytes from liver-humanized FRG mice infected with HBV and examined cccDNA transcripts in single cells based on 5' end sequencing. Our 5' transcriptome sequencing (RNA-seq) analysis unambiguously assigns different viral transcripts with overlapping 3' sequences and quantitatively measures viral transcripts for structural genes (3.5 kb, 2.4 kb, and 2.1 kb) and the nonstructural X gene (0.7 kb and related) in single cells. We found that an infected cell either can generate all viral transcripts, signifying active transcription, or presents only transcripts from the X gene and its associated enhancer I domain and no structural gene transcripts. Results from cell infection assays with recombinant HBV show that nonproductive transcription of cccDNA can be activated by incoming virus through superinfection. Moreover, upon HBV infection, cccDNA apparently can be transcribed in the absence of HBx and produces HBx, needed for productive transcription of other viral genes. These results shed new light on cccDNA transcription at the single-cell level and provide insights useful for improving the treatment strategy against chronic HBV infection. IMPORTANCE Hepatitis B virus (HBV) infection can be effectively suppressed but rarely cured by available drugs. Chronic HBV infection is based on persistence of covalently closed circular DNA (cccDNA) and continuous infection and reinfection with HBV in the liver. Understanding transcriptional regulation of cccDNA will help to achieve permanent transcriptional silencing, i.e., functional cure of HBV. In our study, we found that an infected cell either can generate all viral transcripts, signifying active transcription, or presents only transcripts from the X gene and its associated enhancer I domain and no structural gene transcripts. The nonproductive transcription of cccDNA can be activated by incoming virus through superinfection. Upon an infection, cccDNA apparently can be transcribed in the absence of HBx to produce HBx, necessary for subsequent transcription of other HBV genes. Our studies shed new light on the mechanism of HBV infection and may have implications for a functional cure regimen for HBV.
Collapse
|
12
|
Grudda T, Hwang HS, Taddese M, Quinn J, Sulkowski MS, Sterling RK, Balagopal A, Thio CL. Integrated hepatitis B virus DNA maintains surface antigen production during antiviral treatment. J Clin Invest 2022; 132:e161818. [PMID: 35797115 PMCID: PMC9473722 DOI: 10.1172/jci161818] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The focus of hepatitis B functional cure, defined as sustained loss of hepatitis B virus (HBV) surface antigen (HBsAg) and HBV DNA from blood, is on eliminating or silencing the intranuclear template for HBV replication, covalently closed circular DNA (cccDNA). However, HBsAg also derives from HBV DNA integrated into the host genome (iDNA). Little is known about the contribution of iDNA to circulating HBsAg with current therapeutics. We applied a multiplex droplet digital PCR assay to demonstrate that iDNA is responsible for maintaining HBsAg quantities in some individuals. Using paired bulk liver tissue from 16 HIV/HBV-coinfected persons on nucleos(t)ide analog (NUC) therapy, we demonstrate that people with larger HBsAg declines between biopsies derive HBsAg from cccDNA, whereas people with stable HBsAg levels derive predominantly from iDNA. We applied our assay to individual hepatocytes in paired tissues from 3 people and demonstrated that the individual with significant HBsAg decline had a commensurate loss of infected cells with transcriptionally active cccDNA, while individuals without HBsAg decline had stable or increasing numbers of cells producing HBsAg from iDNA. We demonstrate that while NUC therapy may be effective at controlling cccDNA replication and transcription, innovative treatments are required to address iDNA transcription that sustains HBsAg production.
Collapse
Affiliation(s)
- Tanner Grudda
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hyon S. Hwang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maraake Taddese
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Quinn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark S. Sulkowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard K. Sterling
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chloe L. Thio
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: The promising paths forward. Hepatology 2022; 76:233-250. [PMID: 34990029 DOI: 10.1002/hep.32314] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection is a global public health burden estimated to impact nearly 300 million persons worldwide. Despite the advent of potent antiviral agents that effectively suppress viral replication, HBV cure remains difficult to achieve because of the persistence of covalently closed circular DNA (cccDNA), HBV-DNA integration into the host genome, and impaired immune response. Indefinite treatment is necessary for most patients to maintain level of viral suppression. The success of direct-acting antivirals (DAAs) for hepatitis C treatment has rejuvenated the search for a cure for chronic hepatitis B (CHB), though an HBV cure likely requires an additional layer: immunomodulators for restoration of robust immune responses. DAAs such as entry inhibitors, capsid assembly modulators, inhibitors of subviral particle release, cccDNA silencers, and RNA interference molecules have reached clinical development. Immunomodulators, namely innate immunomodulators (Toll-like receptor agonists), therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also progressing toward clinical development. The future of the HBV cure possibly lies in triple combination therapies with concerted action on replication inhibition, antigen reduction, and immune stimulation. Many obstacles remain, such as overcoming translational failures, choosing the right endpoint using the right biomarkers, and leveraging current treatments in combination regimens to enhance response rates. This review gives an overview of the current therapies for CHB, HBV biomarkers used to evaluate treatment response, and development of DAAs and immune-targeting drugs and discusses the limitations and unanswered questions on the journey to an HBV cure.
Collapse
Affiliation(s)
- Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Boettler T, Gill US, Allweiss L, Pollicino T, Tavis JE, Zoulim F. Assessing immunological and virological responses in the liver: Implications for the cure of chronic hepatitis B virus infection. JHEP Rep 2022; 4:100480. [PMID: 35493765 PMCID: PMC9039841 DOI: 10.1016/j.jhepr.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022] Open
Abstract
Cure from chronic HBV infection is rare with current therapies. Basic research has helped to fundamentally improve our knowledge of the viral life cycle and virus-host interactions, and provided the basis for several novel drug classes that are currently being developed or are being tested in clinical trials. While these novel compounds targeting the viral life cycle or antiviral immune responses hold great promise, we are still lacking a comprehensive understanding of the immunological and virological processes that occur at the site of infection, the liver. At the International Liver Congress 2021 (ILC 2021), a research think tank on chronic HBV infection focused on mechanisms within the liver that facilitate persistent infection and looked at the research questions that need to be addressed to fill knowledge gaps and identify novel therapeutic strategies. Herein, we summarise the discussion by the think tank and identify the key basic research questions that must be addressed in order to develop more effective strategies for the functional cure of HBV infection.
Collapse
Affiliation(s)
- Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Upkar S. Gill
- Blizard Institute, Centre for Immunobiology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lena Allweiss
- I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems sites, Germany
| | - Teresa Pollicino
- Department of Human Pathology, University Hospital "G. Martino" of Messina, Messina, Italy
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology and Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis MO USA
| | - Fabien Zoulim
- INSERM Unit 1052 – Cancer Research Center of Lyon, Department of Hepatology Hospices Civils de Lyon, Lyon University, France
| |
Collapse
|
15
|
Burdette DL, Lazerwith S, Yang J, Chan HLY, Delaney IV WE, Fletcher SP, Cihlar T, Feierbach B. Ongoing viral replication and production of infectious virus in patients with chronic hepatitis B virus suppressed below the limit of quantitation on long-term nucleos(t)ide therapy. PLoS One 2022; 17:e0262516. [PMID: 35363817 PMCID: PMC8974970 DOI: 10.1371/journal.pone.0262516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023] Open
Abstract
Nucleos(t)ide analogs are standard-of-care for the treatment of chronic hepatitis B and can effectively reduce hepatitis B virus (HBV) replication but rarely leads to cure. Nucleos(t)ide analogs do not directly eliminate the viral episome, therefore treatment cessation typically leads to rapid viral rebound. While treatment is effective, HBV DNA is still detectable (although not quantifiable) in the periphery of the majority of nucleos(t)ide analog treated HBV patients, even after prolonged treatment. Addressing whether the detectable HBV DNA represents infectious virus is a key unknown and has important implications for the development of a curative treatment for HBV. The minimum HBV genome equivalents required to establish infection in human liver chimeric mice was determined by titration of HBV patient sera and the infectivity in chimeric mice of serum from patients (n = 7) suppressed to the limit of detection on nucleos(t)ide analog therapy was evaluated. A minimum of 5 HBV genome equivalents were required to establish infection in the chimeric mice, confirming this model has sufficient sensitivity to determine whether serum from virally suppressed patients contains infectious virus. Strikingly, serum from 75% (n = 3 out of 4) of nucleos(t)ide-treated HBV patients with DNA that was detectable, but below the lower limit of quantitation, also established infection in the chimeric mice. These results demonstrate that infectious virus is still present in some HBV patients on suppressive nucleos(t)ide therapy. This residual virus may support viral persistence via continuous infection and explain the ongoing risk for HBV-related complications despite long-term suppression on therapy. Thus, additional treatment intensification may facilitate HBV cure.
Collapse
Affiliation(s)
- Dara L Burdette
- Discovery Virology, Gilead Sciences, Foster City, CA, United States of America
| | - Scott Lazerwith
- Medicinal Chemistry, Gilead Sciences, Foster City, CA, United States of America
| | - Jenny Yang
- Clinical Research, Gilead Sciences, Foster City, CA, United States of America
| | | | | | - Simon P. Fletcher
- Discovery Virology, Gilead Sciences, Foster City, CA, United States of America
| | - Tomas Cihlar
- Discovery Virology, Gilead Sciences, Foster City, CA, United States of America
| | - Becket Feierbach
- Clinical Virology, Gilead Sciences, Foster City, CA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bustamante-Jaramillo LF, Fingal J, Blondot ML, Rydell GE, Kann M. Imaging of Hepatitis B Virus Nucleic Acids: Current Advances and Challenges. Viruses 2022; 14:v14030557. [PMID: 35336964 PMCID: PMC8950347 DOI: 10.3390/v14030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles. Regardless of infections leading to extreme viral loads, which may reach 1010 virions per mL serum, hepatitis B viruses are of low abundance and productivity in individual cells. Imaging of the infections in cells is thus a particular challenge especially for cccDNA that exists only in a few copies. The review describes the significance of microscopical approaches on genome and transcript detection for understanding hepatitis B virus infections, implications for understanding treatment outcomes, and recent microscopical approaches, which have not been applied in HBV research.
Collapse
Affiliation(s)
- Luisa F. Bustamante-Jaramillo
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Joshua Fingal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Marie-Lise Blondot
- Microbiologie Fondamentale et Pathogénicité (MFP), CNRS UMR 5234, University of Bordeaux, 33076 Bordeaux, France;
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
17
|
Wang M, Qian M, Fu R, Zhang Y, Shen X, Yue D, Wang N, Yang L. The Impact of Nucleos(t)ide Analogs Off-Therapy Among Chronic Hepatitis B Patients: A Systematic Review and Meta-Analysis. Front Public Health 2021; 9:709220. [PMID: 34568257 PMCID: PMC8460900 DOI: 10.3389/fpubh.2021.709220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Although most chronic hepatitis B (CHB) patients achieve effective virological suppression after receiving long-term nucleos(t)ide analogs (Nucs) therapy, the safety of off-therapy is controversial under the monitor. Methods: We identified studies through searching PubMed, Embase, Cochrane Library, and Web of Science from January 1990 to February 2021. The eligible studies compare the long outcomes between discontinued and continued Nucs treatments groups among CHB patients. This study was conducted to investigate long-term outcomes, including biochemical, serological, and virological outcomes, as well as hepatocellular carcinoma (HCC) development rate between discontinued and maintained Nucs therapy groups among CHB patients. Results: Five eligible studies covering 1,425 patients were selected for meta-analysis. Our result exhibits that patients with Nucs off-treatment have a higher risk of alanine aminotransferase (ALT) flares-up than those who continued Nucs therapy under the monitor (OR = 9.39, 95%CI = 3.87–22.78). Nucs off-therapy patients have a higher virological bound incidence (OR = 617.96, 95%CI = 112.48–3,395.14) and a higher HBV DNA level (OR = 9.39, 95%CI = 3.87–22.78) than those who continued Nucs therapy. There was no statistically significant difference in the risk of hyperbilirubinaemia, hepatic decompensation, and HCC development between both two groups. Patients in Nucs off-therapy group demonstrate a higher HBsAg loss rate than those in the continued group (OR = 7.10, 95%CI = 6.68–13.69). Conclusions: Nucs off-therapy patients may exhibit a higher chance of achieving HBsAg loss than those who continue Nucs therapy. It requires close monitoring after Nucs off-therapy and timely restarting of Nucs therapy when ALT concentrations increase.
Collapse
Affiliation(s)
- Mian Wang
- Infection Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Mingxia Qian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqin Zhang
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Xinlan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dengyuan Yue
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Yang
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| |
Collapse
|
18
|
Zhu M, Lian C, Chen G, Zou P, Qin BG. CircRNA FUT10 regulates the regenerative potential of aged skeletal muscle stem cells by targeting HOXA9. Aging (Albany NY) 2021; 13:17428-17441. [PMID: 34257163 PMCID: PMC8312443 DOI: 10.18632/aging.203233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is capable of repairing itself after injury to maintain the stability of its own tissue, but this ability declines with aging. Circular RNAs (circRNAs) are involved in cell aging. However, there is little research into their role and underlying mechanisms, especially in skeletal muscle stem cells (SkMSCs). In this study, we assessed circRNA FUT10 expression in aged and adult SkMSCs. We observed that circRNA FUT10 was upregulated in aged SkMSCs compared with that in adult SkMSCs. Furthermore, we identified putative miR-365-3p binding sites on circRNA FUT10, suggesting that this circRNA sponges miR-365a-3p. We also found that HOXA9 is a downstream target of miR-365a-3p and confirmed that miR-365a-3p can bind to circRNA FUT10 and the 3′-untranslated region of HOXA9 mRNA. This finding indicated that miR-365a-3p might serve as a “bridge” between circRNA FUT10 and HOXA9. Finally, we found that the circRNA FUT10/miR365a-3p/HOXA9 axis is involved in SkMSC aging. Collectively, our results show that the circRNA FUT10/miR365a-3p/HOXA9 axis is a promising therapeutic target and are expected to facilitate the development of therapeutic strategies to improve the prognosis of degenerative muscle disease.
Collapse
Affiliation(s)
- Menghai Zhu
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR. China
| | - Chong Lian
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| | - Gang Chen
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| | - Peng Zou
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| | - Beng Gang Qin
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| |
Collapse
|
19
|
Goyal A. Modeling reveals no direct role of the extent of HBV DNA integrations on the outcome of infection. J Theor Biol 2021; 526:110793. [PMID: 34087271 DOI: 10.1016/j.jtbi.2021.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 11/27/2022]
Abstract
Hepatitis B virus (HBV) with its high prevalence and death toll is one of the most important infectious diseases to study. Yet, there is very little progress in the development of within-host models for HBV, which has subsequently hindered our understanding of this virus. The uncertainty around the proliferation of infected hepatocytes has been studied but never in association with other important biological continuous events such as integrations and superinfections. This is despite the fact that these processes affect the diversity and composition of infected cell population in the liver and an improved understanding of the cellular composition will undoubtedly assist in strategizing against this viral infection. Here, we developed novel mathematical models that incorporate these key biological processes and analyzed them both analytically and numerically. Unaffected by the extent of integrated DNA (IDNA), the outcome of HBV infection was primarily dictated by the balance between processes generating and killing infected hepatocytes containing covalent closed circular DNA (cccDNA). The superinfection was found to be a key process in the spread of HBV infection as its exclusion could not reproduce experimentally observed composition of infected hepatocytes at peak of acute HBV infection, a stage where our model predicts that infected hepatocytes most likely carry both cccDNA and IDNA. Our analysis further suggested the existence of some form of selective advantage of infected hepatocytes containing only IDNA to explain the viral dynamics observed during antiviral treatment and the transition from peak to acute infection. Finally, the fine line between liver destruction and resolution of acute HBV infection was found to be highly influenced by the fate of cccDNA during cellular proliferation.
Collapse
Affiliation(s)
- Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, United States
| |
Collapse
|
20
|
Wooddell CI, Gehring AJ, Yuen MF, Given BD. RNA Interference Therapy for Chronic Hepatitis B Predicts the Importance of Addressing Viral Integration When Developing Novel Cure Strategies. Viruses 2021; 13:v13040581. [PMID: 33808298 PMCID: PMC8065501 DOI: 10.3390/v13040581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B infection remains a globally important cause of morbidity and mortality and has recently undergone a renaissance in therapeutic interest with increased pre-clinical and clinical testing of new drug classes. One of the first new classes in the clinic was RNA interference agents, which have the potential to impact the entire viral life cycle by reducing all virus-produced mRNA. Early clinical testing with the first of these agents in the clinic, ARC-520, demonstrated that rapid and deep reductions in viral proteins, RNA and DNA could be produced with this approach, but also the surprising insight that HBsAg production from incomplete HBV DNA integrated into the host genome appears to play a heretofore unappreciated and important role in maintaining circulating HBsAg, thought to play a fundamental role in preventing host clearance of the virus. Thus, accounting for viral DNA integration in novel HBV treatment approaches may prove to be essential to achieving successful finite therapies of this difficult to treat chronic infection.
Collapse
Affiliation(s)
- Christine I. Wooddell
- Arrowhead Pharmaceuticals, 502 South Rosa Road, Madison, WI 53719, USA;
- Correspondence: ; Tel.: +1-608-316-3930
| | - Adam J. Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada;
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China;
| | - Bruce D. Given
- Arrowhead Pharmaceuticals, 502 South Rosa Road, Madison, WI 53719, USA;
| |
Collapse
|
21
|
Fatehi F, Bingham RJ, Dykeman EC, Patel N, Stockley PG, Twarock R. An Intracellular Model of Hepatitis B Viral Infection: An In Silico Platform for Comparing Therapeutic Strategies. Viruses 2020; 13:v13010011. [PMID: 33374798 PMCID: PMC7823939 DOI: 10.3390/v13010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) is a major focus of antiviral research worldwide. The International Coalition to Eliminate HBV, together with the World Health Organisation (WHO), have prioritised the search for a cure, with the goal of eliminating deaths from viral hepatitis by 2030. We present here a comprehensive model of intracellular HBV infection dynamics that includes all molecular processes currently targeted by drugs and agrees well with the observed outcomes of several clinical studies. The model reveals previously unsuspected kinetic behaviour in the formation of sub-viral particles, which could lead to a better understanding of the immune responses to infection. It also enables rapid comparative assessment of the impact of different treatment options and their potential synergies as combination therapies. A comparison of available and currently developed treatment options reveals that combinations of multiple capsid assembly inhibitors perform best.
Collapse
Affiliation(s)
- Farzad Fatehi
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - Richard J. Bingham
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5NG, UK
| | - Eric C. Dykeman
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK;
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK;
- Correspondence: (P.G.S.); (R.T.)
| | - Reidun Twarock
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5NG, UK
- Correspondence: (P.G.S.); (R.T.)
| |
Collapse
|